def cluster_cleanup(client=None): """ Stop and close dangling parallel processing jobs Parameters ---------- client : dask distributed computing client or None Either a concrete `dask client object <https://distributed.dask.org/en/latest/client.html>`_ or `None`. If `None`, a global client is queried for and shut-down if found (without confirmation!). Returns ------- Nothing : None See also -------- esi_cluster_setup : Launch a SLURM jobs on the ESI compute cluster """ # For later reference: dynamically fetch name of current function funcName = "Syncopy <{}>".format(inspect.currentframe().f_code.co_name) # Attempt to establish connection to dask client if client is None: try: client = get_client() except ValueError: msg = "No dangling clients or clusters found." SPYWarning(msg) return except Exception as exc: raise exc else: if not isinstance(client, Client): raise SPYTypeError(client, varname="client", expected="dask client object") # Prepare message for prompt if client.cluster.__class__.__name__ == "LocalCluster": userClust = "LocalCluster hosted on {}".format(client.scheduler_info()["address"]) else: userName = getpass.getuser() outDir = client.cluster.job_header.partition("--output=")[-1] jobID = outDir.partition("{}_".format(userName))[-1].split(os.sep)[0] userClust = "cluster {0}_{1}".format(userName, jobID) nWorkers = len(client.cluster.workers) # If connection was successful, first close the client, then the cluster client.close() client.cluster.close() # Communicate what just happened and get outta here msg = "{fname:s} Successfully shut down {cname:s} containing {nj:d} workers" print(msg.format(fname=funcName, nj=nWorkers, cname=userClust)) return
def parallel_client_detector(*args, **kwargs): # Extract `parallel` keyword: if `parallel` is `False`, nothing happens parallel = kwargs.get("parallel") # Detect if dask client is running and set `parallel` keyword accordingly results = [] cleanup = False if parallel is None or parallel is True: if spy.__dask__: try: dd.get_client() parallel = True except ValueError: if parallel is True: objList = [] argList = list(args) nTrials = 0 for arg in args: if hasattr(arg, "trials"): objList.append(arg) nTrials = max(nTrials, len(arg.trials)) argList.remove(arg) nObs = len(objList) msg = "Syncopy <{fname:s}> Launching parallel computing client " +\ "to process {no:d} objects..." print(msg.format(fname=func.__name__, no=nObs)) client = esi_cluster_setup(n_jobs=nTrials, interactive=False) cleanup = True if len(objList) > 1: for obj in objList: results.append(func(obj, *argList, **kwargs)) else: parallel = False else: wrng = \ "dask seems not to be installed on this system. " +\ "Parallel processing capabilities cannot be used. " SPYWarning(wrng) parallel = False # Add/update `parallel` to/in keyword args kwargs["parallel"] = parallel if len(results) == 0: results = func(*args, **kwargs) if cleanup: cluster_cleanup(client=client) return results
def validate_padding(pad_to_length, lenTrials): """ Simplified padding """ # supported padding options not_valid = False if not isinstance(pad_to_length, (Number, str, type(None))): not_valid = True elif isinstance(pad_to_length, str) and pad_to_length not in availablePaddingOpt: not_valid = True if isinstance(pad_to_length, bool): # bool is an int subclass, check for it separately... not_valid = True if not_valid: lgl = "`None`, 'nextpow2' or an integer like number" actual = f"{pad_to_length}" raise SPYValueError(legal=lgl, varname="pad_to_length", actual=actual) # here we check for equal lengths trials in case of no user specified absolute padding length # we do a rough 'maxlen' padding, nextpow2 will be overruled in this case if lenTrials.min() != lenTrials.max() and not isinstance( pad_to_length, Number): abs_pad = int(lenTrials.max()) msg = f"Unequal trial lengths present, automatic padding to {abs_pad} samples" SPYWarning(msg) # zero padding of ALL trials the same way if isinstance(pad_to_length, Number): scalar_parser(pad_to_length, varname='pad_to_length', ntype='int_like', lims=[lenTrials.max(), np.inf]) abs_pad = pad_to_length # or pad to optimal FFT lengths # (not possible for unequal lengths trials) elif pad_to_length == 'nextpow2': # after padding abs_pad = _nextpow2(int(lenTrials.min())) # no padding, equal lengths trials elif pad_to_length is None: abs_pad = int(lenTrials.max()) # `abs_pad` is now the (soon to be padded) signal length in samples return abs_pad
def _anyplot(*data, overlay=None, method=None, **kwargs): """ Local management routine that invokes respective class methods based on caller (`obj.singlepanelplot` or `obj.multipanelplot`) This is an auxiliary method that is intended purely for internal use. Please refer to the user-exposed methods :func:`~syncopy.singlepanelplot` and/or :func:`~syncopy.multipanelplot` to actually generate plots of Syncopy data objects. """ # The only error-checking done in here: ensure `overlay` is Boolean and assert # `data` contains only non-empty Syncopy objects if not isinstance(overlay, bool): raise SPYTypeError(overlay, varname="overlay", expected="bool") for obj in data: try: data_parser(obj, varname="data", empty=False) except Exception as exc: raise exc # FIXME: while plotting is still WIP if obj.__class__.__name__ not in ["AnalogData", "SpectralData"]: errmsg = "Plotting currently only supported for `AnalogData` and `SpectralData` objects" raise NotImplementedError(errmsg) # See if figure was provided start = 0 nData = len(data) fig = kwargs.pop("fig", None) if not overlay and fig is not None and nData > 1: msg = "User-provided figures not supported for non-overlay visualization " +\ "of {} datasets. Supplied figure will not be used. " SPYWarning(msg.format(nData)) fig = None # If we're overlaying, preserve initial figure object to plot over iteratively if overlay: fig = getattr(data[0], method)(fig=fig, **kwargs) start = 1 figList = [] for n in range(start, nData): figList.append(getattr(data[n], method)(fig=fig, **kwargs)) # Return single figure object (if `overlay` is `True`) or list of mulitple figs if overlay: return fig return figList
def check_passed_kwargs(lcls, defaults, frontend_name): ''' Catch additional kwargs passed to the frontends which have no effect ''' # unpack **kwargs of frontend call which # might contain arbitrary kws passed from the user kw_dict = lcls.get("kwargs") # nothing to do.. if not kw_dict: return relevant = list(kw_dict.keys()) expected = [name for name in defaults] for name in relevant: if name not in expected: msg = f"option `{name}` has no effect in `{frontend_name}`!" SPYWarning(msg, caller=__name__.split('.')[-1])
def check_effective_parameters(CR, defaults, lcls): """ For a given ComputationalRoutine, compare set parameters (*lcls*) with the accepted parameters and the frontend meta function *defaults* to warn if any ineffective parameters are set. Parameters ---------- CR : :class:`~syncopy.shared.computational_routine.ComputationalRoutine Needs to have a `valid_kws` attribute defaults : dict Result of :func:`~syncopy.shared.tools.get_defaults`, the frontend parameter names plus values with default values lcls : dict Result of `locals()`, all names and values of the local (frontend-)name space """ # list of possible parameter names of the CR expected = CR.valid_kws + ["parallel", "select"] relevant = [name for name in defaults if name not in generalParameters] for name in relevant: if name not in expected and (lcls[name] != defaults[name]): msg = f"option `{name}` has no effect in method `{CR.__name__}`!" SPYWarning(msg, caller=__name__.split('.')[-1])
def multipanelplot(self, trials="all", channels="all", toilim=None, avg_channels=False, avg_trials=True, title=None, grid=None, fig=None, **kwargs): """ Plot contents of :class:`~syncopy.AnalogData` objects using multi-panel figure(s) Please refer to :func:`syncopy.multipanelplot` for detailed usage information. Examples -------- Use :func:`~syncopy.tests.misc.generate_artificial_data` to create two synthetic :class:`~syncopy.AnalogData` objects. >>> from syncopy.tests.misc import generate_artificial_data >>> adata = generate_artificial_data(nTrials=10, nChannels=32) >>> bdata = generate_artificial_data(nTrials=5, nChannels=16) Show overview of first 5 channels, averaged across trials 2, 4, and 6: >>> fig = spy.multipanelplot(adata, channels=range(5), trials=[2, 4, 6]) Overlay last 5 channels, averaged across trials 1, 3, 5: >>> fig = spy.multipanelplot(adata, channels=range(27, 32), trials=[1, 3, 5], fig=fig) Do not average trials: >>> fig = spy.multipanelplot(adata, channels=range(27, 32), trials=[1, 3, 5], avg_trials=False) Plot `adata` and `bdata` simultaneously in two separate figures: >>> fig1, fig2 = spy.multipanelplot(adata, bdata, channels=range(5), overlay=False) Overlay `adata` and `bdata`; use channel and trial selections that are valid for both datasets: >>> fig3 = spy.multipanelplot(adata, bdata, channels=range(5), trials=[1, 2, 3], avg_trials=False) See also -------- syncopy.multipanelplot : visualize Syncopy data objects using multi-panel plots """ # Collect input arguments in dict `inputArgs` and process them inputArgs = locals() inputArgs.pop("self") dimArrs, dimCounts, idx, timeIdx, chanIdx = _prep_analog_plots( self, "singlepanelplot", **inputArgs) (nTrials, nChan) = dimCounts (trList, chArr) = dimArrs # Get trial/channel count ("raw" plotting constitutes a special case) if trials is None: nTrials = 0 if avg_trials: msg = "`trials` is `None` but `avg_trials` is `True`. " +\ "Cannot perform trial averaging without trial specification - " +\ "setting ``avg_trials = False``. " SPYWarning(msg) avg_trials = False if avg_channels: msg = "Averaging across channels w/o trial specifications results in " +\ "single-panel plot. Please use `singlepanelplot` instead" SPYWarning(msg) return # If we're overlaying, ensure settings match up if hasattr(fig, "singlepanelplot"): lgl = "overlay-figure generated by `multipanelplot`" act = "figure generated by `singlepanelplot`" raise SPYValueError(legal=lgl, varname="fig/singlepanelplot", actual=act) if hasattr(fig, "nTrialPanels"): if nTrials != fig.nTrialPanels: lgl = "number of trials to plot matching existing panels in figure" act = "{} panels but {} trials for plotting".format( fig.nTrialPanels, nTrials) raise SPYValueError(legal=lgl, varname="trials/figure panels", actual=act) if avg_trials: lgl = "overlay of multi-trial plot" act = "trial averaging was requested for multi-trial plot overlay" raise SPYValueError(legal=lgl, varname="trials/avg_trials", actual=act) if trials is None: lgl = "`trials` to be not `None` to append to multi-trial plot" act = "multi-trial plot overlay was requested but `trials` is `None`" raise SPYValueError(legal=lgl, varname="trials/overlay", actual=act) if not avg_channels and not hasattr(fig, "chanOffsets"): lgl = "single-channel or channel-averages for appending to multi-trial plot" act = "multi-trial multi-channel plot overlay was requested" raise SPYValueError(legal=lgl, varname="avg_channels/overlay", actual=act) if hasattr(fig, "nChanPanels"): if nChan != fig.nChanPanels: lgl = "number of channels to plot matching existing panels in figure" act = "{} panels but {} channels for plotting".format( fig.nChanPanels, nChan) raise SPYValueError(legal=lgl, varname="channels/figure panels", actual=act) if avg_channels: lgl = "overlay of multi-channel plot" act = "channel averaging was requested for multi-channel plot overlay" raise SPYValueError(legal=lgl, varname="channels/avg_channels", actual=act) if not avg_trials: lgl = "overlay of multi-channel plot" act = "mulit-trial plot was requested for multi-channel plot overlay" raise SPYValueError(legal=lgl, varname="channels/avg_trials", actual=act) if hasattr(fig, "chanOffsets"): if avg_channels: lgl = "multi-channel plot" act = "channel averaging was requested for multi-channel plot overlay" raise SPYValueError(legal=lgl, varname="channels/avg_channels", actual=act) if nChan != len(fig.chanOffsets): lgl = "channel-count matching existing multi-channel panels in figure" act = "{} channels per panel but {} channels for plotting".format( len(fig.chanOffsets), nChan) raise SPYValueError(legal=lgl, varname="channels/channels per panel", actual=act) # Generic title for overlay figures overlayTitle = "Overlay of {} datasets" # Either construct subplot panel layout/vet provided layout or fetch existing if fig is None: # Determine no. of required panels if avg_trials and not avg_channels: npanels = nChan elif not avg_trials and avg_channels: npanels = nTrials elif not avg_trials and not avg_channels: npanels = int(nTrials == 0) * nChan + nTrials else: msg = "Averaging across both trials and channels results in " +\ "single-panel plot. Please use `singlepanelplot` instead" SPYWarning(msg) return # Although, `_setup_figure` can call `_layout_subplot_panels` for us, we # need `nrow` and `ncol` below, so do it here if nTrials > 0: xLabel = "Time [s]" else: xLabel = "Samples" nrow = kwargs.get("nrow", None) ncol = kwargs.get("ncol", None) nrow, ncol = _layout_subplot_panels(npanels, nrow=nrow, ncol=ncol) fig, ax_arr = _setup_figure(npanels, nrow=nrow, ncol=ncol, xLabel=xLabel, grid=grid) fig.analogPlot = True # Get existing layout else: ax_arr = fig.get_axes() nrow, ncol = ax_arr[0].numRows, ax_arr[0].numCols # Panels correspond to channels if avg_trials and not avg_channels: # Ensure provided timing selection can actually be averaged (leverage # the fact that `toilim` selections exclusively generate slices) tLengths = _prep_toilim_avg(self) # Compute trial-averaged time-courses: 2D array with slice/list # selection does not require fancy indexing - no need to check this here pltArr = np.zeros((tLengths[0], nChan), dtype=self.data.dtype) for k, trlno in enumerate(trList): idx[timeIdx] = self._selection.time[k] pltArr += np.swapaxes( self._get_trial(trlno)[tuple(idx)], timeIdx, 0) pltArr /= nTrials # Cycle through channels and plot trial-averaged time-courses (time- # axis must be identical for all channels, set up `idx` just once) idx[timeIdx] = self._selection.time[0] time = self.time[trList[k]][self._selection.time[0]] for k, chan in enumerate(chArr): ax_arr[k].plot(time, pltArr[:, k], label=os.path.basename(self.filename)) # If we're overlaying datasets, adjust panel- and sup-titles: include # legend in top-right axis (note: `ax_arr` is row-major flattened) if fig.objCount == 0: for k, chan in enumerate(chArr): ax_arr[k].set_title(chan, size=pltConfig["multiTitleSize"]) fig.nChanPanels = nChan if title is None: if nTrials > 1: title = "Average of {} trials".format(nTrials) else: title = "Trial #{}".format(trList[0]) fig.suptitle(title, size=pltConfig["singleTitleSize"]) else: for k, chan in enumerate(chArr): ax_arr[k].set_title("{0}/{1}".format(ax_arr[k].get_title(), chan)) ax = ax_arr[ncol - 1] handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) if title is None: title = overlayTitle.format(len(handles)) fig.suptitle(title, size=pltConfig["singleTitleSize"]) # Panels correspond to trials elif not avg_trials and avg_channels: # Cycle through panels to plot by-trial channel-averages for k, trlno in enumerate(trList): idx[timeIdx] = self._selection.time[k] time = self.time[trList[k]][self._selection.time[k]] ax_arr[k].plot(time, self._get_trial(trlno)[tuple(idx)].mean( axis=chanIdx).squeeze(), label=os.path.basename(self.filename)) # If we're overlaying datasets, adjust panel- and sup-titles: include # legend in top-right axis (note: `ax_arr` is row-major flattened) if fig.objCount == 0: for k, trlno in enumerate(trList): ax_arr[k].set_title("Trial #{}".format(trlno), size=pltConfig["multiTitleSize"]) fig.nTrialPanels = nTrials if title is None: if nChan > 1: title = "Average of {} channels".format(nChan) else: title = chArr[0] fig.suptitle(title, size=pltConfig["singleTitleSize"]) else: for k, trlno in enumerate(trList): ax_arr[k].set_title("{0}/#{1}".format(ax_arr[k].get_title(), trlno)) ax = ax_arr[ncol - 1] handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) if title is None: title = overlayTitle.format(len(handles)) fig.suptitle(title, size=pltConfig["singleTitleSize"]) # Panels correspond to channels (if `trials` is `None`) otherwise trials elif not avg_trials and not avg_channels: # Plot each channel in separate panel if nTrials == 0: chanSec = np.arange(self.channel.size)[self._selection.channel] for k, chan in enumerate(chanSec): idx[chanIdx] = chan ax_arr[k].plot(self.data[tuple(idx)].squeeze(), label=os.path.basename(self.filename)) # If we're overlaying datasets, adjust panel- and sup-titles: include # legend in top-right axis (note: `ax_arr` is row-major flattened) if fig.objCount == 0: for k, chan in enumerate(chArr): ax_arr[k].set_title(chan, size=pltConfig["multiTitleSize"]) fig.nChanPanels = nChan if title is None: title = "Entire Data Timecourse" fig.suptitle(title, size=pltConfig["singleTitleSize"]) else: for k, chan in enumerate(chArr): ax_arr[k].set_title("{0}/{1}".format( ax_arr[k].get_title(), chan)) ax = ax_arr[ncol - 1] handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) if title is None: title = overlayTitle.format(len(handles)) fig.suptitle(title, size=pltConfig["singleTitleSize"]) # Each trial gets its own panel w/multiple channels per panel else: # If required, compute max amplitude across provided trials + channels if not hasattr(fig, "chanOffsets"): maxAmps = np.zeros((nTrials, ), dtype=self.data.dtype) tickOffsets = maxAmps.copy() for k, trlno in enumerate(trList): idx[timeIdx] = self._selection.time[k] pltArr = np.abs(self._get_trial(trlno)[tuple(idx)]) maxAmps[k] = pltArr.max() tickOffsets[k] = pltArr.mean() fig.chanOffsets = np.cumsum([0] + [maxAmps.max()] * (nChan - 1)) fig.tickOffsets = fig.chanOffsets + tickOffsets.mean() # Cycle through panels to plot by-trial multi-channel time-courses for k, trlno in enumerate(trList): idx[timeIdx] = self._selection.time[k] time = self.time[trList[k]][self._selection.time[k]] pltArr = np.swapaxes( self._get_trial(trlno)[tuple(idx)], timeIdx, 0) ax_arr[k].plot( time, (pltArr + fig.chanOffsets.reshape(1, nChan)).reshape( time.size, nChan), color=plt.rcParams["axes.prop_cycle"].by_key()["color"][ fig.objCount], label=os.path.basename(self.filename)) # If we're overlaying datasets, adjust panel- and sup-titles: include # legend in top-right axis (note: `ax_arr` is row-major flattened) # Note: y-axis is shared across panels, so `yticks` need only be set once if fig.objCount == 0: for k, trlno in enumerate(trList): ax_arr[k].set_title("Trial #{}".format(trlno), size=pltConfig["multiTitleSize"]) ax_arr[0].set_yticks(fig.tickOffsets) ax_arr[0].set_yticklabels(chArr) fig.nTrialPanels = nTrials if title is None: if nChan > 1: title = "{} channels".format(nChan) else: title = chArr[0] fig.suptitle(title, size=pltConfig["singleTitleSize"]) else: for k, trlno in enumerate(trList): ax_arr[k].set_title("{0}/#{1}".format( ax_arr[k].get_title(), trlno)) ax_arr[0].set_yticklabels([" "] * chArr.size) ax = ax_arr[ncol - 1] handles, labels = ax.get_legend_handles_labels() ax.legend(handles[::(nChan + 1)], labels[::(nChan + 1)]) if title is None: title = overlayTitle.format(len(handles)) fig.suptitle(title, size=pltConfig["singleTitleSize"]) # Increment overlay-counter, draw figure and wipe data-selection slot fig.objCount += 1 plt.draw() self._selection = None return fig
def compute(self, data, out, parallel=False, parallel_store=None, method=None, mem_thresh=0.5, log_dict=None, parallel_debug=False): """ Central management and processing method Parameters ---------- data : syncopy data object Syncopy data object to be processed (has to be the same object that was used by :meth:`initialize` in the pre-calculation dry-run). out : syncopy data object Empty object for holding results parallel : bool If `True`, processing is performed in parallel (i.e., :meth:`computeFunction` is executed concurrently across trials). If `parallel` is `False`, :meth:`computeFunction` is executed consecutively trial after trial (i.e., the calculation realized in :meth:`computeFunction` is performed sequentially). parallel_store : None or bool Flag controlling saving mechanism. If `None`, ``parallel_store = parallel``, i.e., the compute-paradigm dictates the employed writing method. Thus, in case of parallel processing, results are written in a fully concurrent manner (each worker saves its own local result segment on disk as soon as it is done with its part of the computation). If `parallel_store` is `False` and `parallel` is `True` the processing result is saved sequentially using a mutex. If both `parallel` and `parallel_store` are `False` standard single-process HDF5 writing is employed for saving the result of the (sequential) computation. method : None or str If `None` the predefined methods :meth:`compute_parallel` or :meth:`compute_sequential` are used to control the actual computation (specifically, calling :meth:`computeFunction`) depending on whether `parallel` is `True` or `False`, respectively. If `method` is a string, it has to specify the name of an alternative (provided) class method that is invoked using `getattr`. mem_thresh : float Fraction of available memory required to perform computation. By default, the largest single trial result must not occupy more than 50% (``mem_thresh = 0.5``) of available single-machine or worker memory (if `parallel` is `False` or `True`, respectively). log_dict : None or dict If `None`, the `log` properties of `out` is populated with the employed keyword arguments used in :meth:`computeFunction`. Otherwise, `out`'s `log` properties are filled with items taken from `log_dict`. parallel_debug : bool If `True`, concurrent processing is performed using a single-threaded scheduler, i.e., all parallel computing task are run in the current Python thread permitting usage of tools like `pdb`/`ipdb`, `cProfile` and the like in :meth:`computeFunction`. Note that enabling parallel debugging effectively runs the given computation on the calling local machine thereby requiring sufficient memory and CPU capacity. Returns ------- Nothing : None The result of the computation is available in `out` once :meth:`compute` terminated successfully. Notes ----- This routine calls several other class methods to perform all necessary pre- and post-processing steps in a fully automatic manner without requiring any user-input. Specifically, the following class methods are invoked consecutively (in the given order): 1. :meth:`preallocate_output` allocates a (virtual) HDF5 dataset of appropriate dimension for storing the result 2. :meth:`compute_parallel` (or :meth:`compute_sequential`) performs the actual computation via concurrently (or sequentially) calling :meth:`computeFunction` 3. :meth:`process_metadata` attaches all relevant meta-information to the result `out` after successful termination of the calculation 4. :meth:`write_log` stores employed input arguments in `out.cfg` and `out.log` to reproduce all relevant computational steps that generated `out`. See also -------- initialize : pre-calculation preparations preallocate_output : storage provisioning compute_parallel : concurrent computation using :meth:`computeFunction` compute_sequential : sequential computation using :meth:`computeFunction` process_metadata : management of meta-information write_log : log-entry organization """ # By default, use VDS storage for parallel computing if parallel_store is None: parallel_store = parallel # Do not spill trials on disk if they're supposed to be removed anyway if parallel_store and not self.keeptrials: msg = "trial-averaging only supports sequential writing!" SPYWarning(msg) parallel_store = False # Concurrent processing requires some additional prep-work... if parallel: # First and foremost, make sure a dask client is accessible try: client = dd.get_client() except ValueError as exc: msg = "parallel computing client: {}" raise SPYIOError(msg.format(exc.args[0])) # Check if the underlying cluster hosts actually usable workers if not len(client.cluster.workers): raise SPYParallelError("No active workers found in distributed computing cluster", client=client) # Note: `dask_jobqueue` may not be available even if `__dask__` is `True`, # hence the `__name__` shenanigans instead of a simple `isinstance` if isinstance(client.cluster, dd.LocalCluster): memAttr = "memory_limit" elif client.cluster.__class__.__name__ == "SLURMCluster": memAttr = "worker_memory" else: msg = "`ComputationalRoutine` only supports `LocalCluster` and " +\ "`SLURMCluster` dask cluster objects. Proceed with caution. " SPYWarning(msg) memAttr = None # Check if trials actually fit into memory before we start computation if memAttr: wrk_size = max(getattr(wrkr, memAttr) for wrkr in client.cluster.workers.values()) if self.chunkMem >= mem_thresh * wrk_size: self.chunkMem /= 1024**3 wrk_size /= 1000**3 msg = "Single-trial result sizes ({0:2.2f} GB) larger than available " +\ "worker memory ({1:2.2f} GB) currently not supported" raise NotImplementedError(msg.format(self.chunkMem, wrk_size)) # In some cases distributed dask workers suffer from spontaneous # dementia and forget the `sys.path` of their parent process. Fun! def init_syncopy(dask_worker): spy_path = os.path.abspath(os.path.split(__path__[0])[0]) if spy_path not in sys.path: sys.path.insert(0, spy_path) client.register_worker_callbacks(init_syncopy) # Store provided debugging state self.parallelDebug = parallel_debug # For sequential processing, just ensure enough memory is available else: mem_size = psutil.virtual_memory().available if self.chunkMem >= mem_thresh * mem_size: self.chunkMem /= 1024**3 mem_size /= 1024**3 msg = "Single-trial result sizes ({0:2.2f} GB) larger than available " +\ "memory ({1:2.2f} GB) currently not supported" raise NotImplementedError(msg.format(self.chunkMem, mem_size)) # Create HDF5 dataset of appropriate dimension self.preallocate_output(out, parallel_store=parallel_store) # The `method` keyword can be used to override the `parallel` flag if method is None: if parallel: computeMethod = self.compute_parallel else: computeMethod = self.compute_sequential else: computeMethod = getattr(self, "compute_" + method, None) # Ensure `data` is openend read-only to permit (potentially concurrent) # reading access to backing device on disk data.mode = "r" # Take care of `VirtualData` objects self.hdr = getattr(data, "hdr", None) # Perform actual computation computeMethod(data, out) # Reset data access mode data.mode = self.dataMode # Attach computed results to output object out.data = h5py.File(out.filename, mode="r+")[self.datasetName] # Store meta-data, write log and get outta here self.process_metadata(data, out) self.write_log(data, out, log_dict)
def initialize(self, data, chan_per_worker=None, keeptrials=True): """ Perform dry-run of calculation to determine output shape Parameters ---------- data : syncopy data object Syncopy data object to be processed (has to be the same object that is passed to :meth:`compute` for the actual calculation). chan_per_worker : None or int Number of channels to be processed by each worker (only relevant in case of concurrent processing). If `chan_per_worker` is `None` (default) by-trial parallelism is used, i.e., each worker processes data corresponding to a full trial. If `chan_per_worker > 0`, trials are split into channel-groups of size `chan_per_worker` (+ rest if the number of channels is not divisible by `chan_per_worker` without remainder) and workers are assigned by-trial channel-groups for processing. keeptrials : bool Flag indicating whether to return individual trials or average Returns ------- Nothing : None Notes ----- This class method **has** to be called prior to performing the actual computation realized in :meth:`computeFunction`. See also -------- compute : core routine performing the actual computation """ # First store `keeptrial` keyword value (important for output shapes below) self.keeptrials = keeptrials # Determine if data-selection was provided; if so, extract trials and check # whether selection requires fancy array indexing if data._selection is not None: self.trialList = data._selection.trials self.useFancyIdx = data._selection._useFancy else: self.trialList = list(range(len(data.trials))) self.useFancyIdx = False numTrials = len(self.trialList) # If lists/tuples are in positional arguments, ensure `len == numTrials` # Scalars are duplicated to fit trials, e.g., ``self.argv = [3, [0, 1, 1]]`` # then ``argv = [[3, 3, 3], [0, 1, 1]]`` for ak, arg in enumerate(self.argv): # Ensure arguments are within reasonable size for distribution across workers # (protect against circular object references by imposing max. calls) self._callCount = 0 argsize = self._sizeof(arg) if argsize > self._maxArgSize: lgl = "positional arguments less than 100 MB each" act = "positional argument with memory footprint of {0:4.2f} MB" raise SPYValueError(legal=lgl, varname="argv", actual=act.format(argsize)) if isinstance(arg, (list, tuple)): if len(arg) != numTrials: lgl = "list/tuple of positional arguments for each trial" act = "length of list/tuple does not correspond to number of trials" raise SPYValueError(legal=lgl, varname="argv", actual=act) continue elif isinstance(arg, np.ndarray): if arg.size == numTrials: msg = "found NumPy array with size == #Trials. " +\ "Regardless, every worker will receive an identical copy " +\ "of this array. To propagate elements across workers, use " +\ "a list or tuple instead!" SPYWarning(msg) self.argv[ak] = [arg] * numTrials # Prepare dryrun arguments and determine geometry of trials in output dryRunKwargs = copy(self.cfg) dryRunKwargs["noCompute"] = True chk_list = [] dtp_list = [] trials = [] for tk, trialno in enumerate(self.trialList): trial = data._preview_trial(trialno) trlArg = tuple(arg[tk] for arg in self.argv) chunkShape, dtype = self.computeFunction(trial, *trlArg, **dryRunKwargs) chk_list.append(list(chunkShape)) dtp_list.append(dtype) trials.append(trial) # The aggregate shape is computed as max across all chunks chk_arr = np.array(chk_list) if np.unique(chk_arr[:, 0]).size > 1 and not self.keeptrials: err = "Averaging trials of unequal lengths in output currently not supported!" raise NotImplementedError(err) if np.any([dtp_list[0] != dtp for dtp in dtp_list]): lgl = "unique output dtype" act = "{} different output dtypes".format(np.unique(dtp_list).size) raise SPYValueError(legal=lgl, varname="dtype", actual=act) chunkShape = tuple(chk_arr.max(axis=0)) self.outputShape = (chk_arr[:, 0].sum(),) + chunkShape[1:] self.cfg["chunkShape"] = chunkShape self.dtype = np.dtype(dtp_list[0]) # Ensure channel parallelization can be done at all if chan_per_worker is not None and "channel" not in data.dimord: msg = "input object does not contain `channel` dimension for parallelization!" SPYWarning(msg) chan_per_worker = None if chan_per_worker is not None and self.keeptrials is False: msg = "trial-averaging does not support channel-block parallelization!" SPYWarning(msg) chan_per_worker = None if data._selection is not None: if chan_per_worker is not None and data._selection.channel != slice(None, None, 1): msg = "channel selection and simultaneous channel-block " +\ "parallelization not yet supported!" SPYWarning(msg) chan_per_worker = None # Allocate control variables trial = trials[0] trlArg0 = tuple(arg[0] for arg in self.argv) chunkShape0 = chk_arr[0, :] lyt = [slice(0, stop) for stop in chunkShape0] sourceLayout = [] targetLayout = [] targetShapes = [] ArgV = [] # If parallelization across channels is requested the first trial is # split up into several chunks that need to be processed/allocated if chan_per_worker is not None: # Set up channel-chunking nChannels = data.channel.size rem = int(nChannels % chan_per_worker) n_blocks = [chan_per_worker] * int(nChannels//chan_per_worker) + [rem] * int(rem > 0) inchanidx = data.dimord.index("channel") # Perform dry-run w/first channel-block of first trial to identify # changes in output shape w.r.t. full-trial output (`chunkShape`) shp = list(trial.shape) idx = list(trial.idx) shp[inchanidx] = n_blocks[0] idx[inchanidx] = slice(0, n_blocks[0]) trial.shape = tuple(shp) trial.idx = tuple(idx) res, _ = self.computeFunction(trial, *trlArg0, **dryRunKwargs) outchan = [dim for dim in res if dim not in chunkShape0] if len(outchan) != 1: lgl = "exactly one output dimension to scale w/channel count" act = "{0:d} dimensions affected by varying channel count".format(len(outchan)) raise SPYValueError(legal=lgl, varname="chan_per_worker", actual=act) outchanidx = res.index(outchan[0]) # Get output chunks and grid indices for first trial chanstack = 0 blockstack = 0 for block in n_blocks: shp = list(trial.shape) idx = list(trial.idx) shp[inchanidx] = block idx[inchanidx] = slice(blockstack, blockstack + block) trial.shape = tuple(shp) trial.idx = tuple(idx) res, _ = self.computeFunction(trial, *trlArg0, **dryRunKwargs) lyt[outchanidx] = slice(chanstack, chanstack + res[outchanidx]) targetLayout.append(tuple(lyt)) targetShapes.append(tuple([slc.stop - slc.start for slc in lyt])) sourceLayout.append(trial.idx) ArgV.append(trlArg0) chanstack += res[outchanidx] blockstack += block # Simple: consume all channels simultaneously, i.e., just take the entire trial else: targetLayout.append(tuple(lyt)) targetShapes.append(chunkShape0) sourceLayout.append(trial.idx) ArgV.append(trlArg0) # Construct dimensional layout of output stacking = targetLayout[0][0].stop for tk in range(1, len(self.trialList)): trial = trials[tk] trlArg = tuple(arg[tk] for arg in self.argv) chkshp = chk_list[tk] lyt = [slice(0, stop) for stop in chkshp] lyt[0] = slice(stacking, stacking + chkshp[0]) stacking += chkshp[0] if chan_per_worker is None: targetLayout.append(tuple(lyt)) targetShapes.append(tuple([slc.stop - slc.start for slc in lyt])) sourceLayout.append(trial.idx) ArgV.append(trlArg) else: chanstack = 0 blockstack = 0 for block in n_blocks: shp = list(trial.shape) idx = list(trial.idx) shp[inchanidx] = block idx[inchanidx] = slice(blockstack, blockstack + block) trial.shape = tuple(shp) trial.idx = tuple(idx) res, _ = self.computeFunction(trial, *trlArg, **dryRunKwargs) # FauxTrial lyt[outchanidx] = slice(chanstack, chanstack + res[outchanidx]) targetLayout.append(tuple(lyt)) targetShapes.append(tuple([slc.stop - slc.start for slc in lyt])) sourceLayout.append(trial.idx) chanstack += res[outchanidx] blockstack += block ArgV.append(trlArg) # If the determined source layout contains unordered lists and/or index # repetitions, set `self.useFancyIdx` to `True` and prepare a separate # `sourceSelectors` list that is used in addition to `sourceLayout` for # data extraction. # In this case `sourceLayout` uses ABSOLUTE indices (indices wrt to size # of ENTIRE DATASET) that are SORTED W/O REPS to extract a NumPy array # of appropriate size from HDF5. # Then `sourceLayout` uses RELATIVE indices (indices wrt to size of CURRENT # TRIAL) that can be UNSORTED W/REPS to actually perform the requested # selection on the NumPy array extracted w/`sourceLayout`. for grd in sourceLayout: if any([np.diff(sel).min() <= 0 if isinstance(sel, list) and len(sel) > 1 else False for sel in grd]): self.useFancyIdx = True break if self.useFancyIdx: sourceSelectors = [] for gk, grd in enumerate(sourceLayout): ingrid = list(grd) sigrid = [] for sk, sel in enumerate(grd): if isinstance(sel, list): selarr = np.array(sel, dtype=np.intp) else: # sel is a slice step = sel.step if sel.step is None: step = 1 selarr = np.array(list(range(sel.start, sel.stop, step)), dtype=np.intp) if selarr.size > 0: sigrid.append(np.array(selarr) - selarr.min()) ingrid[sk] = slice(selarr.min(), selarr.max() + 1, 1) else: sigrid.append([]) ingrid[sk] = [] sourceSelectors.append(tuple(sigrid)) sourceLayout[gk] = tuple(ingrid) else: sourceSelectors = [Ellipsis] * len(sourceLayout) # Store determined shapes and grid layout self.sourceLayout = sourceLayout self.sourceSelectors = sourceSelectors self.targetLayout = targetLayout self.targetShapes = targetShapes self.ArgV = ArgV # Compute max. memory footprint of chunks if chan_per_worker is None: self.chunkMem = np.prod(self.cfg["chunkShape"]) * self.dtype.itemsize else: self.chunkMem = max([np.prod(shp) for shp in self.targetShapes]) * self.dtype.itemsize # Get data access mode (only relevant for parallel reading access) self.dataMode = data.mode
def freqanalysis(data, method='mtmfft', output='fourier', keeptrials=True, foi=None, foilim=None, pad_to_length=None, polyremoval=None, taper="hann", tapsmofrq=None, nTaper=None, keeptapers=False, toi="all", t_ftimwin=None, wavelet="Morlet", width=6, order=None, order_max=None, order_min=1, c_1=3, adaptive=False, out=None, **kwargs): """ Perform (time-)frequency analysis of Syncopy :class:`~syncopy.AnalogData` objects **Usage Summary** Options available in all analysis methods: * **output** : one of :data:`~syncopy.specest.const_def.availableOutputs`; return power spectra, complex Fourier spectra or absolute values. * **foi**/**foilim** : frequencies of interest; either array of frequencies or frequency window (not both) * **keeptrials** : return individual trials or grand average * **polyremoval** : de-trending method to use (0 = mean, 1 = linear or `None`) List of available analysis methods and respective distinct options: "mtmfft" : (Multi-)tapered Fourier transform Perform frequency analysis on time-series trial data using either a single taper window (Hanning) or many tapers based on the discrete prolate spheroidal sequence (DPSS) that maximize energy concentration in the main lobe. * **taper** : one of :data:`~syncopy.shared.const_def.availableTapers` * **tapsmofrq** : spectral smoothing box for slepian tapers (in Hz) * **nTaper** : number of orthogonal tapers for slepian tapers * **keeptapers** : return individual tapers or average * **pad_to_length**: either pad to an absolute length or set to `'nextpow2'` "mtmconvol" : (Multi-)tapered sliding window Fourier transform Perform time-frequency analysis on time-series trial data based on a sliding window short-time Fourier transform using either a single Hanning taper or multiple DPSS tapers. * **taper** : one of :data:`~syncopy.specest.const_def.availableTapers` * **tapsmofrq** : spectral smoothing box for slepian tapers (in Hz) * **nTaper** : number of orthogonal tapers for slepian tapers * **keeptapers** : return individual tapers or average * **toi** : time-points of interest; can be either an array representing analysis window centroids (in sec), a scalar between 0 and 1 encoding the percentage of overlap between adjacent windows or "all" to center a window on every sample in the data. * **t_ftimwin** : sliding window length (in sec) "wavelet" : (Continuous non-orthogonal) wavelet transform Perform time-frequency analysis on time-series trial data using a non-orthogonal continuous wavelet transform. * **wavelet** : one of :data:`~syncopy.specest.const_def.availableWavelets` * **toi** : time-points of interest; can be either an array representing time points (in sec) or "all"(pre-trimming and subsampling of results) * **width** : Nondimensional frequency constant of Morlet wavelet function (>= 6) * **order** : Order of Paul wavelet function (>= 4) or derivative order of real-valued DOG wavelets (2 = mexican hat) "superlet" : Superlet transform Perform time-frequency analysis on time-series trial data using the super-resolution superlet transform (SLT) from [Moca2021]_. * **order_max** : Maximal order of the superlet * **order_min** : Minimal order of the superlet * **c_1** : Number of cycles of the base Morlet wavelet * **adaptive** : If set to `True` perform fractional adaptive SLT, otherwise perform multiplicative SLT **Full documentation below** Parameters ---------- data : `~syncopy.AnalogData` A non-empty Syncopy :class:`~syncopy.datatype.AnalogData` object method : str Spectral estimation method, one of :data:`~syncopy.specest.const_def.availableMethods` (see below). output : str Output of spectral estimation. One of :data:`~syncopy.specest.const_def.availableOutputs` (see below); use `'pow'` for power spectrum (:obj:`numpy.float32`), `'fourier'` for complex Fourier coefficients (:obj:`numpy.complex64`) or `'abs'` for absolute values (:obj:`numpy.float32`). keeptrials : bool If `True` spectral estimates of individual trials are returned, otherwise results are averaged across trials. foi : array-like or None Frequencies of interest (Hz) for output. If desired frequencies cannot be matched exactly, the closest possible frequencies are used. If `foi` is `None` or ``foi = "all"``, all attainable frequencies (i.e., zero to Nyquist / 2) are selected. foilim : array-like (floats [fmin, fmax]) or None or "all" Frequency-window ``[fmin, fmax]`` (in Hz) of interest. Window specifications must be sorted (e.g., ``[90, 70]`` is invalid) and not NaN but may be unbounded (e.g., ``[-np.inf, 60.5]`` is valid). Edges `fmin` and `fmax` are included in the selection. If `foilim` is `None` or ``foilim = "all"``, all frequencies are selected. pad_to_length : int, None or 'nextpow2' Padding of the input data, if set to a number pads all trials to this absolute length. For instance ``pad_to_length = 2000`` pads all trials to an absolute length of 2000 samples, if and only if the longest trial contains at maximum 2000 samples. Alternatively if all trials have the same initial lengths setting `pad_to_length='nextpow2'` pads all trials to the next power of two. If `None` and trials have unequal lengths all trials are padded to match the longest trial. polyremoval : int or None Order of polynomial used for de-trending data in the time domain prior to spectral analysis. A value of 0 corresponds to subtracting the mean ("de-meaning"), ``polyremoval = 1`` removes linear trends (subtracting the least squares fit of a linear polynomial). If `polyremoval` is `None`, no de-trending is performed. Note that for spectral estimation de-meaning is very advisable and hence also the default. taper : str Only valid if `method` is `'mtmfft'` or `'mtmconvol'`. Windowing function, one of :data:`~syncopy.specest.const_def.availableTapers` (see below). tapsmofrq : float Only valid if `method` is `'mtmfft'` or `'mtmconvol'` and `taper` is `'dpss'`. The amount of spectral smoothing through multi-tapering (Hz). Note that smoothing frequency specifications are one-sided, i.e., 4 Hz smoothing means plus-minus 4 Hz, i.e., a 8 Hz smoothing box. nTaper : int or None Only valid if `method` is `'mtmfft'` or `'mtmconvol'` and `taper='dpss'`. Number of orthogonal tapers to use. It is not recommended to set the number of tapers manually! Leave at `None` for the optimal number to be set automatically. keeptapers : bool Only valid if `method` is `'mtmfft'` or `'mtmconvol'`. If `True`, return spectral estimates for each taper. Otherwise power spectrum is averaged across tapers, if and only if `output` is `pow`. toi : float or array-like or "all" **Mandatory input** for time-frequency analysis methods (`method` is either `"mtmconvol"` or `"wavelet"` or `"superlet"`). If `toi` is scalar, it must be a value between 0 and 1 indicating the percentage of overlap between time-windows specified by `t_ftimwin` (only valid if `method` is `'mtmconvol'`). If `toi` is an array it explicitly selects the centroids of analysis windows (in seconds), if `toi` is `"all"`, analysis windows are centered on all samples in the data for `method="mtmconvol"`. For wavelet based methods (`"wavelet"` or `"superlet"`) toi needs to be either an equidistant array of time points or "all". t_ftimwin : positive float Only valid if `method` is `'mtmconvol'`. Sliding window length (in seconds). wavelet : str Only valid if `method` is `'wavelet'`. Wavelet function to use, one of :data:`~syncopy.specest.const_def.availableWavelets` (see below). width : positive float Only valid if `method` is `'wavelet'` and `wavelet` is `'Morlet'`. Nondimensional frequency constant of Morlet wavelet function. This number should be >= 6, which corresponds to 6 cycles within the analysis window to ensure sufficient spectral sampling. order : positive int Only valid if `method` is `'wavelet'` and `wavelet` is `'Paul'` or `'DOG'`. Order of the wavelet function. If `wavelet` is `'Paul'`, `order` should be chosen >= 4 to ensure that the analysis window contains at least a single oscillation. At an order of 40, the Paul wavelet exhibits about the same number of cycles as the Morlet wavelet with a `width` of 6. All other supported wavelets functions are *real-valued* derivatives of Gaussians (DOGs). Hence, if `wavelet` is `'DOG'`, `order` represents the derivative order. The special case of a second order DOG yields a function known as "Mexican Hat", "Marr" or "Ricker" wavelet, which can be selected alternatively by setting `wavelet` to `'Mexican_hat'`, `'Marr'` or `'Ricker'`. **Note**: A real-valued wavelet function encodes *only* information about peaks and discontinuities in the signal and does *not* provide any information about amplitude or phase. order_max : int Only valid if `method` is `'superlet'`. Maximal order of the superlet set. Controls the maximum number of cycles within a SL together with the `c_1` parameter: c_max = c_1 * order_max order_min : int Only valid if `method` is `'superlet'`. Minimal order of the superlet set. Controls the minimal number of cycles within a SL together with the `c_1` parameter: c_min = c_1 * order_min Note that for admissability reasons c_min should be at least 3! c_1 : int Only valid if `method` is `'superlet'`. Number of cycles of the base Morlet wavelet. If set to lower than 3 increase `order_min` as to never have less than 3 cycles in a wavelet! adaptive : bool Only valid if `method` is `'superlet'`. Wether to perform multiplicative SLT or fractional adaptive SLT. If set to True, the order of the wavelet set will increase linearly with the frequencies of interest from `order_min` to `order_max`. If set to False the same SL will be used for all frequencies. out : None or :class:`SpectralData` object None if a new :class:`SpectralData` object is to be created, or an empty :class:`SpectralData` object Returns ------- spec : :class:`~syncopy.SpectralData` (Time-)frequency spectrum of input data Notes ----- .. [Moca2021] Moca, Vasile V., et al. "Time-frequency super-resolution with superlets." Nature communications 12.1 (2021): 1-18. **Options** .. autodata:: syncopy.specest.const_def.availableMethods .. autodata:: syncopy.specest.const_def.availableOutputs .. autodata:: syncopy.specest.const_def.availableTapers .. autodata:: syncopy.specest.const_def.availableWavelets Examples -------- Coming soon... See also -------- syncopy.specest.mtmfft.mtmfft : (multi-)tapered Fourier transform of multi-channel time series data syncopy.specest.mtmconvol.mtmconvol : time-frequency analysis of multi-channel time series data with a sliding window FFT syncopy.specest.wavelet.wavelet : time-frequency analysis of multi-channel time series data using a wavelet transform numpy.fft.fft : NumPy's reference FFT implementation scipy.signal.stft : SciPy's Short Time Fourier Transform """ # Make sure our one mandatory input object can be processed try: data_parser(data, varname="data", dataclass="AnalogData", writable=None, empty=False) except Exception as exc: raise exc timeAxis = data.dimord.index("time") # Get everything of interest in local namespace defaults = get_defaults(freqanalysis) lcls = locals() # check for ineffective additional kwargs check_passed_kwargs(lcls, defaults, frontend_name="freqanalysis") # Ensure a valid computational method was selected if method not in availableMethods: lgl = "'" + "or '".join(opt + "' " for opt in availableMethods) raise SPYValueError(legal=lgl, varname="method", actual=method) # Ensure a valid output format was selected if output not in spectralConversions.keys(): lgl = "'" + "or '".join(opt + "' " for opt in spectralConversions.keys()) raise SPYValueError(legal=lgl, varname="output", actual=output) # Parse all Boolean keyword arguments for vname in ["keeptrials", "keeptapers"]: if not isinstance(lcls[vname], bool): raise SPYTypeError(lcls[vname], varname=vname, expected="Bool") # If only a subset of `data` is to be processed, make some necessary adjustments # of the sampleinfo and trial lengths if data._selection is not None: sinfo = data._selection.trialdefinition[:, :2] trialList = data._selection.trials else: trialList = list(range(len(data.trials))) sinfo = data.sampleinfo lenTrials = np.diff(sinfo).squeeze() if not lenTrials.shape: lenTrials = lenTrials[None] numTrials = len(trialList) # check polyremoval if polyremoval is not None: scalar_parser(polyremoval, varname="polyremoval", ntype="int_like", lims=[0, 1]) # --- Padding --- # Sliding window FFT does not support "fancy" padding if method == "mtmconvol" and isinstance(pad_to_length, str): msg = "method 'mtmconvol' only supports in-place padding for windows " +\ "exceeding trial boundaries. Your choice of `pad_to_length = '{}'` will be ignored. " SPYWarning(msg.format(pad_to_length)) if method == 'mtmfft': # the actual number of samples in case of later padding minSampleNum = validate_padding(pad_to_length, lenTrials) else: minSampleNum = lenTrials.min() # Compute length (in samples) of shortest trial minTrialLength = minSampleNum / data.samplerate # Shortcut to data sampling interval dt = 1 / data.samplerate foi, foilim = validate_foi(foi, foilim, data.samplerate) # see also https://docs.obspy.org/_modules/obspy/signal/detrend.html#polynomial if polyremoval is not None: try: scalar_parser(polyremoval, varname="polyremoval", lims=[0, 1], ntype="int_like") except Exception as exc: raise exc # Prepare keyword dict for logging (use `lcls` to get actually provided # keyword values, not defaults set above) log_dct = {"method": method, "output": output, "keeptapers": keeptapers, "keeptrials": keeptrials, "polyremoval": polyremoval, "pad_to_length": pad_to_length} # -------------------------------- # 1st: Check time-frequency inputs # to prepare/sanitize `toi` # -------------------------------- if method in ["mtmconvol", "wavelet", "superlet"]: # Get start/end timing info respecting potential in-place selection if toi is None: raise SPYTypeError(toi, varname="toi", expected="scalar or array-like or 'all'") if data._selection is not None: tStart = data._selection.trialdefinition[:, 2] / data.samplerate else: tStart = data._t0 / data.samplerate tEnd = tStart + lenTrials / data.samplerate # for these methods only 'all' or an equidistant array # of time points (sub-sampling, trimming) are valid if method in ["wavelet", "superlet"]: valid = True if isinstance(toi, Number): valid = False elif isinstance(toi, str): if toi != "all": valid = False else: # take everything preSelect = [slice(None)] * numTrials postSelect = [slice(None)] * numTrials elif not iter(toi): valid = False # this is the sequence type - can only be an interval! else: try: array_parser(toi, varname="toi", hasinf=False, hasnan=False, lims=[tStart.min(), tEnd.max()], dims=(None,)) except Exception as exc: raise exc toi = np.array(toi) # check for equidistancy if not np.allclose(np.diff(toi, 2), np.zeros(len(toi) - 2)): valid = False # trim (preSelect) and subsample output (postSelect) else: preSelect = [] postSelect = [] # get sample intervals and relative indices from toi for tk in range(numTrials): start = int(data.samplerate * (toi[0] - tStart[tk])) stop = int(data.samplerate * (toi[-1] - tStart[tk]) + 1) preSelect.append(slice(max(0, start), max(stop, stop - start))) smpIdx = np.minimum(lenTrials[tk] - 1, data.samplerate * (toi - tStart[tk]) - start) postSelect.append(smpIdx.astype(np.intp)) # get out if sth wasn't right if not valid: lgl = "array of equidistant time-points or 'all' for wavelet based methods" raise SPYValueError(legal=lgl, varname="toi", actual=toi) # Update `log_dct` w/method-specific options (use `lcls` to get actually # provided keyword values, not defaults set in here) log_dct["toi"] = lcls["toi"] # -------------------------------------------- # Check options specific to mtm*-methods # (particularly tapers and foi/freqs alignment) # -------------------------------------------- if "mtm" in method: if method == "mtmconvol": # get the sliding window size try: scalar_parser(t_ftimwin, varname="t_ftimwin", lims=[dt, minTrialLength]) except Exception as exc: SPYInfo("Please specify 't_ftimwin' parameter.. exiting!") raise exc # this is the effective sliding window FFT sample size minSampleNum = int(t_ftimwin * data.samplerate) # Construct array of maximally attainable frequencies freqs = np.fft.rfftfreq(minSampleNum, dt) # Match desired frequencies as close as possible to # actually attainable freqs # these are the frequencies attached to the SpectralData by the CR! if foi is not None: foi, _ = best_match(freqs, foi, squash_duplicates=True) elif foilim is not None: foi, _ = best_match(freqs, foilim, span=True, squash_duplicates=True) else: msg = (f"Automatic FFT frequency selection from {freqs[0]:.1f}Hz to " f"{freqs[-1]:.1f}Hz") SPYInfo(msg) foi = freqs log_dct["foi"] = foi # Abort if desired frequency selection is empty if foi.size == 0: lgl = "non-empty frequency specification" act = "empty frequency selection" raise SPYValueError(legal=lgl, varname="foi/foilim", actual=act) # sanitize taper selection and retrieve dpss settings taper_opt = validate_taper(taper, tapsmofrq, nTaper, keeptapers, foimax=foi.max(), samplerate=data.samplerate, nSamples=minSampleNum, output=output) # Update `log_dct` w/method-specific options log_dct["taper"] = taper # only dpss returns non-empty taper_opt dict if taper_opt: log_dct["nTaper"] = taper_opt["Kmax"] log_dct["tapsmofrq"] = tapsmofrq # ------------------------------------------------------- # Now, prepare explicit compute-classes for chosen method # ------------------------------------------------------- if method == "mtmfft": check_effective_parameters(MultiTaperFFT, defaults, lcls) # method specific parameters method_kwargs = { 'samplerate': data.samplerate, 'taper': taper, 'taper_opt': taper_opt, 'nSamples': minSampleNum } # Set up compute-class specestMethod = MultiTaperFFT( foi=foi, timeAxis=timeAxis, keeptapers=keeptapers, polyremoval=polyremoval, output_fmt=output, method_kwargs=method_kwargs) elif method == "mtmconvol": check_effective_parameters(MultiTaperFFTConvol, defaults, lcls) # Process `toi` for sliding window multi taper fft, # we have to account for three scenarios: (1) center sliding # windows on all samples in (selected) trials (2) `toi` was provided as # percentage indicating the degree of overlap b/w time-windows and (3) a set # of discrete time points was provided. These three cases are encoded in # `overlap, i.e., ``overlap > 1` => all, `0 < overlap < 1` => percentage, # `overlap < 0` => discrete `toi` # overlap = None if isinstance(toi, str): if toi != "all": lgl = "`toi = 'all'` to center analysis windows on all time-points" raise SPYValueError(legal=lgl, varname="toi", actual=toi) equidistant = True overlap = np.inf elif isinstance(toi, Number): try: scalar_parser(toi, varname="toi", lims=[0, 1]) except Exception as exc: raise exc overlap = toi equidistant = True # this captures all other cases, e.i. toi is of sequence type else: overlap = -1 try: array_parser(toi, varname="toi", hasinf=False, hasnan=False, lims=[tStart.min(), tEnd.max()], dims=(None,)) except Exception as exc: raise exc toi = np.array(toi) tSteps = np.diff(toi) if (tSteps < 0).any(): lgl = "ordered list/array of time-points" act = "unsorted list/array" raise SPYValueError(legal=lgl, varname="toi", actual=act) # Account for round-off errors: if toi spacing is almost at sample interval # manually correct it if np.isclose(tSteps.min(), dt): tSteps[np.isclose(tSteps, dt)] = dt if tSteps.min() < dt: msg = f"`toi` selection too fine, max. time resolution is {dt}s" SPYWarning(msg) # This is imho a bug in NumPy - even `arange` and `linspace` may produce # arrays that are numerically not exactly equidistant - `unique` will # show several entries here - use `allclose` to identify "even" spacings equidistant = np.allclose(tSteps, [tSteps[0]] * tSteps.size) # If `toi` was 'all' or a percentage, use entire time interval of (selected) # trials and check if those trials have *approximately* equal length if toi is None: if not np.allclose(lenTrials, [minSampleNum] * lenTrials.size): msg = "processing trials of different lengths (min = {}; max = {} samples)" +\ " with `toi = 'all'`" SPYWarning(msg.format(int(minSampleNum), int(lenTrials.max()))) # number of samples per window nperseg = int(t_ftimwin * data.samplerate) halfWin = int(nperseg / 2) postSelect = slice(None) # select all is the default if 0 <= overlap <= 1: # `toi` is percentage noverlap = min(nperseg - 1, int(overlap * nperseg)) # windows get shifted exactly 1 sample # to get a spectral estimate at each sample else: noverlap = nperseg - 1 # `toi` is array if overlap < 0: # Compute necessary padding at begin/end of trials to fit sliding windows offStart = ((toi[0] - tStart) * data.samplerate).astype(np.intp) padBegin = halfWin - offStart padBegin = ((padBegin > 0) * padBegin).astype(np.intp) offEnd = ((tEnd - toi[-1]) * data.samplerate).astype(np.intp) padEnd = halfWin - offEnd padEnd = ((padEnd > 0) * padEnd).astype(np.intp) # Compute sample-indices (one slice/list per trial) from time-selections soi = [] if equidistant: # soi just trims the input data to the [toi[0], toi[-1]] interval # postSelect then subsamples the spectral esimate to the user given toi postSelect = [] for tk in range(numTrials): start = max(0, int(round(data.samplerate * (toi[0] - tStart[tk]) - halfWin))) stop = int(round(data.samplerate * (toi[-1] - tStart[tk]) + halfWin + 1)) soi.append(slice(start, max(stop, stop - start))) # chosen toi subsampling interval in sample units, min. is 1; # compute `delta_idx` s.t. stop - start / delta_idx == toi.size delta_idx = int(round((soi[0].stop - soi[0].start) / toi.size)) delta_idx = delta_idx if delta_idx > 1 else 1 postSelect = slice(None, None, delta_idx) else: for tk in range(numTrials): starts = (data.samplerate * (toi - tStart[tk]) - halfWin).astype(np.intp) starts += padBegin[tk] stops = (data.samplerate * (toi - tStart[tk]) + halfWin + 1).astype(np.intp) stops += padBegin[tk] stops = np.maximum(stops, stops - starts, dtype=np.intp) soi.append([slice(start, stop) for start, stop in zip(starts, stops)]) # postSelect here remains slice(None), as resulting spectrum # has exactly one entry for each soi # `toi` is percentage or "all" else: soi = [slice(None)] * numTrials # Collect keyword args for `mtmconvol` in dictionary method_kwargs = {"samplerate": data.samplerate, "nperseg": nperseg, "noverlap": noverlap, "taper" : taper, "taper_opt" : taper_opt} # Set up compute-class specestMethod = MultiTaperFFTConvol( soi, postSelect, equidistant=equidistant, toi=toi, foi=foi, timeAxis=timeAxis, keeptapers=keeptapers, polyremoval=polyremoval, output_fmt=output, method_kwargs=method_kwargs) elif method == "wavelet": check_effective_parameters(WaveletTransform, defaults, lcls) # Check wavelet selection if wavelet not in availableWavelets: lgl = "'" + "or '".join(opt + "' " for opt in availableWavelets) raise SPYValueError(legal=lgl, varname="wavelet", actual=wavelet) if wavelet not in ["Morlet", "Paul"]: msg = "the chosen wavelet '{}' is real-valued and does not provide " +\ "any information about amplitude or phase of the data. This wavelet function " +\ "may be used to isolate peaks or discontinuities in the signal. " SPYWarning(msg.format(wavelet)) # Check for consistency of `width`, `order` and `wavelet` if wavelet == "Morlet": try: scalar_parser(width, varname="width", lims=[1, np.inf]) except Exception as exc: raise exc wfun = getattr(spywave, wavelet)(w0=width) else: if width != lcls["width"]: msg = "option `width` has no effect for wavelet '{}'" SPYWarning(msg.format(wavelet)) if wavelet == "Paul": try: scalar_parser(order, varname="order", lims=[4, np.inf], ntype="int_like") except Exception as exc: raise exc wfun = getattr(spywave, wavelet)(m=order) elif wavelet == "DOG": try: scalar_parser(order, varname="order", lims=[1, np.inf], ntype="int_like") except Exception as exc: raise exc wfun = getattr(spywave, wavelet)(m=order) else: if order is not None: msg = "option `order` has no effect for wavelet '{}'" SPYWarning(msg.format(wavelet)) wfun = getattr(spywave, wavelet)() # automatic frequency selection if foi is None and foilim is None: scales = get_optimal_wavelet_scales( wfun.scale_from_period, # all availableWavelets sport one! int(minTrialLength * data.samplerate), dt) foi = 1 / wfun.fourier_period(scales) msg = (f"Setting frequencies of interest to {foi[0]:.1f}-" f"{foi[-1]:.1f}Hz") SPYInfo(msg) else: if foilim is not None: foi = np.arange(foilim[0], foilim[1] + 1, dtype=float) # 0 frequency is not valid foi[foi < 0.01] = 0.01 scales = wfun.scale_from_period(1 / foi) # Update `log_dct` w/method-specific options (use `lcls` to get actually # provided keyword values, not defaults set in here) log_dct["foi"] = foi log_dct["wavelet"] = lcls["wavelet"] log_dct["width"] = lcls["width"] log_dct["order"] = lcls["order"] # method specific parameters method_kwargs = { 'samplerate' : data.samplerate, 'scales' : scales, 'wavelet' : wfun } # Set up compute-class specestMethod = WaveletTransform( preSelect, postSelect, toi=toi, timeAxis=timeAxis, polyremoval=polyremoval, output_fmt=output, method_kwargs=method_kwargs) elif method == "superlet": check_effective_parameters(SuperletTransform, defaults, lcls) # check and parse superlet specific arguments if order_max is None: lgl = "Positive integer needed for order_max" raise SPYValueError(legal=lgl, varname="order_max", actual=None) else: scalar_parser( order_max, varname="order_max", lims=[1, np.inf], ntype="int_like" ) scalar_parser( order_min, varname="order_min", lims=[1, order_max], ntype="int_like" ) scalar_parser(c_1, varname="c_1", lims=[1, np.inf], ntype="int_like") # if no frequencies are user selected, take a sensitive default if foi is None and foilim is None: scales = get_optimal_wavelet_scales( superlet.scale_from_period, int(minTrialLength * data.samplerate), dt) foi = 1 / superlet.fourier_period(scales) msg = (f"Setting frequencies of interest to {foi[0]:.1f}-" f"{foi[-1]:.1f}Hz") SPYInfo(msg) else: if foilim is not None: # frequency range in 1Hz steps foi = np.arange(foilim[0], foilim[1] + 1, dtype=float) # 0 frequency is not valid foi[foi < 0.01] = 0.01 scales = superlet.scale_from_period(1. / foi) # FASLT needs ordered frequencies low - high # meaning the scales have to go high - low if adaptive: if len(scales) < 2: lgl = "A range of frequencies" act = "Single frequency" raise SPYValueError(legal=lgl, varname="foi", actual=act) if np.any(np.diff(scales) > 0): msg = "Sorting frequencies low to high for adaptive SLT.." SPYWarning(msg) scales = np.sort(scales)[::-1] log_dct["foi"] = foi log_dct["c_1"] = lcls["c_1"] log_dct["order_max"] = lcls["order_max"] log_dct["order_min"] = lcls["order_min"] # method specific parameters method_kwargs = { 'samplerate' : data.samplerate, 'scales' : scales, 'order_max' : order_max, 'order_min' : order_min, 'c_1' : c_1, 'adaptive' : adaptive } # Set up compute-class specestMethod = SuperletTransform( preSelect, postSelect, toi=toi, timeAxis=timeAxis, polyremoval=polyremoval, output_fmt=output, method_kwargs=method_kwargs) # ------------------------------------------------- # Sanitize output and call the ComputationalRoutine # ------------------------------------------------- # If provided, make sure output object is appropriate if out is not None: try: data_parser(out, varname="out", writable=True, empty=True, dataclass="SpectralData", dimord=SpectralData().dimord) except Exception as exc: raise exc new_out = False else: out = SpectralData(dimord=SpectralData._defaultDimord) new_out = True # Perform actual computation specestMethod.initialize(data, out._stackingDim, chan_per_worker=kwargs.get("chan_per_worker"), keeptrials=keeptrials) specestMethod.compute(data, out, parallel=kwargs.get("parallel"), log_dict=log_dct) # Either return newly created output object or simply quit return out if new_out else None
def _prep_spectral_plots(self, name, **inputArgs): """ Local helper that performs sanity checks and sets up data selection Parameters ---------- self : :class:`~syncopy.SpectralData` object Syncopy :class:`~syncopy.SpectralData` object that is being processed by the respective :meth:`.singlepanelplot` or :meth:`.multipanelplot` class methods defined in this module. name : str Name of caller (i.e., "singlepanelplot" or "multipanelplot") inputArgs : dict Input arguments of caller (i.e., :meth:`.singlepanelplot` or :meth:`.multipanelplot`) collected in dictionary Returns ------- dimArrs : tuple Four-element tuple containing (in this order): `trList`, list of (selected) trials to visualize, `chArr`, 1D :class:`numpy.ndarray` of channel specifiers based on provided user selection, `freqArr`, 1D :class:`numpy.ndarray` of frequency specifiers based on provided user selection, `tpArr`, 1D :class:`numpy.ndarray` of taper specifiers based on provided user selection. Note that `"all"` and `None` selections are converted to arrays ready for indexing. dimCounts : tuple Four-element tuple holding sizes of corresponding selection arrays comprised in `dimArrs`. Elements are (in this order): number of (selected) trials `nTrials`, number of (selected) channels `nChan`, number of (selected) frequencies `nFreq`, number of (selected) tapers `nTap`. isTimeFrequency : bool If `True`, input object contains time-frequency data, `False` otherwise complexConversion : callable Lambda function that performs complex-to-float conversion of Fourier coefficients (if necessary). pltDtype : str or :class:`numpy.dtype` Numeric type of (potentially converted) complex Fourier coefficients. dataLbl : str Caption for y-axis or colorbar (depending on value of `isTimeFrequency`). Notes ----- This is an auxiliary method that is intended purely for internal use. Please refer to the user-exposed methods :func:`~syncopy.singlepanelplot` and/or :func:`~syncopy.multipanelplot` to actually generate plots of Syncopy data objects. See also -------- :meth:`syncopy.plotting.spy_plotting._prep_plots` : General basic input parsing for all Syncopy plotting routines """ # Basic sanity checks for all plotting routines w/any Syncopy object _prep_plots(self, name, **inputArgs) # Ensure our binary flags are actually binary if not isinstance(inputArgs["avg_channels"], bool): raise SPYTypeError(inputArgs["avg_channels"], varname="avg_channels", expected="bool") if not isinstance(inputArgs["avg_tapers"], bool): raise SPYTypeError(inputArgs["avg_tapers"], varname="avg_tapers", expected="bool") if not isinstance(inputArgs.get("avg_trials", True), bool): raise SPYTypeError(inputArgs["avg_trials"], varname="avg_trials", expected="bool") # Pass provided selections on to `Selector` class which performs error # checking and generates required indexing arrays self._selection = { "trials": inputArgs["trials"], "channels": inputArgs["channels"], "tapers": inputArgs["tapers"], "toilim": inputArgs["toilim"], "foilim": inputArgs["foilim"] } # Ensure any optional keywords controlling plotting appearance make sense if inputArgs["title"] is not None: if not isinstance(inputArgs["title"], str): raise SPYTypeError(inputArgs["title"], varname="title", expected="str") if inputArgs["grid"] is not None: if not isinstance(inputArgs["grid"], bool): raise SPYTypeError(inputArgs["grid"], varname="grid", expected="bool") # Get trial/channel/taper count and collect quantities in tuple trList = self._selection.trials nTrials = len(trList) chArr = self.channel[self._selection.channel] nChan = chArr.size freqArr = self.freq[self._selection.freq] nFreq = freqArr.size tpArr = np.arange(self.taper.size)[self._selection.taper] nTap = tpArr.size dimCounts = (nTrials, nChan, nFreq, nTap) dimArrs = (trList, chArr, freqArr, tpArr) # Determine whether we're dealing w/tf data isTimeFrequency = False if any([t.size > 1 for t in self.time]): isTimeFrequency = True # Ensure provided min/max range for plotting TF data makes sense vminmax = False if inputArgs.get("vmin", None) is not None: try: scalar_parser(inputArgs["vmin"], varname="vmin") except Exception as exc: raise exc vminmax = True if inputArgs.get("vmax", None) is not None: try: scalar_parser(inputArgs["vmax"], varname="vmax") except Exception as exc: raise exc vminmax = True if inputArgs.get("vmin", None) and inputArgs.get("vmax", None): if inputArgs["vmin"] >= inputArgs["vmax"]: lgl = "minimal data range bound to be less than provided maximum " act = "vmax < vmin" raise SPYValueError(legal=lgl, varname="vmin/vamx", actual=act) if vminmax and not isTimeFrequency: msg = "`vmin` and `vmax` is only used for time-frequency visualizations" SPYWarning(msg) # Check for complex entries in data and set datatype for plotting arrays # constructed below (always use floats w/same precision as data) if "complex" in self.data.dtype.name: msg = "Found complex Fourier coefficients - visualization will use absolute values." SPYWarning(msg) complexConversion = lambda x: np.absolute(x).real pltDtype = "f{}".format(self.data.dtype.itemsize) dataLbl = "Absolute Frequency [dB]" else: complexConversion = lambda x: x pltDtype = self.data.dtype dataLbl = "Power [dB]" return dimArrs, dimCounts, isTimeFrequency, complexConversion, pltDtype, dataLbl
def connectivityanalysis(data, method="coh", keeptrials=False, output="abs", foi=None, foilim=None, pad_to_length=None, polyremoval=None, taper="hann", tapsmofrq=None, nTaper=None, out=None, **kwargs): """ Perform connectivity analysis of Syncopy :class:`~syncopy.AnalogData` objects **Usage Summary** Options available in all analysis methods: * **foi**/**foilim** : frequencies of interest; either array of frequencies or frequency window (not both) * **polyremoval** : de-trending method to use (0 = mean, 1 = linear or `None`) List of available analysis methods and respective distinct options: "coh" : (Multi-) tapered coherency estimate Compute the normalized cross spectral densities between all channel combinations * **output** : one of ('abs', 'pow', 'fourier') * **taper** : one of :data:`~syncopy.shared.const_def.availableTapers` * **tapsmofrq** : spectral smoothing box for slepian tapers (in Hz) * **nTaper** : (optional) number of orthogonal tapers for slepian tapers * **pad_to_length**: either pad to an absolute length or set to `'nextpow2'` "corr" : Cross-correlations Computes the one sided (positive lags) cross-correlations between all channel combinations. The maximal lag is half the trial lengths. * **keeptrials** : set to `True` for single trial cross-correlations "granger" : Spectral Granger-Geweke causality Computes linear causality estimates between all channel combinations. The intermediate cross-spectral densities can be computed via multi-tapering. * **taper** : one of :data:`~syncopy.shared.const_def.availableTapers` * **tapsmofrq** : spectral smoothing box for slepian tapers (in Hz) * **nTaper** : (optional, not recommended) number of slepian tapers * **pad_to_length**: either pad to an absolute length or set to `'nextpow2'` Parameters ---------- data : `~syncopy.AnalogData` A non-empty Syncopy :class:`~syncopy.datatype.AnalogData` object method : str Connectivity estimation method, one of 'coh', 'corr', 'granger' output : str Relevant for cross-spectral density estimation (`method='coh'`) Use `'pow'` for absolute squared coherence, `'abs'` for absolute value of coherence and`'fourier'` for the complex valued coherency. keeptrials : bool Relevant for cross-correlations (`method='corr'`). If `True` single-trial cross-correlations are returned. foi : array-like or None Frequencies of interest (Hz) for output. If desired frequencies cannot be matched exactly, the closest possible frequencies are used. If `foi` is `None` or ``foi = "all"``, all attainable frequencies (i.e., zero to Nyquist / 2) are selected. foilim : array-like (floats [fmin, fmax]) or None or "all" Frequency-window ``[fmin, fmax]`` (in Hz) of interest. The `foi` array will be constructed in 1Hz steps from `fmin` to `fmax` (inclusive). pad_to_length : int, None or 'nextpow2' Padding of the (tapered) signal, if set to a number pads all trials to this absolute length. E.g. `pad_to_length=2000` pads all trials to 2000 samples, if and only if the longest trial is at maximum 2000 samples. Alternatively if all trials have the same initial lengths setting `pad_to_length='nextpow2'` pads all trials to the next power of two. If `None` and trials have unequal lengths all trials are padded to match the longest trial. taper : str Only valid if `method` is `'coh'` or `'granger'`. Windowing function, one of :data:`~syncopy.specest.const_def.availableTapers` tapsmofrq : float Only valid if `method` is `'coh'` or `'granger'` and `taper` is `'dpss'`. The amount of spectral smoothing through multi-tapering (Hz). Note that smoothing frequency specifications are one-sided, i.e., 4 Hz smoothing means plus-minus 4 Hz, i.e., a 8 Hz smoothing box. nTaper : int or None Only valid if `method` is `'coh'` or `'granger'` and ``taper = 'dpss'``. Number of orthogonal tapers to use. It is not recommended to set the number of tapers manually! Leave at `None` for the optimal number to be set automatically. Examples -------- Coming soon... """ # Make sure our one mandatory input object can be processed try: data_parser(data, varname="data", dataclass="AnalogData", writable=None, empty=False) except Exception as exc: raise exc timeAxis = data.dimord.index("time") # Get everything of interest in local namespace defaults = get_defaults(connectivityanalysis) lcls = locals() # check for ineffective additional kwargs check_passed_kwargs(lcls, defaults, frontend_name="connectivity") # Ensure a valid computational method was selected if method not in availableMethods: lgl = "'" + "or '".join(opt + "' " for opt in availableMethods) raise SPYValueError(legal=lgl, varname="method", actual=method) # if a subset selection is present # get sampleinfo and check for equidistancy if data._selection is not None: sinfo = data._selection.trialdefinition[:, :2] trialList = data._selection.trials # user picked discrete set of time points if isinstance(data._selection.time[0], list): lgl = "equidistant time points (toi) or time slice (toilim)" actual = "non-equidistant set of time points" raise SPYValueError(legal=lgl, varname="select", actual=actual) else: trialList = list(range(len(data.trials))) sinfo = data.sampleinfo lenTrials = np.diff(sinfo).squeeze() # check polyremoval if polyremoval is not None: scalar_parser(polyremoval, varname="polyremoval", ntype="int_like", lims=[0, 1]) # --- Padding --- if method == "corr" and pad_to_length: lgl = "`None`, no padding needed/allowed for cross-correlations" actual = f"{pad_to_length}" raise SPYValueError(legal=lgl, varname="pad_to_length", actual=actual) # the actual number of samples in case of later padding nSamples = validate_padding(pad_to_length, lenTrials) # --- Basic foi sanitization --- foi, foilim = validate_foi(foi, foilim, data.samplerate) # only now set foi array for foilim in 1Hz steps if foilim is not None: foi = np.arange(foilim[0], foilim[1] + 1, dtype=float) # Prepare keyword dict for logging (use `lcls` to get actually provided # keyword values, not defaults set above) log_dict = { "method": method, "output": output, "keeptrials": keeptrials, "polyremoval": polyremoval, "pad_to_length": pad_to_length } # --- Setting up specific Methods --- if method in ['coh', 'granger']: # --- set up computation of the single trial CSDs --- if keeptrials is not False: lgl = "False, trial averaging needed!" act = keeptrials raise SPYValueError(lgl, varname="keeptrials", actual=act) # Construct array of maximally attainable frequencies freqs = np.fft.rfftfreq(nSamples, 1 / data.samplerate) # Match desired frequencies as close as possible to # actually attainable freqs # these are the frequencies attached to the SpectralData by the CR! if foi is not None: foi, _ = best_match(freqs, foi, squash_duplicates=True) elif foilim is not None: foi, _ = best_match(freqs, foilim, span=True, squash_duplicates=True) elif foi is None and foilim is None: # Construct array of maximally attainable frequencies msg = (f"Setting frequencies of interest to {freqs[0]:.1f}-" f"{freqs[-1]:.1f}Hz") SPYInfo(msg) foi = freqs # sanitize taper selection and retrieve dpss settings taper_opt = validate_taper( taper, tapsmofrq, nTaper, keeptapers=False, # ST_CSD's always average tapers foimax=foi.max(), samplerate=data.samplerate, nSamples=nSamples, output="pow") # ST_CSD's always have this unit/norm log_dict["foi"] = foi log_dict["taper"] = taper # only dpss returns non-empty taper_opt dict if taper_opt: log_dict["nTaper"] = taper_opt["Kmax"] log_dict["tapsmofrq"] = tapsmofrq check_effective_parameters(ST_CrossSpectra, defaults, lcls) # parallel computation over trials st_compRoutine = ST_CrossSpectra(samplerate=data.samplerate, nSamples=nSamples, taper=taper, taper_opt=taper_opt, polyremoval=polyremoval, timeAxis=timeAxis, foi=foi) # hard coded as class attribute st_dimord = ST_CrossSpectra.dimord if method == 'coh': # final normalization after trial averaging av_compRoutine = NormalizeCrossSpectra(output=output) if method == 'granger': # after trial averaging # hardcoded numerical parameters av_compRoutine = GrangerCausality(rtol=1e-8, nIter=100, cond_max=1e4) if method == 'corr': if lcls['foi'] is not None: msg = 'Parameter `foi` has no effect for `corr`' SPYWarning(msg) check_effective_parameters(ST_CrossCovariance, defaults, lcls) # single trial cross-correlations if keeptrials: av_compRoutine = None # no trial average norm = True # normalize individual trials within the ST CR else: av_compRoutine = NormalizeCrossCov() norm = False # parallel computation over trials st_compRoutine = ST_CrossCovariance(samplerate=data.samplerate, polyremoval=polyremoval, timeAxis=timeAxis, norm=norm) # hard coded as class attribute st_dimord = ST_CrossCovariance.dimord # ------------------------------------------------- # Call the chosen single trial ComputationalRoutine # ------------------------------------------------- # the single trial results need a new DataSet st_out = CrossSpectralData(dimord=st_dimord) # Perform the trial-parallelized computation of the matrix quantity st_compRoutine.initialize( data, st_out._stackingDim, chan_per_worker=None, # no parallelisation over channels possible keeptrials=keeptrials) # we most likely need trial averaging! st_compRoutine.compute(data, st_out, parallel=kwargs.get("parallel"), log_dict=log_dict) # if ever needed.. # for single trial cross-corr results <-> keeptrials is True if keeptrials and av_compRoutine is None: if out is not None: msg = "Single trial processing does not support `out` argument but directly returns the results" SPYWarning(msg) return st_out # ---------------------------------------------------------------------------------- # Sanitize output and call the chosen ComputationalRoutine on the averaged ST output # ---------------------------------------------------------------------------------- # If provided, make sure output object is appropriate if out is not None: try: data_parser(out, varname="out", writable=True, empty=True, dataclass="CrossSpectralData", dimord=st_dimord) except Exception as exc: raise exc new_out = False else: out = CrossSpectralData(dimord=st_dimord) new_out = True # now take the trial average from the single trial CR as input av_compRoutine.initialize(st_out, out._stackingDim, chan_per_worker=None) av_compRoutine.pre_check() # make sure we got a trial_average av_compRoutine.compute(st_out, out, parallel=False, log_dict=log_dict) # Either return newly created output object or simply quit return out if new_out else None
def validate_taper(taper, tapsmofrq, nTaper, keeptapers, foimax, samplerate, nSamples, output): """ General taper validation and Slepian/dpss input sanitization. The default is to max out `nTaper` to achieve the desired frequency smoothing bandwidth. For details about the Slepion settings see "The Effective Bandwidth of a Multitaper Spectral Estimator, A. T. Walden, E. J. McCoy and D. B. Percival" Parameters ---------- taper : str Windowing function, one of :data:`~syncopy.shared.const_def.availableTapers` tapsmofrq : float or None Taper smoothing bandwidth for `taper='dpss'` nTaper : int_like or None Number of tapers to use for multi-tapering (not recommended) Other Parameters ---------------- keeptapers : bool foimax : float Maximum frequency for the analysis samplerate : float the samplerate in Hz nSamples : int Number of samples output : str, one of {'abs', 'pow', 'fourier'} Fourier transformation output type Returns ------- dpss_opt : dict For multi-tapering (`taper='dpss'`) contains the parameters `NW` and `Kmax` for `scipy.signal.windows.dpss`. For all other tapers this is an empty dictionary. """ # See if taper choice is supported if taper not in availableTapers: lgl = "'" + "or '".join(opt + "' " for opt in availableTapers) raise SPYValueError(legal=lgl, varname="taper", actual=taper) # Warn user about DPSS only settings if taper != "dpss": if tapsmofrq is not None: msg = "`tapsmofrq` is only used if `taper` is `dpss`!" SPYWarning(msg) if nTaper is not None: msg = "`nTaper` is only used if `taper` is `dpss`!" SPYWarning(msg) if keeptapers: msg = "`keeptapers` is only used if `taper` is `dpss`!" SPYWarning(msg) # empty dpss_opt, only Slepians have options return {} # direct mtm estimate (averaging) only valid for spectral power if taper == "dpss" and not keeptapers and output != "pow": lgl = "'pow', the only valid option for taper averaging" raise SPYValueError(legal=lgl, varname="output", actual=output) # Set/get `tapsmofrq` if we're working w/Slepian tapers elif taper == "dpss": # --- minimal smoothing bandwidth --- # --- such that Kmax/nTaper is at least 1 minBw = 2 * samplerate / nSamples # ----------------------------------- # user set tapsmofrq directly if tapsmofrq is not None: try: scalar_parser(tapsmofrq, varname="tapsmofrq", lims=[0, np.inf]) except Exception as exc: raise exc if tapsmofrq < minBw: msg = f'Setting tapsmofrq to the minimal attainable bandwidth of {minBw:.2f}Hz' SPYInfo(msg) tapsmofrq = minBw # we now enforce a user submitted smoothing bw else: lgl = "smoothing bandwidth in Hz, typical values are in the range 1-10Hz" raise SPYValueError(legal=lgl, varname="tapsmofrq", actual=tapsmofrq) # Try to derive "sane" settings by using 3/4 octave # smoothing of highest `foi` # following Hill et al. "Oscillatory Synchronization in Large-Scale # Cortical Networks Predicts Perception", Neuron, 2011 # FIX ME: This "sane setting" seems quite excessive (huuuge bwidths) # tapsmofrq = (foimax * 2**(3 / 4 / 2) - foimax * 2**(-3 / 4 / 2)) / 2 # msg = f'Automatic setting of `tapsmofrq` to {tapsmofrq:.2f}' # SPYInfo(msg) # -------------------------------------------- # set parameters for scipy.signal.windows.dpss NW = tapsmofrq * nSamples / (2 * samplerate) # from the minBw setting NW always is at least 1 Kmax = int(2 * NW - 1) # optimal number of tapers # -------------------------------------------- # the recommended way: # set nTaper automatically to achieve exact effective smoothing bandwidth if nTaper is None: msg = f'Using {Kmax} taper(s) for multi-tapering' SPYInfo(msg) dpss_opt = {'NW': NW, 'Kmax': Kmax} return dpss_opt elif nTaper is not None: try: scalar_parser(nTaper, varname="nTaper", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc if nTaper != Kmax: msg = f''' Manually setting the number of tapers is not recommended and may (strongly) distort the effective smoothing bandwidth!\n The optimal number of tapers is {Kmax}, you have chosen to use {nTaper}. ''' SPYWarning(msg) dpss_opt = {'NW': NW, 'Kmax': nTaper} return dpss_opt
def padding(data, padtype, pad="absolute", padlength=None, prepadlength=None, postpadlength=None, unit="samples", create_new=True): """ Perform data padding on Syncopy object or :class:`numpy.ndarray` **Usage Summary** Depending on the value of `pad` the following padding length specifications are supported: +------------+----------------------+---------------+----------------------+----------------------+ | `pad` | `data` | `padlength` | `prepadlength` | `postpadlength` | +============+======================+===============+======================+======================+ | 'absolute' | Syncopy object/array | number | `None`/`bool` | `None`/`bool` | +------------+----------------------+---------------+----------------------+----------------------+ | 'relative' | Syncopy object/array | number/`None` | number/`None`/`bool` | number/`None`/`bool` | +------------+----------------------+---------------+----------------------+----------------------+ | 'maxlen' | Syncopy object | `None`/`bool` | `None`/`bool` | `None`/`bool` | +------------+----------------------+---------------+----------------------+----------------------+ | 'nextpow2' | Syncopy object/array | `None`/`bool` | `None`/`bool` | `None`/`bool` | +------------+----------------------+---------------+----------------------+----------------------+ * `data` can be either a Syncopy object containing multiple trials or a :class:`numpy.ndarray` representing a single trial * (pre/post)padlength: can be either `None`, `True`/`False` or a positive number: if `True` indicates where to pad, e.g., by using ``pad = 'maxlen'`` and ``prepadlength = True``, `data` is padded at the beginning of each trial. **Only** if `pad` is 'relative' are scalar values supported for `prepadlength` and `postpadlength` * ``pad = 'absolute'``: pad to desired absolute length, e.g., by using ``pad = 5`` and ``unit = 'time'`` all trials are (if necessary) padded to 5s length. Here, `padlength` **has** to be provided, `prepadlength` and `postpadlength` can be `None` or `True`/`False` * ``pad = 'relative'``: pad by provided `padlength`, e.g., by using ``padlength = 20`` and ``unit = 'samples'``, 20 samples are padded symmetrically around (before and after) each trial. Use ``padlength = 20`` and ``prepadlength = True`` **or** directly ``prepadlength = 20`` to pad before each trial. Here, at least one of `padlength`, `prepadlength` or `postpadlength` **has** to be provided. * ``pad = 'maxlen'``: (only valid for **Syncopy objects**) pad up to maximal trial length found in `data`. All lengths have to be either Boolean indicating padding location or `None` (if all are `None`, symmetric padding is performed) * ``pad = 'nextpow2'``: pad each trial up to closest power of two. All lengths have to be either Boolean indicating padding location or `None` (if all are `None`, symmetric padding is performed) Full documentation below. Parameters ---------- data : Syncopy object or :class:`numpy.ndarray` Non-empty Syncopy data object or array representing numeric data to be padded. **NOTE**: if `data` is a :class:`numpy.ndarray`, it is assumed that it represents recordings from only a single trial, where its first axis corresponds to time. In other words, `data` is a 'time'-by-'channel' array such that its rows reflect samples and its columns represent channels. If `data` is a Syncopy object, trial information and dimensional order are fetched from `data.trials` and `data.dimord`, respectively. padtype : str Padding value(s) to be used. Available options are: * 'zero' : pad using zeros * 'nan' : pad using `np.nan`'s * 'mean' : pad with by-channel mean value across each trial * 'localmean' : pad with by-channel mean value using only `padlength` or `prepadlength`/`postpadlength` number of boundary-entries for averaging * 'edge' : pad with trial-boundary values * 'mirror' : pad with reflections of trial-boundary values pad : str Padding mode to be used. Available options are: * 'absolute' : pad each trial to achieve a desired absolute length such that all trials have identical length post padding. If `pad` is `absolute` a `padlength` **has** to be provided, `prepadlength` and `postpadlength` may be `True` or `False`, respectively (see Examples for details). * 'relative' : pad each trial by provided `padlength` such that all trials are extended by the same amount regardless of their original lengths. If `pad` is `relative`, `prepadlength` and `postpadlength` can either be specified directly (using numerical values) or implicitly by only providing `padlength` and setting `prepadlength` and `postpadlength` to `True` or `False`, respectively (see Examples for details). If `pad` is `relative` at least one of `padlength`, `prepadlength` or `postpadlength` **has** to be provided. * 'maxlen' : only usable if `data` is a Syncopy object. If `pad` is 'maxlen' all trials are padded to achieve the length of the longest trial in `data`, i.e., post padding, all trials have the same length, which equals the size of the longest trial pre-padding. For ``pad = 'maxlen'``, `padlength`, `prepadlength` as well as `postpadlength` have to be either Boolean or `None` indicating the preferred padding location (pre-trial, post-trial or symmetrically pre- and post-trial). If all are `None`, symmetric padding is performed (see Examples for details). * 'nextpow2' : pad each trial to achieve a length equals the closest power of two of its original length. For ``pad = 'nextpow2'``, `padlength`, `prepadlength` as well as `postpadlength` have to be either Boolean or `None` indicating the preferred padding location (pre-trial, post-trial or symmetrically pre- and post-trial). If all are `None`, symmetric padding is performed (see Examples for details). padlength : None, bool or positive scalar Length to be padded to `data` (if `padlength` is scalar-valued) or padding location (if `padlength` is Boolean). Depending on the value of `pad`, `padlength` can be used to pre-pend (if `padlength` is a positive number and `prepadlength` is `True`) or append trials (if `padlength` is a positive number and `postpadlength` is `True`). If neither `prepadlength` nor `postpadlength` are specified (i.e, both are `None`), symmetric pre- and post-trial padding is performed (i.e., ``0.5 * padlength`` before and after each trial - note that odd sample counts are rounded downward to the nearest even integer). If ``unit = 'time'``, `padlength` is assumed to be given in seconds, otherwise (``unit = 'samples'``), `padlength` is interpreted as sample-count. Note that only ``pad = 'relative'`` and ``pad = 'absolute'`` support numeric values of `padlength`. prepadlength : None, bool or positive scalar Length to be pre-pended before each trial (if `prepadlength` is scalar-valued) or pre-padding flag (if `prepadlength` is `True`). If `prepadlength` is `True`, pre-padding length is either directly inferred from `padlength` or implicitly derived from chosen padding mode defined by `pad`. If ``unit = 'time'``, `prepadlength` is assumed to be given in seconds, otherwise (``unit = 'samples'``), `prepadlength` is interpreted as sample-count. Note that only ``pad = 'relative'`` supports numeric values of `prepadlength`. postpadlength : None, bool or positive scalar Length to be appended after each trial (if `postpadlength` is scalar-valued) or post-padding flag (if `postpadlength` is `True`). If `postpadlength` is `True`, post-padding length is either directly inferred from `padlength` or implicitly derived from chosen padding mode defined by `pad`. If ``unit = 'time'``, `postpadlength` is assumed to be given in seconds, otherwise (``unit = 'samples'``), `postpadlength` is interpreted as sample-count. Note that only ``pad = 'relative'`` supports numeric values of `postpadlength`. unit : str Unit of numerical values given by `padlength` and/or `prepadlength` and/or `postpadlength`. If ``unit = 'time'``, `padlength`, `prepadlength`, and `postpadlength` are assumed to be given in seconds, otherwise (``unit = 'samples'``), `padlength`, `prepadlength`, and `postpadlength` are interpreted as sample-counts. **Note** Providing padding lengths in seconds (i.e., ``unit = 'time'``) is only supported if `data` is a Syncopy object. create_new : bool If `True`, a padded copy of the same type as `data` is returned (a :class:`numpy.ndarray` or Syncopy object). If `create_new` is `False`, either a single dictionary (if `data` is a :class:`numpy.ndarray`) or a ``len(data.trials)``-long list of dictionaries (if `data` is a Syncopy object) with all necessary options for performing the actual padding operation with :func:`numpy.pad` is returned. Returns ------- pad_dict : dict, if `data` is a :class:`numpy.ndarray` and ``create_new = False`` Dictionary whose items contain all necessary parameters for calling :func:`numpy.pad` to perform the desired padding operation on `data`. pad_dicts : list, if `data` is a Syncopy object and ``create_new = False`` List of dictionaries for calling :func:`numpy.pad` to perform the desired padding operation on all trials found in `data`. out : :class:`numpy.ndarray`, if `data` is a :class:`numpy.ndarray` and ``create_new = True`` Padded version (deep copy) of `data` out : Syncopy object, if `data` is a Syncopy object and ``create_new = True`` Padded version (deep copy) of `data` Notes ----- This method emulates (and extends) FieldTrip's `ft_preproc_padding` by providing a convenience wrapper for NumPy's :func:`numpy.pad` that performs the actual heavy lifting. Examples -------- Consider the following small array representing a toy-problem-trial of `ns` samples across `nc` channels: >>> nc = 7; ns = 30 >>> trl = np.random.randn(ns, nc) We start by padding a total of 10 zeros symmetrically to `trl` >>> padded = spy.padding(trl, 'zero', pad='relative', padlength=10) >>> padded[:6, :] array([[ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [-1.0866, 2.3358, 0.8758, 0.5196, 0.8049, -0.659 , -0.9173]]) >>> padded[-6:, :] array([[ 0.027 , 1.8069, 1.5249, -0.7953, -0.8933, 1.0202, -0.6862], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) >>> padded.shape (40, 7) Note that the above call is equivalent to >>> padded_ident = spy.padding(trl, 'zero', pad='relative', padlength=10, prepadlength=True, postpadlength=True) >>> np.array_equal(padded_ident, padded) True >>> padded_ident = spy.padding(trl, 'zero', pad='relative', prepadlength=5, postpadlength=5) >>> np.array_equal(padded_ident, padded) True Similarly, >>> prepad = spy.padding(trl, 'nan', pad='relative', prepadlength=10) is the same as >>> prepad_ident = spy.padding(trl, 'nan', pad='relative', padlength=10, prepadlength=True) >>> np.allclose(prepad, prepad_ident, equal_nan=True) True Define bogus trials on `trl` and create a dummy object with unit samplerate >>> tdf = np.vstack([np.arange(0, ns, 5), np.arange(5, ns + 5, 5), np.ones((int(ns / 5), )), np.ones((int(ns / 5), )) * np.pi]).T >>> adata = spy.AnalogData(trl, trialdefinition=tdf, samplerate=1) Pad each trial to the closest power of two by appending by-trial channel averages. However, do not perform actual padding, but only prepare dictionaries of parameters to be passed on to :func:`numpy.pad` >>> pad_dicts = spy.padding(adata, 'mean', pad='nextpow2', postpadlength=True, create_new=False) >>> len(pad_dicts) == len(adata.trials) True >>> pad_dicts[0] {'pad_width': array([[0, 3], [0, 0]]), 'mode': 'mean'} Similarly, the following call generates a list of dictionaries preparing absolute padding by prepending zeros with :func:`numpy.pad` >>> pad_dicts = spy.padding(adata, 'zero', pad='absolute', padlength=10, prepadlength=True, create_new=False) >>> pad_dicts[0] {'pad_width': array([[5, 0], [0, 0]]), 'mode': 'constant', 'constant_values': 0} See also -------- numpy.pad : fast array padding in NumPy """ # Detect whether input is data object or array-like if any(["BaseData" in str(base) for base in data.__class__.__mro__]): try: data_parser(data, varname="data", dataclass="AnalogData", empty=False) except Exception as exc: raise exc timeAxis = data.dimord.index("time") spydata = True elif data.__class__.__name__ == "FauxTrial": if len(data.shape) != 2: lgl = "two-dimensional AnalogData trial segment" act = "{}-dimensional trial segment" raise SPYValueError(legal=lgl, varname="data", actual=act.format(len(data.shape))) timeAxis = data.dimord.index("time") spydata = False else: try: array_parser(data, varname="data", dims=2) except Exception as exc: raise exc timeAxis = 0 spydata = False # FIXME: Creation of new spy-object currently not supported if not isinstance(create_new, bool): raise SPYTypeError(create_new, varname="create_new", expected="bool") if spydata and create_new: raise NotImplementedError( "Creation of padded spy objects currently not supported. ") # Use FT-compatible options (sans FT option 'remove') if not isinstance(padtype, str): raise SPYTypeError(padtype, varname="padtype", expected="string") options = ["zero", "nan", "mean", "localmean", "edge", "mirror"] if padtype not in options: lgl = "'" + "or '".join(opt + "' " for opt in options) raise SPYValueError(legal=lgl, varname="padtype", actual=padtype) # Check `pad` and ensure we can actually perform the requested operation if not isinstance(pad, str): raise SPYTypeError(pad, varname="pad", expected="string") options = ["absolute", "relative", "maxlen", "nextpow2"] if pad not in options: lgl = "'" + "or '".join(opt + "' " for opt in options) raise SPYValueError(legal=lgl, varname="pad", actual=pad) if pad == "maxlen" and not spydata: lgl = "syncopy data object when using option 'maxlen'" raise SPYValueError(legal=lgl, varname="pad", actual="maxlen") # Make sure a data object was provided if we're working with time values if not isinstance(unit, str): raise SPYTypeError(unit, varname="unit", expected="string") options = ["samples", "time"] if unit not in options: lgl = "'" + "or '".join(opt + "' " for opt in options) raise SPYValueError(legal=lgl, varname="unit", actual=unit) if unit == "time" and not spydata: raise SPYValueError( legal="syncopy data object when using option 'time'", varname="unit", actual="time") # Set up dictionary for type-checking of provided padding lengths nt_dict = {"samples": "int_like", "time": None} # If we're padding up to an absolute bound or the max. length across # trials, compute lower bound for padding (in samples or seconds) if pad in ["absolute", "maxlen"]: if spydata: maxTrialLen = np.diff(data.sampleinfo).max() else: maxTrialLen = data.shape[ timeAxis] # if `pad="absolute" and data is array else: maxTrialLen = np.inf if unit == "time": padlim = maxTrialLen / data.samplerate else: padlim = maxTrialLen # To ease option processing, collect padding length keywords in dict plengths = { "padlength": padlength, "prepadlength": prepadlength, "postpadlength": postpadlength } # In case of relative padding, we need at least one scalar value to proceed if pad == "relative": # If `padlength = None`, pre- or post- need to be set; if `padlength` # is set, both pre- and post- need to be `None` or `True`/`False`. # After this code block, pre- and post- are guaranteed to be numeric. if padlength is None: for key in ["prepadlength", "postpadlength"]: if plengths[key] is not None: try: scalar_parser(plengths[key], varname=key, ntype=nt_dict[unit], lims=[0, np.inf]) except Exception as exc: raise exc else: plengths[key] = 0 else: try: scalar_parser(padlength, varname="padlength", ntype=nt_dict[unit], lims=[0, np.inf]) except Exception as exc: raise exc for key in ["prepadlength", "postpadlength"]: if not isinstance(plengths[key], (bool, type(None))): raise SPYTypeError(plengths[key], varname=key, expected="bool or None") if prepadlength is None and postpadlength is None: prepadlength = True postpadlength = True else: prepadlength = prepadlength is not None postpadlength = postpadlength is not None if prepadlength and postpadlength: plengths["prepadlength"] = padlength / 2 plengths["postpadlength"] = padlength / 2 else: plengths["prepadlength"] = prepadlength * padlength plengths["postpadlength"] = postpadlength * padlength # Under-determined: abort if requested padding length is 0 if all(value == 0 for value in plengths.values() if value is not None): lgl = "either non-zero value of `padlength` or `prepadlength` " + \ "and/or `postpadlength` to be set" raise SPYValueError(legal=lgl, varname="padlength", actual="0|None") else: # For absolute padding, the desired length has to be >= max. trial length if pad == "absolute": try: scalar_parser(padlength, varname="padlength", ntype=nt_dict[unit], lims=[padlim, np.inf]) except Exception as exc: raise exc for key in ["prepadlength", "postpadlength"]: if not isinstance(plengths[key], (bool, type(None))): raise SPYTypeError(plengths[key], varname=key, expected="bool or None") # For `maxlen` or `nextpow2` we don't want any numeric entries at all else: for key, value in plengths.items(): if not isinstance(value, (bool, type(None))): raise SPYTypeError(value, varname=key, expected="bool or None") # Warn of potential conflicts if padlength and (prepadlength or postpadlength): msg = "Found `padlength` and `prepadlength` and/or " +\ "`postpadlength`. Symmetric padding is performed. " SPYWarning(msg) # If both pre-/post- are `None`, set them to `True` to use symmetric # padding, otherwise convert `None` entries to `False` if prepadlength is None and postpadlength is None: plengths["prepadlength"] = True plengths["postpadlength"] = True else: plengths["prepadlength"] = plengths["prepadlength"] is not None plengths["postpadlength"] = plengths["postpadlength"] is not None # Update pre-/post-padding and (if required) convert time to samples prepadlength = plengths["prepadlength"] postpadlength = plengths["postpadlength"] if unit == "time": if pad == "relative": prepadlength = int(prepadlength * data.samplerate) postpadlength = int(postpadlength * data.samplerate) elif pad == "absolute": padlength = int(padlength * data.samplerate) # Construct dict of keywords for ``np.pad`` depending on chosen `padtype` kws = { "zero": { "mode": "constant", "constant_values": 0 }, "nan": { "mode": "constant", "constant_values": np.nan }, "localmean": { "mode": "mean", "stat_length": -1 }, "mean": { "mode": "mean" }, "edge": { "mode": "edge" }, "mirror": { "mode": "reflect" } } # If in put was syncopy data object, padding is done on a per-trial basis if spydata: # A list of input keywords for ``np.pad`` is constructed, no matter if # we actually want to build a new object or not pad_opts = [] for trl in data.trials: nSamples = trl.shape[timeAxis] if pad == "absolute": padding = (padlength - nSamples) / (prepadlength + postpadlength) elif pad == "relative": padding = True elif pad == "maxlen": padding = (maxTrialLen - nSamples) / (prepadlength + postpadlength) elif pad == "nextpow2": padding = (_nextpow2(nSamples) - nSamples) / (prepadlength + postpadlength) pw = np.zeros((2, 2), dtype=int) pw[timeAxis, :] = [prepadlength * padding, postpadlength * padding] pad_opts.append(dict({"pad_width": pw}, **kws[padtype])) if padtype == "localmean": pad_opts[-1]["stat_length"] = pw[timeAxis, :] if create_new: pass else: return pad_opts # Input was a array/FauxTrial (i.e., single trial) - we have to do the padding just once else: nSamples = data.shape[timeAxis] if pad == "absolute": padding = (padlength - nSamples) / (prepadlength + postpadlength) elif pad == "relative": padding = True elif pad == "nextpow2": padding = (_nextpow2(nSamples) - nSamples) / (prepadlength + postpadlength) pw = np.zeros((2, 2), dtype=int) pw[timeAxis, :] = [prepadlength * padding, postpadlength * padding] pad_opts = dict({"pad_width": pw}, **kws[padtype]) if padtype == "localmean": pad_opts["stat_length"] = pw[timeAxis, :] if create_new: if isinstance(data, np.ndarray): return np.pad(data, **pad_opts) else: # FIXME: currently only supports FauxTrial shp = list(data.shape) shp[timeAxis] += pw[timeAxis, :].sum() idx = list(data.idx) if isinstance(idx[timeAxis], slice): idx[timeAxis] = slice(idx[timeAxis].start, idx[timeAxis].start + shp[timeAxis]) else: idx[timeAxis] = pw[timeAxis, 0] * [idx[timeAxis][0]] + idx[timeAxis] \ + pw[timeAxis, 1] * [idx[timeAxis][-1]] return data.__class__(shp, idx, data.dtype, data.dimord) else: return pad_opts
def multipanelplot(self, trials="all", channels="all", tapers="all", toilim=None, foilim=None, avg_channels=False, avg_tapers=True, avg_trials=True, panels="channels", interp="spline36", cmap="plasma", vmin=None, vmax=None, title=None, grid=None, fig=None, **kwargs): """ Plot contents of :class:`~syncopy.SpectralData` objects using multi-panel figure(s) Please refer to :func:`syncopy.multipanelplot` for detailed usage information. Examples -------- Use 16 panels to show frequency range 30-80 Hz of first 16 channels in `freqData` averaged across trials 2, 4, and 6: >>> fig = spy.multipanelplot(freqData, trials=[2, 4, 6], channels=range(16), foilim=[30, 80], panels="channels") Same settings, but each panel represents a trial: >>> fig = spy.multipanelplot(freqData, trials=[2, 4, 6], channels=range(16), foilim=[30, 80], panels="trials", avg_trials=False, avg_channels=True) Plot time-frequency contents of channels `'ecog_mua1'` and `'ecog_mua2'` of `tfData` >>> fig = spy.multipanelplot(tfData, channels=['ecog_mua1', 'ecog_mua2']) Note that multi-panel overlay plotting is **not** supported for :class:`~syncopy.SpectralData` objects. See also -------- syncopy.multipanelplot : visualize Syncopy data objects using multi-panel plots """ # Collect input arguments in dict `inputArgs` and process them inputArgs = locals() inputArgs.pop("self") (dimArrs, dimCounts, isTimeFrequency, complexConversion, pltDtype, dataLbl) = _prep_spectral_plots(self, "multipanelplot", **inputArgs) (nTrials, nChan, nFreq, nTap) = dimCounts (trList, chArr, freqArr, tpArr) = dimArrs # No overlaying here... if hasattr(fig, "objCount"): msg = "Overlays of multi-panel `SpectralData` plots not supported" raise SPYError(msg) # Ensure panel-specification makes sense and is compatible w/averaging selection if not isinstance(panels, str): raise SPYTypeError(panels, varname="panels", expected="str") if panels not in availablePanels: lgl = "'" + "or '".join(opt + "' " for opt in availablePanels) raise SPYValueError(legal=lgl, varname="panels", actual=panels) if (panels == "channels" and avg_channels) or (panels == "trials" and avg_trials) \ or (panels == "tapers" and avg_tapers): msg = "Cannot use `panels = {}` and average across {} at the same time. " SPYWarning(msg.format(panels, panels)) return # Ensure the proper amount of averaging was specified avgFlags = [avg_channels, avg_trials, avg_tapers] if sum(avgFlags) == 0 and nTap * nTrials > 1: msg = "Need to average across at least one of tapers, channels or trials " +\ "for visualization. " SPYWarning(msg) return if sum(avgFlags) == 3: msg = "Averaging across trials, channels and tapers results in " +\ "single-panel plot. Please use `singlepanelplot` instead" SPYWarning(msg) return if isTimeFrequency: if sum(avgFlags) != 2: msg = "Multi-panel time-frequency visualization requires averaging across " +\ "two out of three dimensions (tapers, channels trials)" SPYWarning(msg) return # Prepare figure (same for all cases) if panels == "channels": npanels = nChan elif panels == "trials": npanels = nTrials else: # ``panels == "tapers"`` npanels = nTap # Construct subplot panel layout or vet provided layout nrow = kwargs.get("nrow", None) ncol = kwargs.get("ncol", None) if not isTimeFrequency: fig, ax_arr = _setup_figure(npanels, nrow=nrow, ncol=ncol, xLabel="Frequency [Hz]", yLabel=dataLbl, grid=grid, include_colorbar=False, sharex=True, sharey=True) else: fig, ax_arr, cax = _setup_figure(npanels, nrow=nrow, ncol=ncol, xLabel="Time [s]", yLabel="Frequency [Hz]", grid=grid, include_colorbar=True, sharex=True, sharey=True) # Monkey-patch object-counter to newly created figure fig.spectralPlot = True # Start with the "simple" case: "regular" spectra, no time involved if not isTimeFrequency: # We're not dealing w/TF data here nTime = 1 N = 1 # For each panel stratification, set corresponding positional and # keyword args for iteratively calling `_compute_pltArr` if panels == "channels": panelVar = "channel" panelValues = chArr panelTitles = chArr if not avg_trials and avg_tapers: avgDim1 = "taper" avgDim2 = None innerVar = "trial" innerValues = trList majorTitle = "{} trials averaged across {} tapers".format( nTrials, nTap) showLegend = True elif avg_trials and not avg_tapers: avgDim1 = None avgDim2 = None innerVar = "taper" innerValues = tpArr majorTitle = "{} tapers averaged across {} trials".format( nTap, nTrials) showLegend = True else: # `avg_trials` and `avg_tapers` avgDim1 = "taper" avgDim2 = None innerVar = "trial" innerValues = ["all"] majorTitle = " Average of {} tapers and {} trials".format( nTap, nTrials) showLegend = False elif panels == "trials": panelVar = "trial" panelValues = trList panelTitles = ["Trial #{}".format(trlno) for trlno in trList] if not avg_channels and avg_tapers: avgDim1 = "taper" avgDim2 = None innerVar = "channel" innerValues = chArr majorTitle = "{} channels averaged across {} tapers".format( nChan, nTap) showLegend = True elif avg_channels and not avg_tapers: avgDim1 = "channel" avgDim2 = None innerVar = "taper" innerValues = tpArr majorTitle = "{} tapers averaged across {} channels".format( nTap, nChan) showLegend = True else: # `avg_channels` and `avg_tapers` avgDim1 = "taper" avgDim2 = "channel" innerVar = "trial" innerValues = ["all"] majorTitle = " Average of {} channels and {} tapers".format( nChan, nTap) showLegend = False else: # panels = "tapers" panelVar = "taper" panelValues = tpArr panelTitles = ["Taper #{}".format(tpno) for tpno in tpArr] if not avg_trials and avg_channels: avgDim1 = "channel" avgDim2 = None innerVar = "trial" innerValues = trList majorTitle = "{} trials averaged across {} channels".format( nTrials, nChan) showLegend = True elif avg_trials and not avg_channels: avgDim1 = None avgDim2 = None innerVar = "channel" innerValues = chArr majorTitle = "{} channels averaged across {} trials".format( nChan, nTrials) showLegend = True else: # `avg_trials` and `avg_channels` avgDim1 = "channel" avgDim2 = None innerVar = "trial" innerValues = ["all"] majorTitle = " Average of {} channels and {} trials".format( nChan, nTrials) showLegend = False # Loop over panels, within each panel, loop over `innerValues` to (potentially) # plot multiple spectra per panel kwargs = {"avg1": avgDim1, "avg2": avgDim2} for panelCount, panelVal in enumerate(panelValues): kwargs[panelVar] = panelVal for innerVal in innerValues: kwargs[innerVar] = innerVal pltArr = _compute_pltArr(self, nFreq, N, nTime, complexConversion, pltDtype, **kwargs) ax_arr[panelCount].plot(freqArr, np.log10(pltArr), label=innerVar.capitalize() + " " + str(innerVal)) ax_arr[panelCount].set_title(panelTitles[panelCount], size=pltConfig["multiTitleSize"]) if showLegend: handles, labels = ax_arr[0].get_legend_handles_labels() ax_arr[0].legend(handles, labels) if title is None: fig.suptitle(majorTitle, size=pltConfig["singleTitleSize"]) # Now, multi-panel time-frequency visualizations else: # Compute (and verify) length of selected time intervals tLengths = _prep_toilim_avg(self) nTime = tLengths[0] time = self.time[trList[0]][self._selection.time[0]] N = 1 if panels == "channels": panelVar = "channel" panelValues = chArr panelTitles = chArr majorTitle = " Average of {} tapers and {} trials".format( nTap, nTrials) avgDim1 = "taper" avgDim2 = None elif panels == "trials": panelVar = "trial" panelValues = trList panelTitles = ["Trial #{}".format(trlno) for trlno in trList] majorTitle = " Average of {} channels and {} tapers".format( nChan, nTap) avgDim1 = "taper" avgDim2 = "channel" else: # panels = "tapers" panelVar = "taper" panelValues = tpArr panelTitles = ["Taper #{}".format(tpno) for tpno in tpArr] majorTitle = " Average of {} channels and {} trials".format( nChan, nTrials) avgDim1 = "channel" avgDim2 = None # Loop over panels, within each panel, loop over `innerValues` to (potentially) # plot multiple spectra per panel kwargs = {"avg1": avgDim1, "avg2": avgDim2} vmins = [] vmaxs = [] for panelCount, panelVal in enumerate(panelValues): kwargs[panelVar] = panelVal pltArr = _compute_pltArr(self, nFreq, N, nTime, complexConversion, pltDtype, **kwargs) vmins.append(pltArr.min()) vmaxs.append(pltArr.max()) ax_arr[panelCount].imshow(pltArr, origin="lower", interpolation=interp, cmap=cmap, extent=(time[0], time[-1], freqArr[0], freqArr[-1]), aspect="auto") ax_arr[panelCount].set_title(panelTitles[panelCount], size=pltConfig["multiTitleSize"]) # Render colorbar if vmin is None: vmin = min(vmins) if vmax is None: vmax = max(vmaxs) cbar = _setup_colorbar(fig, ax_arr, cax, label=dataLbl.replace(" [dB]", ""), outline=False, vmin=vmin, vmax=vmax) if title is None: fig.suptitle(majorTitle, size=pltConfig["singleTitleSize"]) # Increment overlay-counter and draw figure fig.objCount += 1 plt.draw() self._selection = None return fig
def freqanalysis(data, method='mtmfft', output='fourier', keeptrials=True, foi=None, foilim=None, pad=None, padtype='zero', padlength=None, prepadlength=None, postpadlength=None, polyremoval=None, taper="hann", tapsmofrq=None, keeptapers=False, toi=None, t_ftimwin=None, wav="Morlet", width=6, order=None, out=None, **kwargs): """ Perform (time-)frequency analysis of Syncopy :class:`~syncopy.AnalogData` objects **Usage Summary** Options available in all analysis methods: * **output** : one of :data:`~.availableOutputs`; return power spectra, complex Fourier spectra or absolute values. * **foi**/**foilim** : frequencies of interest; either array of frequencies or frequency window (not both) * **keeptrials** : return individual trials or grand average * **polyremoval** : de-trending method to use (0 = mean, 1 = linear, 2 = quadratic, 3 = cubic, etc.) List of available analysis methods and respective distinct options: :func:`~syncopy.specest.mtmfft.mtmfft` : (Multi-)tapered Fourier transform Perform frequency analysis on time-series trial data using either a single taper window (Hanning) or many tapers based on the discrete prolate spheroidal sequence (DPSS) that maximize energy concentration in the main lobe. * **taper** : one of :data:`~.availableTapers` * **tapsmofrq** : spectral smoothing box for tapers (in Hz) * **keeptapers** : return individual tapers or average * **pad** : padding method to use (`None`, `True`, `False`, `'absolute'`, `'relative'`, `'maxlen'` or `'nextpow2'`). If `None`, then `'nextpow2'` is selected by default. * **padtype** : values to pad data with (`'zero'`, `'nan'`, `'mean'`, `'localmean'`, `'edge'` or `'mirror'`) * **padlength** : number of samples to pre-pend and/or append to each trial * **prepadlength** : number of samples to pre-pend to each trial * **postpadlength** : number of samples to append to each trial :func:`~syncopy.specest.mtmconvol.mtmconvol` : (Multi-)tapered sliding window Fourier transform Perform time-frequency analysis on time-series trial data based on a sliding window short-time Fourier transform using either a single Hanning taper or multiple DPSS tapers. * **taper** : one of :data:`~.availableTapers` * **tapsmofrq** : spectral smoothing box for tapers (in Hz) * **keeptapers** : return individual tapers or average * **pad** : flag indicating, whether or not to pad trials. If `None`, trials are padded only if sliding window centroids are too close to trial boundaries for the entire window to cover available data-points. * **toi** : time-points of interest; can be either an array representing analysis window centroids (in sec), a scalar between 0 and 1 encoding the percentage of overlap between adjacent windows or "all" to center a window on every sample in the data. * **t_ftimwin** : sliding window length (in sec) :func:`~syncopy.specest.wavelet.wavelet` : (Continuous non-orthogonal) wavelet transform Perform time-frequency analysis on time-series trial data using a non-orthogonal continuous wavelet transform. * **wav** : one of :data:`~.availableWavelets` * **toi** : time-points of interest; can be either an array representing time points (in sec) to center wavelets on or "all" to center a wavelet on every sample in the data. * **width** : Nondimensional frequency constant of Morlet wavelet function (>= 6) * **order** : Order of Paul wavelet function (>= 4) or derivative order of real-valued DOG wavelets (2 = mexican hat) **Full documentation below** Parameters ---------- data : `~syncopy.AnalogData` A non-empty Syncopy :class:`~syncopy.datatype.AnalogData` object method : str Spectral estimation method, one of :data:`~.availableMethods` (see below). output : str Output of spectral estimation. One of :data:`~.availableOutputs` (see below); use `'pow'` for power spectrum (:obj:`numpy.float32`), `'fourier'` for complex Fourier coefficients (:obj:`numpy.complex128`) or `'abs'` for absolute values (:obj:`numpy.float32`). keeptrials : bool If `True` spectral estimates of individual trials are returned, otherwise results are averaged across trials. foi : array-like or None Frequencies of interest (Hz) for output. If desired frequencies cannot be matched exactly, the closest possible frequencies are used. If `foi` is `None` or ``foi = "all"``, all attainable frequencies (i.e., zero to Nyquist / 2) are selected. foilim : array-like (floats [fmin, fmax]) or None or "all" Frequency-window ``[fmin, fmax]`` (in Hz) of interest. Window specifications must be sorted (e.g., ``[90, 70]`` is invalid) and not NaN but may be unbounded (e.g., ``[-np.inf, 60.5]`` is valid). Edges `fmin` and `fmax` are included in the selection. If `foilim` is `None` or ``foilim = "all"``, all frequencies are selected. pad : str or None or bool One of `None`, `True`, `False`, `'absolute'`, `'relative'`, `'maxlen'` or `'nextpow2'`. If `pad` is `None` or ``pad = True``, then method-specific defaults are chosen. Specifically, if `method` is `'mtmfft'` then `pad` is set to `'nextpow2'` so that all trials in `data` are padded to the next power of two higher than the sample-count of the longest (selected) trial in `data`. Conversely, time-frequency analysis methods (`'mtmconvol'` and `'wavelet'`), only perform padding if necessary, i.e., if time-window centroids are chosen too close to trial boundaries for the entire window to cover available data-points. If `pad` is `False`, then no padding is performed. Then in case of ``method = 'mtmfft'`` all trials have to have approximately the same length (up to the next even sample-count), if ``method = 'mtmconvol'`` or ``method = 'wavelet'``, window-centroids have to keep sufficient distance from trial boundaries. For more details on the padding methods `'absolute'`, `'relative'`, `'maxlen'` and `'nextpow2'` see :func:`syncopy.padding`. padtype : str Values to be used for padding. Can be `'zero'`, `'nan'`, `'mean'`, `'localmean'`, `'edge'` or `'mirror'`. See :func:`syncopy.padding` for more information. padlength : None, bool or positive int Only valid if `method` is `'mtmfft'` and `pad` is `'absolute'` or `'relative'`. Number of samples to pad data with. See :func:`syncopy.padding` for more information. prepadlength : None or bool or int Only valid if `method` is `'mtmfft'` and `pad` is `'relative'`. Number of samples to pre-pend to each trial. See :func:`syncopy.padding` for more information. postpadlength : None or bool or int Only valid if `method` is `'mtmfft'` and `pad` is `'relative'`. Number of samples to append to each trial. See :func:`syncopy.padding` for more information. polyremoval : int or None **FIXME: Not implemented yet** Order of polynomial used for de-trending data in the time domain prior to spectral analysis. A value of 0 corresponds to subtracting the mean ("de-meaning"), ``polyremoval = 1`` removes linear trends (subtracting the least squares fit of a linear polynomial), ``polyremoval = N`` for `N > 1` subtracts a polynomial of order `N` (``N = 2`` quadratic, ``N = 3`` cubic etc.). If `polyremoval` is `None`, no de-trending is performed. taper : str Only valid if `method` is `'mtmfft'` or `'mtmconvol'`. Windowing function, one of :data:`~.availableTapers` (see below). tapsmofrq : float Only valid if `method` is `'mtmfft'` or `'mtmconvol'`. The amount of spectral smoothing through multi-tapering (Hz). Note that smoothing frequency specifications are one-sided, i.e., 4 Hz smoothing means plus-minus 4 Hz, i.e., a 8 Hz smoothing box. keeptapers : bool Only valid if `method` is `'mtmfft'` or `'mtmconvol'`. If `True`, return spectral estimates for each taper, otherwise results are averaged across tapers. toi : float or array-like or "all" **Mandatory input** for time-frequency analysis methods (`method` is either `"mtmconvol"` or `"wavelet"`). If `toi` is scalar, it must be a value between 0 and 1 indicating the percentage of overlap between time-windows specified by `t_ftimwin` (only valid if `method` is `'mtmconvol'`, invalid for `'wavelet'`). If `toi` is an array it explicitly selects the centroids of analysis windows (in seconds). If `toi` is `"all"`, analysis windows are centered on all samples in the data. t_ftimwin : positive float Only valid if `method` is `'mtmconvol'`. Sliding window length (in seconds). wav : str Only valid if `method` is `'wavelet'`. Wavelet function to use, one of :data:`~.availableWavelets` (see below). width : positive float Only valid if `method` is `'wavelet'` and `wav` is `'Morlet'`. Nondimensional frequency constant of Morlet wavelet function. This number should be >= 6, which corresponds to 6 cycles within the analysis window to ensure sufficient spectral sampling. order : positive int Only valid if `method` is `'wavelet'` and `wav` is `'Paul'` or `'DOG'`. Order of the wavelet function. If `wav` is `'Paul'`, `order` should be chosen >= 4 to ensure that the analysis window contains at least a single oscillation. At an order of 40, the Paul wavelet exhibits about the same number of cycles as the Morlet wavelet with a `width` of 6. All other supported wavelets functions are *real-valued* derivatives of Gaussians (DOGs). Hence, if `wav` is `'DOG'`, `order` represents the derivative order. The special case of a second order DOG yields a function known as "Mexican Hat", "Marr" or "Ricker" wavelet, which can be selected alternatively by setting `wav` to `'Mexican_hat'`, `'Marr'` or `'Ricker'`. **Note**: A real-valued wavelet function encodes *only* information about peaks and discontinuities in the signal and does *not* provide any information about amplitude or phase. out : None or :class:`SpectralData` object None if a new :class:`SpectralData` object is to be created, or an empty :class:`SpectralData` object Returns ------- spec : :class:`~syncopy.SpectralData` (Time-)frequency spectrum of input data Notes ----- Coming soon... Examples -------- Coming soon... .. autodata:: syncopy.specest.freqanalysis.availableMethods .. autodata:: syncopy.specest.freqanalysis.availableOutputs .. autodata:: syncopy.specest.freqanalysis.availableTapers .. autodata:: syncopy.specest.freqanalysis.availableWavelets See also -------- syncopy.specest.mtmfft.mtmfft : (multi-)tapered Fourier transform of multi-channel time series data syncopy.specest.mtmconvol.mtmconvol : time-frequency analysis of multi-channel time series data with a sliding window FFT syncopy.specest.wavelet.wavelet : time-frequency analysis of multi-channel time series data using a wavelet transform numpy.fft.fft : NumPy's reference FFT implementation scipy.signal.stft : SciPy's Short Time Fourier Transform """ # Make sure our one mandatory input object can be processed try: data_parser(data, varname="data", dataclass="AnalogData", writable=None, empty=False) except Exception as exc: raise exc timeAxis = data.dimord.index("time") # Get everything of interest in local namespace defaults = get_defaults(freqanalysis) lcls = locals() # Ensure a valid computational method was selected if method not in availableMethods: lgl = "'" + "or '".join(opt + "' " for opt in availableMethods) raise SPYValueError(legal=lgl, varname="method", actual=method) # Ensure a valid output format was selected if output not in spectralConversions.keys(): lgl = "'" + "or '".join(opt + "' " for opt in spectralConversions.keys()) raise SPYValueError(legal=lgl, varname="output", actual=output) # Parse all Boolean keyword arguments for vname in ["keeptrials", "keeptapers"]: if not isinstance(lcls[vname], bool): raise SPYTypeError(lcls[vname], varname=vname, expected="Bool") # If only a subset of `data` is to be processed, make some necessary adjustments # and compute minimal sample-count across (selected) trials if data._selection is not None: trialList = data._selection.trials sinfo = np.zeros((len(trialList), 2)) for tk, trlno in enumerate(trialList): trl = data._preview_trial(trlno) tsel = trl.idx[timeAxis] if isinstance(tsel, list): sinfo[tk, :] = [0, len(tsel)] else: sinfo[tk, :] = [ trl.idx[timeAxis].start, trl.idx[timeAxis].stop ] else: trialList = list(range(len(data.trials))) sinfo = data.sampleinfo lenTrials = np.diff(sinfo).squeeze() numTrials = len(trialList) # Set default padding options: after this, `pad` is either `None`, `False` or `str` defaultPadding = {"mtmfft": "nextpow2", "mtmconvol": None, "wavelet": None} if pad is None or pad is True: pad = defaultPadding[method] # Sliding window FFT does not support "fancy" padding if method == "mtmconvol" and isinstance(pad, str): msg = "method 'mtmconvol' only supports in-place padding for windows " +\ "exceeding trial boundaries. Your choice of `pad = '{}'` will be ignored. " SPYWarning(msg.format(pad)) pad = None # Ensure padding selection makes sense: do not pad on a by-trial basis but # use the longest trial as reference and compute `padlength` from there # (only relevant for "global" padding options such as `maxlen` or `nextpow2`) if pad: if not isinstance(pad, str): raise SPYTypeError(pad, varname="pad", expected="str or None") if pad == "maxlen": padlength = lenTrials.max() prepadlength = True postpadlength = False elif pad == "nextpow2": padlength = 0 for ltrl in lenTrials: padlength = max(padlength, _nextpow2(ltrl)) pad = "absolute" prepadlength = True postpadlength = False padding(data._preview_trial(trialList[0]), padtype, pad=pad, padlength=padlength, prepadlength=prepadlength, postpadlength=postpadlength) # Compute `minSampleNum` accounting for padding minSamplePos = lenTrials.argmin() minSampleNum = padding(data._preview_trial(trialList[minSamplePos]), padtype, pad=pad, padlength=padlength, prepadlength=True).shape[timeAxis] else: if method == "mtmfft" and np.unique( (np.floor(lenTrials / 2))).size > 1: lgl = "trials of approximately equal length for method 'mtmfft'" act = "trials of unequal length" raise SPYValueError(legal=lgl, varname="data", actual=act) minSampleNum = lenTrials.min() # Compute length (in samples) of shortest trial minTrialLength = minSampleNum / data.samplerate # Basic sanitization of frequency specifications if foi is not None: if isinstance(foi, str): if foi == "all": foi = None else: raise SPYValueError(legal="'all' or `None` or list/array", varname="foi", actual=foi) else: try: array_parser(foi, varname="foi", hasinf=False, hasnan=False, lims=[0, data.samplerate / 2], dims=(None, )) except Exception as exc: raise exc foi = np.array(foi, dtype="float") if foilim is not None: if isinstance(foilim, str): if foilim == "all": foilim = None else: raise SPYValueError(legal="'all' or `None` or `[fmin, fmax]`", varname="foilim", actual=foilim) else: try: array_parser(foilim, varname="foilim", hasinf=False, hasnan=False, lims=[0, data.samplerate / 2], dims=(2, )) except Exception as exc: raise exc if foi is not None and foilim is not None: lgl = "either `foi` or `foilim` specification" act = "both" raise SPYValueError(legal=lgl, varname="foi/foilim", actual=act) # FIXME: implement detrending # see also https://docs.obspy.org/_modules/obspy/signal/detrend.html#polynomial if polyremoval is not None: raise NotImplementedError("Detrending has not been implemented yet.") try: scalar_parser(polyremoval, varname="polyremoval", lims=[0, 8], ntype="int_like") except Exception as exc: raise exc # Prepare keyword dict for logging (use `lcls` to get actually provided # keyword values, not defaults set above) log_dct = { "method": method, "output": output, "keeptapers": keeptapers, "keeptrials": keeptrials, "polyremoval": polyremoval, "pad": lcls["pad"], "padtype": lcls["padtype"], "padlength": lcls["padlength"], "foi": lcls["foi"] } # 1st: Check time-frequency inputs to prepare/sanitize `toi` if method in ["mtmconvol", "wavelet"]: # Get start/end timing info respecting potential in-place selection if toi is None: raise SPYTypeError(toi, varname="toi", expected="scalar or array-like or 'all'") if data._selection is not None: tStart = data._selection.trialdefinition[:, 2] / data.samplerate else: tStart = data._t0 / data.samplerate tEnd = tStart + lenTrials / data.samplerate # Process `toi`: we have to account for three scenarios: (1) center sliding # windows on all samples in (selected) trials (2) `toi` was provided as # percentage indicating the degree of overlap b/w time-windows and (3) a set # of discrete time points was provided. These three cases are encoded in # `overlap, i.e., ``overlap > 1` => all, `0 < overlap < 1` => percentage, # `overlap < 0` => discrete `toi` if isinstance(toi, str): if toi != "all": lgl = "`toi = 'all'` to center analysis windows on all time-points" raise SPYValueError(legal=lgl, varname="toi", actual=toi) overlap = 1.1 toi = None equidistant = True elif isinstance(toi, Number): if method == "wavelet": lgl = "array of time-points wavelets are to be centered on" act = "scalar value" raise SPYValueError(legal=lgl, varname="toi", actual=act) try: scalar_parser(toi, varname="toi", lims=[0, 1]) except Exception as exc: raise exc overlap = toi equidistant = True else: overlap = -1 try: array_parser(toi, varname="toi", hasinf=False, hasnan=False, lims=[tStart.min(), tEnd.max()], dims=(None, )) except Exception as exc: raise exc toi = np.array(toi) tSteps = np.diff(toi) if (tSteps < 0).any(): lgl = "ordered list/array of time-points" act = "unsorted list/array" raise SPYValueError(legal=lgl, varname="toi", actual=act) # This is imho a bug in NumPy - even `arange` and `linspace` may produce # arrays that are numerically not exactly equidistant - `unique` will # show several entries here - use `allclose` to identify "even" spacings equidistant = np.allclose(tSteps, [tSteps[0]] * tSteps.size) # If `toi` was 'all' or a percentage, use entire time interval of (selected) # trials and check if those trials have *approximately* equal length if toi is None: if not np.allclose(lenTrials, [minSampleNum] * lenTrials.size): msg = "processing trials of different lengths (min = {}; max = {} samples)" +\ " with `toi = 'all'`" SPYWarning(msg.format(int(minSampleNum), int(lenTrials.max()))) if pad is False: lgl = "`pad` to be `None` or `True` to permit zero-padding " +\ "at trial boundaries to accommodate windows if `0 < toi < 1` " +\ "or if `toi` is 'all'" act = "False" raise SPYValueError(legal=lgl, actual=act, varname="pad") # Code recycling: `overlap`, `equidistant` etc. are really only relevant # for `mtmconvol`, but we use padding calc below for `wavelet` as well if method == "mtmconvol": try: scalar_parser(t_ftimwin, varname="t_ftimwin", lims=[1 / data.samplerate, minTrialLength]) except Exception as exc: raise exc else: t_ftimwin = 0 nperseg = int(t_ftimwin * data.samplerate) minSampleNum = nperseg halfWin = int(nperseg / 2) # `mtmconvol`: compute no. of samples overlapping across adjacent windows if overlap < 0: # `toi` is equidistant range or disjoint points noverlap = nperseg - max(1, int(tSteps[0] * data.samplerate)) elif 0 <= overlap <= 1: # `toi` is percentage noverlap = min(nperseg - 1, int(overlap * nperseg)) else: # `toi` is "all" noverlap = nperseg - 1 # `toi` is array if overlap < 0: # Compute necessary padding at begin/end of trials to fit sliding windows offStart = ((toi[0] - tStart) * data.samplerate).astype(np.intp) padBegin = halfWin - offStart padBegin = ((padBegin > 0) * padBegin).astype(np.intp) offEnd = ((tEnd - toi[-1]) * data.samplerate).astype(np.intp) padEnd = halfWin - offEnd padEnd = ((padEnd > 0) * padEnd).astype(np.intp) # Abort if padding was explicitly forbidden if pad is False and (np.any(padBegin) or np.any(padBegin)): lgl = "windows within trial bounds" act = "windows exceeding trials no. " +\ "".join(str(trlno) + ", "\ for trlno in np.array(trialList)[(padBegin + padEnd) > 0])[:-2] raise SPYValueError(legal=lgl, varname="pad", actual=act) # Compute sample-indices (one slice/list per trial) from time-selections soi = [] if not equidistant: for tk in range(numTrials): starts = (data.samplerate * (toi - tStart[tk]) - halfWin).astype(np.intp) starts += padBegin[tk] stops = (data.samplerate * (toi - tStart[tk]) + halfWin + 1).astype(np.intp) stops += padBegin[tk] stops = np.maximum(stops, stops - starts, dtype=np.intp) soi.append([ slice(start, stop) for start, stop in zip(starts, stops) ]) else: for tk in range(numTrials): start = int(data.samplerate * (toi[0] - tStart[tk]) - halfWin) stop = int(data.samplerate * (toi[-1] - tStart[tk]) + halfWin + 1) soi.append(slice(max(0, start), max(stop, stop - start))) # `toi` is percentage or "all" else: padBegin = np.zeros((numTrials, )) padEnd = np.zeros((numTrials, )) soi = [slice(None)] * numTrials # For wavelets, we need to first trim the data (via `preSelect`), then # extract the wanted time-points (`postSelect`) if method == "wavelet": # Simply recycle the indexing work done for `mtmconvol` (i.e., `soi`) preSelect = [] if not equidistant: for tk in range(numTrials): preSelect.append(slice(soi[tk][0].start, soi[tk][-1].stop)) else: preSelect = soi # If `toi` is an array, convert "global" indices to "local" ones # (select within `preSelect`'s selection), otherwise just take all if overlap < 0: postSelect = [] for tk in range(numTrials): smpIdx = np.minimum( lenTrials[tk] - 1, data.samplerate * (toi - tStart[tk]) - offStart[tk] + padBegin[tk]) postSelect.append(smpIdx.astype(np.intp)) else: postSelect = [slice(None)] * numTrials # Update `log_dct` w/method-specific options (use `lcls` to get actually # provided keyword values, not defaults set in here) if toi is None: toi = "all" log_dct["toi"] = lcls["toi"] # Check options specific to mtm*-methods (particularly tapers and foi/freqs alignment) if "mtm" in method: # See if taper choice is supported if taper not in availableTapers: lgl = "'" + "or '".join(opt + "' " for opt in availableTapers) raise SPYValueError(legal=lgl, varname="taper", actual=taper) taper = getattr(spwin, taper) # Advanced usage: see if `taperopt` was provided - if not, leave it empty taperopt = kwargs.get("taperopt", {}) if not isinstance(taperopt, dict): raise SPYTypeError(taperopt, varname="taperopt", expected="dictionary") # Construct array of maximally attainable frequencies nFreq = int(np.floor(minSampleNum / 2) + 1) freqs = np.linspace(0, data.samplerate / 2, nFreq) # Match desired frequencies as close as possible to actually attainable freqs if foi is not None: foi, _ = best_match(freqs, foi, squash_duplicates=True) elif foilim is not None: foi, _ = best_match(freqs, foilim, span=True, squash_duplicates=True) else: foi = freqs # Abort if desired frequency selection is empty if foi.size == 0: lgl = "non-empty frequency specification" act = "empty frequency selection" raise SPYValueError(legal=lgl, varname="foi/foilim", actual=act) # Set/get `tapsmofrq` if we're working w/Slepian tapers if taper.__name__ == "dpss": # Try to derive "sane" settings by using 3/4 octave smoothing of highest `foi` # following Hipp et al. "Oscillatory Synchronization in Large-Scale # Cortical Networks Predicts Perception", Neuron, 2011 if tapsmofrq is None: foimax = foi.max() tapsmofrq = (foimax * 2**(3 / 4 / 2) - foimax * 2**(-3 / 4 / 2)) / 2 else: try: scalar_parser(tapsmofrq, varname="tapsmofrq", lims=[1, np.inf]) except Exception as exc: raise exc # Get/compute number of tapers to use (at least 1 and max. 50) nTaper = taperopt.get("Kmax", 1) if not taperopt: nTaper = int( max( 2, min( 50, np.floor(tapsmofrq * minSampleNum * 1 / data.samplerate)))) taperopt = {"NW": tapsmofrq, "Kmax": nTaper} else: nTaper = 1 # Warn the user in case `tapsmofrq` has no effect if tapsmofrq is not None and taper.__name__ != "dpss": msg = "`tapsmofrq` is only used if `taper` is `dpss`!" SPYWarning(msg) # Update `log_dct` w/method-specific options (use `lcls` to get actually # provided keyword values, not defaults set in here) log_dct["taper"] = lcls["taper"] log_dct["tapsmofrq"] = lcls["tapsmofrq"] log_dct["nTaper"] = nTaper # Check for non-default values of options not supported by chosen method kwdict = {"wav": wav, "width": width} for name, kwarg in kwdict.items(): if kwarg is not lcls[name]: msg = "option `{}` has no effect in methods `mtmfft` and `mtmconvol`!" SPYWarning(msg.format(name)) # Now, prepare explicit compute-classes for chosen method if method == "mtmfft": # Check for non-default values of options not supported by chosen method kwdict = {"t_ftimwin": t_ftimwin, "toi": toi} for name, kwarg in kwdict.items(): if kwarg is not lcls[name]: msg = "option `{}` has no effect in method `mtmfft`!" SPYWarning(msg.format(name)) # Set up compute-class specestMethod = MultiTaperFFT(samplerate=data.samplerate, foi=foi, nTaper=nTaper, timeAxis=timeAxis, taper=taper, taperopt=taperopt, tapsmofrq=tapsmofrq, pad=pad, padtype=padtype, padlength=padlength, keeptapers=keeptapers, polyremoval=polyremoval, output_fmt=output) elif method == "mtmconvol": # Set up compute-class specestMethod = MultiTaperFFTConvol(soi, list(padBegin), list(padEnd), samplerate=data.samplerate, noverlap=noverlap, nperseg=nperseg, equidistant=equidistant, toi=toi, foi=foi, nTaper=nTaper, timeAxis=timeAxis, taper=taper, taperopt=taperopt, pad=pad, padtype=padtype, padlength=padlength, prepadlength=prepadlength, postpadlength=postpadlength, keeptapers=keeptapers, polyremoval=polyremoval, output_fmt=output) elif method == "wavelet": # Check for non-default values of `taper`, `tapsmofrq`, `keeptapers` and # `t_ftimwin` (set to 0 above) kwdict = { "taper": taper, "tapsmofrq": tapsmofrq, "keeptapers": keeptapers } for name, kwarg in kwdict.items(): if kwarg is not lcls[name]: msg = "option `{}` has no effect in method `wavelet`!" SPYWarning(msg.format(name)) if t_ftimwin != 0: msg = "option `t_ftimwin` has no effect in method `wavelet`!" SPYWarning(msg) # Check wavelet selection if wav not in availableWavelets: lgl = "'" + "or '".join(opt + "' " for opt in availableWavelets) raise SPYValueError(legal=lgl, varname="wav", actual=wav) if wav not in ["Morlet", "Paul"]: msg = "the chosen wavelet '{}' is real-valued and does not provide " +\ "any information about amplitude or phase of the data. This wavelet function " +\ "may be used to isolate peaks or discontinuities in the signal. " SPYWarning(msg.format(wav)) # Check for consistency of `width`, `order` and `wav` if wav == "Morlet": try: scalar_parser(width, varname="width", lims=[1, np.inf]) except Exception as exc: raise exc wfun = getattr(spywave, wav)(w0=width) else: if width != lcls["width"]: msg = "option `width` has no effect for wavelet '{}'" SPYWarning(msg.format(wav)) if wav == "Paul": try: scalar_parser(order, varname="order", lims=[4, np.inf], ntype="int_like") except Exception as exc: raise exc wfun = getattr(spywave, wav)(m=order) elif wav == "DOG": try: scalar_parser(order, varname="order", lims=[1, np.inf], ntype="int_like") except Exception as exc: raise exc wfun = getattr(spywave, wav)(m=order) else: if order is not None: msg = "option `order` has no effect for wavelet '{}'" SPYWarning(msg.format(wav)) wfun = getattr(spywave, wav)() # Process frequency selection (`toi` was taken care of above): `foilim` # selections are wrapped into `foi` thus the seemingly weird if construct # Note: SLURM workers don't like monkey-patching, so let's pretend # `get_optimal_wavelet_scales` is a class method by passing `wfun` as its # first argument if foi is None: scales = _get_optimal_wavelet_scales( wfun, int(minTrialLength * data.samplerate), 1 / data.samplerate) if foilim is not None: foi = np.arange(foilim[0], foilim[1] + 1) if foi is not None: foi[foi < 0.01] = 0.01 scales = wfun.scale_from_period(1 / foi) scales = scales[:: -1] # FIXME: this only makes sense if `foi` was sorted -> cf Issue #94 # Update `log_dct` w/method-specific options (use `lcls` to get actually # provided keyword values, not defaults set in here) log_dct["wav"] = lcls["wav"] log_dct["width"] = lcls["width"] log_dct["order"] = lcls["order"] # Set up compute-class specestMethod = WaveletTransform(preSelect, postSelect, list(padBegin), list(padEnd), samplerate=data.samplerate, toi=toi, scales=scales, timeAxis=timeAxis, wav=wfun, polyremoval=polyremoval, output_fmt=output) # If provided, make sure output object is appropriate if out is not None: try: data_parser(out, varname="out", writable=True, empty=True, dataclass="SpectralData", dimord=SpectralData().dimord) except Exception as exc: raise exc new_out = False else: out = SpectralData(dimord=SpectralData._defaultDimord) new_out = True # Perform actual computation specestMethod.initialize(data, chan_per_worker=kwargs.get("chan_per_worker"), keeptrials=keeptrials) specestMethod.compute(data, out, parallel=kwargs.get("parallel"), log_dict=log_dct) # Either return newly created output object or simply quit return out if new_out else None
def _make_trialdef(cfg, trialdefinition, samplerate): """ Local helper to construct trialdefinition arrays for time-frequency :class:`~syncopy.SpectralData` objects Parameters ---------- cfg : dict Config dictionary attribute of `ComputationalRoutine` subclass trialdefinition : 2D :class:`numpy.ndarray` Provisional trialdefnition array either directly copied from the :class:`~syncopy.AnalogData` input object or computed by the :class:`~syncopy.datatype.base_data.Selector` class. samplerate : float Original sampling rate of :class:`~syncopy.AnalogData` input object Returns ------- trialdefinition : 2D :class:`numpy.ndarray` Updated trialdefinition array reflecting provided `toi`/`toilim` selection samplerate : float Sampling rate accouting for potentially new spacing b/w time-points (accouting for provided `toi`/`toilim` selection) Notes ----- This routine is a local auxiliary method that is purely intended for internal use. Thus, no error checking is performed. See also -------- syncopy.specest.mtmconvol.mtmconvol : :meth:`~syncopy.shared.computational_routine.ComputationalRoutine.computeFunction` performing time-frequency analysis using (multi-)tapered sliding window Fourier transform syncopy.specest.wavelet.wavelet : :meth:`~syncopy.shared.computational_routine.ComputationalRoutine.computeFunction` performing time-frequency analysis using non-orthogonal continuous wavelet transform syncopy.specest.superlet.superlet : :meth:`~syncopy.shared.computational_routine.ComputationalRoutine.computeFunction` performing time-frequency analysis using super-resolution superlet transform """ # If `toi` is array, use it to construct timing info toi = cfg["toi"] if isinstance(toi, np.ndarray): # Some index gymnastics to get trial begin/end samples nToi = toi.size time = np.cumsum([nToi] * trialdefinition.shape[0]) trialdefinition[:, 0] = time - nToi trialdefinition[:, 1] = time # Important: differentiate b/w equidistant time ranges and disjoint points tSteps = np.diff(toi) if np.allclose(tSteps, [tSteps[0]] * tSteps.size): samplerate = 1 / (toi[1] - toi[0]) else: msg = ( "`SpectralData`'s `time` property currently does not support " + "unevenly spaced `toi` selections!") SPYWarning(msg, caller="freqanalysis") samplerate = 1.0 trialdefinition[:, 2] = 0 # Reconstruct trigger-onset based on provided time-point array trialdefinition[:, 2] = toi[0] * samplerate # If `toi` was a percentage, some cumsum/winSize algebra is required # Note: if `toi` was "all", simply use provided `trialdefinition` and `samplerate` elif isinstance(toi, Number): mKw = cfg['method_kwargs'] winSize = mKw["nperseg"] - mKw["noverlap"] trialdefinitionLens = np.ceil( np.diff(trialdefinition[:, :2]) / winSize) sumLens = np.cumsum(trialdefinitionLens).reshape( trialdefinitionLens.shape) trialdefinition[:, 0] = np.ravel(sumLens - trialdefinitionLens) trialdefinition[:, 1] = sumLens.ravel() trialdefinition[:, 2] = trialdefinition[:, 2] / winSize samplerate = np.round(samplerate / winSize, 2) # If `toi` was "all", do **not** simply use provided `trialdefinition`: overlapping # trials require thie below `cumsum` gymnastics else: bounds = np.cumsum(np.diff(trialdefinition[:, :2])) trialdefinition[1:, 0] = bounds[:-1] trialdefinition[:, 1] = bounds return trialdefinition, samplerate
def save(out, container=None, tag=None, filename=None, overwrite=False, memuse=100): r"""Save Syncopy data object to disk The underlying array data object is stored in a HDF5 file, the metadata in a JSON file. Both can be placed inside a Syncopy container, which is a regular directory with the extension '.spy'. Parameters ---------- out : Syncopy data object Object to be stored on disk. container : str Path to Syncopy container folder (\*.spy) to be used for saving. If omitted, the extension '.spy' will be added to the folder name. tag : str Tag to be appended to container basename filename : str Explicit path to data file. This is only necessary if the data should not be part of a container folder. An extension (\*.<dataclass>) is added if omitted. The `tag` argument is ignored. overwrite : bool If `True` an existing HDF5 file and its accompanying JSON file is overwritten (without prompt). memuse : scalar Approximate in-memory cache size (in MB) for writing data to disk (only relevant for :class:`syncopy.VirtualData` or memory map data sources) Returns ------- Nothing : None Notes ------ Syncopy objects may also be saved using the class method ``.save`` that acts as a wrapper for :func:`syncopy.save`, e.g., >>> save(obj, container="new_spy_container") is equivalent to >>> obj.save(container="new_spy_container") However, once a Syncopy object has been saved, the class method ``.save`` can be used as a shortcut to quick-save recent changes, e.g., >>> obj.save() writes the current state of `obj` to the data/meta-data files on-disk associated with `obj` (overwriting both in the process). Similarly, >>> obj.save(tag='newtag') saves `obj` in the current container 'new_spy_container' under a different tag. Examples -------- Save the Syncopy data object `obj` on disk in the current working directory without creating a spy-container >>> spy.save(obj, filename="session1") >>> # --> os.getcwd()/session1.<dataclass> >>> # --> os.getcwd()/session1.<dataclass>.info Save `obj` without creating a spy-container using an absolute path >>> spy.save(obj, filename="/tmp/session1") >>> # --> /tmp/session1.<dataclass> >>> # --> /tmp/session1.<dataclass>.info Save `obj` in a new spy-container created in the current working directory >>> spy.save(obj, container="container.spy") >>> # --> os.getcwd()/container.spy/container.<dataclass> >>> # --> os.getcwd()/container.spy/container.<dataclass>.info Save `obj` in a new spy-container created by providing an absolute path >>> spy.save(obj, container="/tmp/container.spy") >>> # --> /tmp/container.spy/container.<dataclass> >>> # --> /tmp/container.spy/container.<dataclass>.info Save `obj` in a new (or existing) spy-container under a different tag >>> spy.save(obj, container="session1.spy", tag="someTag") >>> # --> os.getcwd()/session1.spy/session1_someTag.<dataclass> >>> # --> os.getcwd()/session1.spy/session1_someTag.<dataclass>.info See also -------- syncopy.load : load data created with :func:`syncopy.save` """ # Make sure `out` is a valid Syncopy data object data_parser(out, varname="out", writable=None, empty=False) if filename is None and container is None: raise SPYError('filename and container cannot both be `None`') if container is not None and filename is None: # construct filename from container name if not isinstance(container, str): raise SPYTypeError(container, varname="container", expected="str") if not os.path.splitext(container)[1] == ".spy": container += ".spy" fileInfo = filename_parser(container) filename = os.path.join(fileInfo["folder"], fileInfo["container"], fileInfo["basename"]) # handle tag if tag is not None: if not isinstance(tag, str): raise SPYTypeError(tag, varname="tag", expected="str") filename += '_' + tag elif container is not None and filename is not None: raise SPYError( "container and filename cannot be used at the same time") if not isinstance(filename, str): raise SPYTypeError(filename, varname="filename", expected="str") # add extension if not part of the filename if "." not in os.path.splitext(filename)[1]: filename += out._classname_to_extension() try: scalar_parser(memuse, varname="memuse", lims=[0, np.inf]) except Exception as exc: raise exc if not isinstance(overwrite, bool): raise SPYTypeError(overwrite, varname="overwrite", expected="bool") # Parse filename for validity and construct full path to HDF5 file fileInfo = filename_parser(filename) if fileInfo["extension"] != out._classname_to_extension(): raise SPYError("""Extension in filename ({ext}) does not match data class ({dclass})""".format(ext=fileInfo["extension"], dclass=out.__class__.__name__)) dataFile = os.path.join(fileInfo["folder"], fileInfo["filename"]) # If `out` is to replace its own on-disk representation, be more careful if overwrite and dataFile == out.filename: replace = True else: replace = False # Prevent `out` from trying to re-create its own data file if replace: out.data.flush() h5f = out.data.file dat = out.data trl = h5f["trialdefinition"] else: if not os.path.exists(fileInfo["folder"]): try: os.makedirs(fileInfo["folder"]) except IOError: raise SPYIOError(fileInfo["folder"]) except Exception as exc: raise exc else: if os.path.exists(dataFile): if not os.path.isfile(dataFile): raise SPYIOError(dataFile) if overwrite: try: h5f = h5py.File(dataFile, mode="w") h5f.close() except Exception as exc: msg = "Cannot overwrite {} - file may still be open. " msg += "Original error message below\n{}" raise SPYError(msg.format(dataFile, str(exc))) else: raise SPYIOError(dataFile, exists=True) h5f = h5py.File(dataFile, mode="w") # Save each member of `_hdfFileDatasetProperties` in target HDF file for datasetName in out._hdfFileDatasetProperties: dataset = getattr(out, datasetName) # Member is a memory map if isinstance(dataset, np.memmap): # Given memory cap, compute how many data blocks can be grabbed # per swipe (divide by 2 since we're working with an add'l tmp array) memuse *= 1024**2 / 2 nrow = int( memuse / (np.prod(dataset.shape[1:]) * dataset.dtype.itemsize)) rem = int(dataset.shape[0] % nrow) n_blocks = [nrow] * int( dataset.shape[0] // nrow) + [rem] * int(rem > 0) # Write data block-wise to dataset (use `clear` to wipe blocks of # mem-maps from memory) dat = h5f.create_dataset(datasetName, dtype=dataset.dtype, shape=dataset.shape) for m, M in enumerate(n_blocks): dat[m * nrow:m * nrow + M, :] = out.data[m * nrow:m * nrow + M, :] out.clear() # Member is a HDF5 dataset else: dat = h5f.create_dataset(datasetName, data=dataset) # Now write trial-related information trl_arr = np.array(out.trialdefinition) if replace: trl[()] = trl_arr trl.flush() else: trl = h5f.create_dataset("trialdefinition", data=trl_arr, maxshape=(None, trl_arr.shape[1])) # Write to log already here so that the entry can be exported to json infoFile = dataFile + FILE_EXT["info"] out.log = "Wrote files " + dataFile + "\n\t\t\t" + 2 * " " + infoFile # While we're at it, write cfg entries out.cfg = { "method": sys._getframe().f_code.co_name, "files": [dataFile, infoFile] } # Assemble dict for JSON output: order things by their "readability" outDict = OrderedDict(startInfoDict) outDict["filename"] = fileInfo["filename"] outDict["dataclass"] = out.__class__.__name__ outDict["data_dtype"] = dat.dtype.name outDict["data_shape"] = dat.shape outDict["data_offset"] = dat.id.get_offset() outDict["trl_dtype"] = trl.dtype.name outDict["trl_shape"] = trl.shape outDict["trl_offset"] = trl.id.get_offset() if isinstance(out.data, np.ndarray): if np.isfortran(out.data): outDict["order"] = "F" else: outDict["order"] = "C" for key in out._infoFileProperties: value = getattr(out, key) if isinstance(value, np.ndarray): value = value.tolist() # potentially nested dicts elif isinstance(value, dict): value = dict(value) _dict_converter(value) outDict[key] = value # Save relevant stuff as HDF5 attributes for key in out._hdfFileAttributeProperties: if outDict[key] is None: h5f.attrs[key] = "None" else: try: h5f.attrs[key] = outDict[key] except RuntimeError: msg = "Too many entries in `{}` - truncating HDF5 attribute. " +\ "Please refer to {} for complete listing." info_fle = os.path.split( os.path.split(filename.format(ext=FILE_EXT["info"]))[0])[1] info_fle = os.path.join( info_fle, os.path.basename(filename.format(ext=FILE_EXT["info"]))) SPYWarning(msg.format(key, info_fle)) h5f.attrs[key] = [outDict[key][0], "...", outDict[key][-1]] # Re-assign filename after saving (and remove source in case it came from `__storage__`) if not replace: h5f.close() if __storage__ in out.filename: out.data.file.close() os.unlink(out.filename) out.data = dataFile # Compute checksum and finally write JSON (automatically overwrites existing) outDict["file_checksum"] = hash_file(dataFile) with open(infoFile, 'w') as out_json: json.dump(outDict, out_json, indent=4) return
def io_parser(fs_loc, varname="", isfile=True, ext="", exists=True): """ Parse file-system location strings for reading/writing files/directories Parameters ---------- fs_loc : str String pointing to (hopefully valid) file-system location (absolute/relative path of file or directory ). varname : str Local variable name used in caller, see Examples for details. isfile : bool Indicates whether `fs_loc` points to a file (`isfile = True`) or directory (`isfile = False`) ext : str or 1darray-like Valid filename extension(s). Can be a single string (e.g., `ext = "lfp"`) or a list/1darray of valid extensions (e.g., `ext = ["lfp", "mua"]`). exists : bool If `exists = True` ensure that file-system location specified by `fs_loc` exists (typically used when reading from `fs_loc`), otherwise (`exists = False`) check for already present conflicting files/directories (typically used when creating/writing to `fs_loc`). Returns ------- fs_path : str Absolute path of `fs_loc`. fs_name : str (only if `isfile = True`) Name (including extension) of input file (without path). Examples -------- To test whether `"/path/to/dataset.lfp"` points to an existing file, one might use >>> io_parser("/path/to/dataset.lfp") '/path/to', 'dataset.lfp' The following call ensures that a folder called "mydata" can be safely created in the current working directory >>> io_parser("mydata", isfile=False, exists=False) '/path/to/cwd/mydata' Suppose a routine wants to save data to a file with potential extensions `".lfp"` or `".mua"`. The following call may be used to ensure the user input `dsetname = "relative/dir/dataset.mua"` is a valid choice: >>> abs_path, filename = io_parser(dsetname, varname="dsetname", ext=["lfp", "mua"], exists=False) >>> abs_path '/full/path/to/relative/dir/' >>> filename 'dataset.mua' """ # Start by resovling potential conflicts if not isfile and len(ext) > 0: msg = "filename extension(s) specified but `isfile = False`. Exiting..." SPYWarning(msg) return # Make sure `fs_loc` is actually a string if not isinstance(fs_loc, str): raise SPYTypeError(fs_loc, varname=varname, expected=str) # Avoid headaches, use absolute paths... fs_loc = os.path.abspath(os.path.expanduser(fs_loc)) # Ensure that filesystem object does/does not exist if exists and not os.path.exists(fs_loc): raise SPYIOError(fs_loc, exists=False) if not exists and os.path.exists(fs_loc): raise SPYIOError(fs_loc, exists=True) # First, take care of directories... if not isfile: isdir = os.path.isdir(fs_loc) if (isdir and not exists): raise SPYIOError (fs_loc, exists=isdir) elif (not isdir and exists): raise SPYValueError(legal="directory", actual="file") else: return fs_loc # ...now files else: # Separate filename from its path file_name = os.path.basename(fs_loc) # If wanted, parse filename extension(s) if len(ext): # Extract filename extension and get rid of its dot file_ext = os.path.splitext(file_name)[1] file_ext = file_ext.replace(".", "") # In here, having no extension counts as an error error = False if len(file_ext) == 0: error = True if file_ext not in str(ext) or error: if isinstance(ext, (list, np.ndarray)): ext = "'" + "or '".join(ex + "' " for ex in ext) raise SPYValueError(ext, varname="filename-extension", actual=file_ext) # Now make sure file does or does not exist isfile = os.path.isfile(fs_loc) if (isfile and not exists): raise SPYIOError(fs_loc, exists=isfile) elif (not isfile and exists): raise SPYValueError(legal="file", actual="directory") else: return fs_loc.split(file_name)[0], file_name
def load(filename, tag=None, dataclass=None, checksum=False, mode="r+", out=None): """ Load Syncopy data object(s) from disk Either loads single files within or outside of '.spy'-containers or loads multiple objects from a single '.spy'-container. Loading from containers can be further controlled by imposing restrictions on object class(es) (via `dataclass`) and file-name tag(s) (via `tag`). Parameters ---------- filename : str Either path to Syncopy container folder (\*.spy, if omitted, the extension '.spy' will be appended) or name of data or metadata file. If `filename` points to a container and no further specifications are provided, the entire contents of the container is loaded. Otherwise, specific objects may be selected using the `dataclass` or `tag` keywords (see below). tag : None or str or list If `filename` points to a container, `tag` may be used to filter objects by filename-`tag`. Multiple tags can be provided using a list, e.g., ``tag = ['experiment1', 'experiment2']``. Can be combined with `dataclass` (see below). Invalid if `filename` points to a single file. dataclass : None or str or list If provided, only objects of provided dataclass are loaded from disk. Available options are '.analog', '.spectral', .spike' and '.event' (as listed in ``spy.FILE_EXT["data"]``). Multiple class specifications can be provided using a list, e.g., ``dataclass = ['.analog', '.spike']``. Can be combined with `tag` (see above) and is also valid if `filename` points to a single file (e.g., to ensure loaded object is of a specific type). checksum : bool If `True`, checksum-matching is performed on loaded object(s) to ensure data-integrity (impairs performance particularly when loading large files). mode : str Data access mode of loaded objects (can be 'r' for read-only, 'r+' or 'w' for read/write access). out : Syncopy data object Empty object to be filled with data loaded from disk. Has to match the type of the on-disk file (e.g., ``filename = 'mydata.analog'`` requires `out` to be a :class:`syncopy.AnalogData` object). Can only be used when loading single objects from disk (`out` is ignored when multiple files are loaded from a container). Returns ------- Nothing : None If a single file is loaded and `out` was provided, `out` is filled with data loaded from disk, i.e., :func:`syncopy.load` does **not** create a new object obj : Syncopy data object If a single file is loaded and `out` was `None`, :func:`syncopy.load` returns a new object. objdict : dict If multiple files are loaded, :func:`syncopy.load` creates a new object for each file and places them in a dictionary whose keys are the base-names (sans path) of the corresponding files. Notes ----- All of Syncopy's classes offer (limited) support for data loading upon object creation. Just as the class method ``.save`` can be used as a shortcut for :func:`syncopy.save`, Syncopy objects can be created from Syncopy data-files upon creation, e.g., >>> adata = spy.AnalogData('/path/to/session1.analog') creates a new :class:`syncopy.AnalogData` object and immediately fills it with data loaded from the file "/path/to/session1.analog". Since only one object can be created at a time, this loading shortcut only supports single file specifications (i.e., ``spy.AnalogData("container.spy")`` is invalid). Examples -------- Load all objects found in the spy-container "sessionName" (the extension ".spy" may or may not be provided) >>> objectDict = spy.load("sessionName") >>> # --> returns a dict with base-filenames as keys Load all :class:`syncopy.AnalogData` and :class:`syncopy.SpectralData` objects from the spy-container "sessionName" >>> objectDict = spy.load("sessionName.spy", dataclass=['analog', 'spectral']) Load a specific :class:`syncopy.AnalogData` object from the above spy-container >>> obj = spy.load("sessionName.spy/sessionName_someTag.analog") This is equivalent to >>> obj = spy.AnalogData("sessionName.spy/sessionName_someTag.analog") If the "sessionName" spy-container only contains one object with the tag "someTag", the above call is equivalent to >>> obj = spy.load("sessionName.spy", tag="someTag") If there are multiple objects of different types using the same tag "someTag", the above call can be further narrowed down to only load the requested :class:`syncopy.AnalogData` object >>> obj = spy.load("sessionName.spy", tag="someTag", dataclass="analog") See also -------- syncopy.save : save syncopy object on disk """ # Ensure `filename` is either a valid .spy container or data file: if `filename` # is a directory w/o '.spy' extension, append it if not isinstance(filename, str): raise SPYTypeError(filename, varname="filename", expected="str") if len(os.path.splitext(os.path.abspath( os.path.expanduser(filename)))[1]) == 0: filename += FILE_EXT["dir"] try: fileInfo = filename_parser(filename) except Exception as exc: raise exc if tag is not None: if isinstance(tag, str): tags = [tag] else: tags = tag try: array_parser(tags, varname="tag", ntype=str) except Exception as exc: raise exc if fileInfo["filename"] is not None: raise SPYError("Only containers can be loaded with `tag` keyword!") for tk in range(len(tags)): tags[tk] = "*" + tags[tk] + "*" else: tags = "*" # If `dataclass` was provided, format it for our needs (e.g. 'spike' -> ['.spike']) if dataclass is not None: if isinstance(dataclass, str): dataclass = [dataclass] try: array_parser(dataclass, varname="dataclass", ntype=str) except Exception as exc: raise exc dataclass = [ "." + dclass if not dclass.startswith(".") else dclass for dclass in dataclass ] extensions = set(dataclass).intersection(FILE_EXT["data"]) if len(extensions) == 0: lgl = "extension(s) '" + "or '".join(ext + "' " for ext in FILE_EXT["data"]) raise SPYValueError(legal=lgl, varname="dataclass", actual=str(dataclass)) # Avoid any misunderstandings here... if not isinstance(checksum, bool): raise SPYTypeError(checksum, varname="checksum", expected="bool") # Abuse `AnalogData.mode`-setter to vet `mode` try: spd.AnalogData().mode = mode except Exception as exc: raise exc # If `filename` points to a spy container, `glob` what's inside, otherwise just load if fileInfo["filename"] is None: if dataclass is None: extensions = FILE_EXT["data"] container = os.path.join(fileInfo["folder"], fileInfo["container"]) fileList = [] for ext in extensions: for tag in tags: fileList.extend(glob(os.path.join(container, tag + ext))) if len(fileList) == 0: fsloc = os.path.join(container, "" + \ "or ".join(tag + " " for tag in tags) + \ "with extensions " + \ "or ".join(ext + " " for ext in extensions)) raise SPYIOError(fsloc, exists=False) if len(fileList) == 1: return _load(fileList[0], checksum, mode, out) if out is not None: msg = "When loading multiple objects, the `out` keyword is ignored" SPYWarning(msg) objectDict = {} for fname in fileList: obj = _load(fname, checksum, mode, None) objectDict[os.path.basename(obj.filename)] = obj return objectDict else: if dataclass is not None: if os.path.splitext(fileInfo["filename"])[1] not in dataclass: lgl = "extension '" + \ "or '".join(dclass + "' " for dclass in dataclass) raise SPYValueError(legal=lgl, varname="filename", actual=fileInfo["filename"]) return _load(filename, checksum, mode, out)
def selectdata(data, trials=None, channels=None, channels_i=None, channels_j=None, toi=None, toilim=None, foi=None, foilim=None, tapers=None, units=None, eventids=None, out=None, inplace=False, clear=False, **kwargs): """ Create a new Syncopy object from a selection **Usage Notice** Syncopy offers two modes for selecting data: * **in-place** selections mark subsets of a Syncopy data object for processing via a ``select`` dictionary *without* creating a new object * **deep-copy** selections copy subsets of a Syncopy data object to keep and preserve in a new object created by :func:`~syncopy.selectdata` All Syncopy metafunctions, such as :func:`~syncopy.freqanalysis`, support **in-place** data selection via a ``select`` keyword, effectively avoiding potentially slow copy operations and saving disk space. The keys accepted by the `select` dictionary are identical to the keyword arguments discussed below. In addition, ``select = "all"`` can be used to select entire object contents. Examples >>> select = {"toilim" : [-0.25, 0]} >>> spy.freqanalysis(data, select=select) >>> # or equivalently >>> cfg = spy.get_defaults(spy.freqanalysis) >>> cfg.select = select >>> spy.freqanalysis(cfg, data) **Usage Summary** List of Syncopy data objects and respective valid data selectors: :class:`~syncopy.AnalogData` : trials, channels, toi/toilim Examples >>> spy.selectdata(data, trials=[0, 3, 5], channels=["channel01", "channel02"]) >>> cfg = spy.StructDict() >>> cfg.trials = [5, 3, 0]; cfg.toilim = [0.25, 0.5] >>> spy.selectdata(cfg, data) :class:`~syncopy.SpectralData` : trials, channels, toi/toilim, foi/foilim, tapers Examples >>> spy.selectdata(data, trials=[0, 3, 5], channels=["channel01", "channel02"]) >>> cfg = spy.StructDict() >>> cfg.foi = [30, 40, 50]; cfg.tapers = slice(2, 4) >>> spy.selectdata(cfg, data) :class:`~syncopy.EventData` : trials, toi/toilim, eventids Examples >>> spy.selectdata(data, toilim=[-1, 2.5], eventids=[0, 1]) >>> cfg = spy.StructDict() >>> cfg.trials = [0, 0, 1, 0]; cfg.eventids = slice(2, None) >>> spy.selectdata(cfg, data) :class:`~syncopy.SpikeData` : trials, toi/toilim, units, channels Examples >>> spy.selectdata(data, toilim=[-1, 2.5], units=range(0, 10)) >>> cfg = spy.StructDict() >>> cfg.toi = [1.25, 3.2]; cfg.trials = [0, 1, 2, 3] >>> spy.selectdata(cfg, data) **Note** Any property that is not specifically accessed via one of the provided selectors is taken as is, e.g., ``spy.selectdata(data, trials=[1, 2])`` selects the entire contents of trials no. 2 and 3, while ``spy.selectdata(data, channels=range(0, 50))`` selects the first 50 channels of `data` across all defined trials. Consequently, if no keywords are specified, the entire contents of `data` is selected. **Full documentation below** Parameters ---------- data : Syncopy data object A non-empty Syncopy data object. **Note** the type of `data` determines which keywords can be used. Some keywords are only valid for certain types of Syncopy objects, e.g., "freqs" is not a valid selector for an :class:`~syncopy.AnalogData` object. trials : list (integers) or None or "all" List of integers representing trial numbers to be selected; can include repetitions and need not be sorted (e.g., ``trials = [0, 1, 0, 0, 2]`` is valid) but must be finite and not NaN. If `trials` is `None`, or ``trials = "all"`` all trials are selected. channels : list (integers or strings), slice, range or None or "all" Channel-selection; can be a list of channel names (``['channel3', 'channel1']``), a list of channel indices (``[3, 5]``), a slice (``slice(3, 10)``) or range (``range(3, 10)``). Note that following Python conventions, channels are counted starting at zero, and range and slice selections are half-open intervals of the form `[low, high)`, i.e., low is included , high is excluded. Thus, ``channels = [0, 1, 2]`` or ``channels = slice(0, 3)`` selects the first up to (and including) the third channel. Selections can be unsorted and may include repetitions but must match exactly, be finite and not NaN. If `channels` is `None`, or ``channels = "all"`` all channels are selected. toi : list (floats) or None or "all" Time-points to be selected (in seconds) in each trial. Timing is expected to be on a by-trial basis (e.g., relative to trigger onsets). Selections can be approximate, unsorted and may include repetitions but must be finite and not NaN. Fuzzy matching is performed for approximate selections (i.e., selected time-points are close but not identical to timing information found in `data`) using a nearest-neighbor search for elements of `toi`. If `toi` is `None` or ``toi = "all"``, the entire time-span in each trial is selected. toilim : list (floats [tmin, tmax]) or None or "all" Time-window ``[tmin, tmax]`` (in seconds) to be extracted from each trial. Window specifications must be sorted (e.g., ``[2.2, 1.1]`` is invalid) and not NaN but may be unbounded (e.g., ``[1.1, np.inf]`` is valid). Edges `tmin` and `tmax` are included in the selection. If `toilim` is `None` or ``toilim = "all"``, the entire time-span in each trial is selected. foi : list (floats) or None or "all" Frequencies to be selected (in Hz). Selections can be approximate, unsorted and may include repetitions but must be finite and not NaN. Fuzzy matching is performed for approximate selections (i.e., selected frequencies are close but not identical to frequencies found in `data`) using a nearest- neighbor search for elements of `foi` in `data.freq`. If `foi` is `None` or ``foi = "all"``, all frequencies are selected. foilim : list (floats [fmin, fmax]) or None or "all" Frequency-window ``[fmin, fmax]`` (in Hz) to be extracted. Window specifications must be sorted (e.g., ``[90, 70]`` is invalid) and not NaN but may be unbounded (e.g., ``[-np.inf, 60.5]`` is valid). Edges `fmin` and `fmax` are included in the selection. If `foilim` is `None` or ``foilim = "all"``, all frequencies are selected. tapers : list (integers or strings), slice, range or None or "all" Taper-selection; can be a list of taper names (``['dpss-win-1', 'dpss-win-3']``), a list of taper indices (``[3, 5]``), a slice (``slice(3, 10)``) or range (``range(3, 10)``). Note that following Python conventions, tapers are counted starting at zero, and range and slice selections are half-open intervals of the form `[low, high)`, i.e., low is included , high is excluded. Thus, ``tapers = [0, 1, 2]`` or ``tapers = slice(0, 3)`` selects the first up to (and including) the third taper. Selections can be unsorted and may include repetitions but must match exactly, be finite and not NaN. If `tapers` is `None` or ``tapers = "all"``, all tapers are selected. units : list (integers or strings), slice, range or None or "all" Unit-selection; can be a list of unit names (``['unit10', 'unit3']``), a list of unit indices (``[3, 5]``), a slice (``slice(3, 10)``) or range (``range(3, 10)``). Note that following Python conventions, units are counted starting at zero, and range and slice selections are half-open intervals of the form `[low, high)`, i.e., low is included , high is excluded. Thus, ``units = [0, 1, 2]`` or ``units = slice(0, 3)`` selects the first up to (and including) the third unit. Selections can be unsorted and may include repetitions but must match exactly, be finite and not NaN. If `units` is `None` or ``units = "all"``, all units are selected. eventids : list (integers), slice, range or None or "all" Event-ID-selection; can be a list of event-id codes (``[2, 0, 1]``), slice (``slice(0, 2)``) or range (``range(0, 2)``). Note that following Python conventions, range and slice selections are half-open intervals of the form `[low, high)`, i.e., low is included , high is excluded. Selections can be unsorted and may include repetitions but must match exactly, be finite and not NaN. If `eventids` is `None` or ``eventids = "all"``, all events are selected. inplace : bool If `inplace` is `True` **no** new object is created. Instead the provided selection is stored in the input object's `_selection` attribute for later use. By default `inplace` is `False` and all calls to `selectdata` create a new Syncopy data object. Returns ------- dataselection : Syncopy data object Syncopy data object of the same type as `data` but containing only the subset specified by provided selectors. Notes ----- This routine represents a convenience function for creating new Syncopy objects based on existing data entities. However, in many situations, the creation of a new object (and thus the allocation of additional disk-space) might not be necessary: all Syncopy metafunctions, such as :func:`~syncopy.freqanalysis`, support **in-place** data selection. Consider the following example: assume `data` is an :class:`~syncopy.AnalogData` object representing 220 trials of LFP recordings containing baseline (between second -0.25 and 0) and stimulus-on data (on the interval [0.25, 0.5]). To compute the baseline spectrum, data-selection does **not** have to be performed before calling :func:`~syncopy.freqanalysis` but instead can be done in-place: >>> import syncopy as spy >>> cfg = spy.get_defaults(spy.freqanalysis) >>> cfg.method = 'mtmfft' >>> cfg.taper = 'dpss' >>> cfg.output = 'pow' >>> cfg.tapsmofrq = 10 >>> # define baseline/stimulus-on ranges >>> baseSelect = {"toilim": [-0.25, 0]} >>> stimSelect = {"toilim": [0.25, 0.5]} >>> # in-place selection of baseline interval performed by `freqanalysis` >>> cfg.select = baseSelect >>> baselineSpectrum = spy.freqanalysis(cfg, data) >>> # in-place selection of stimulus-on time-frame performed by `freqanalysis` >>> cfg.select = stimSelect >>> stimonSpectrum = spy.freqanalysis(cfg, data) Especially for large data-sets, in-place data selection performed by Syncopy's metafunctions does not only save disk-space but can significantly increase performance. Examples -------- Use :func:`~syncopy.tests.misc.generate_artificial_data` to create a synthetic :class:`syncopy.AnalogData` object. >>> from syncopy.tests.misc import generate_artificial_data >>> adata = generate_artificial_data(nTrials=10, nChannels=32) Assume a hypothetical trial onset at second 2.0 with the first second of each trial representing baseline recordings. To extract only the stimulus-on period from `adata`, one could use >>> stimon = spy.selectdata(adata, toilim=[2.0, np.inf]) Note that this is equivalent to >>> stimon = adata.selectdata(toilim=[2.0, np.inf]) See also -------- :func:`syncopy.show` : Show (subsets) of Syncopy objects """ # Ensure our one mandatory input is usable try: data_parser(data, varname="data", empty=False) except Exception as exc: raise exc # Vet the only inputs not checked by `Selector` if not isinstance(inplace, bool): raise SPYTypeError(inplace, varname="inplace", expected="Boolean") if not isinstance(inplace, bool): raise SPYTypeError(clear, varname="clear", expected="Boolean") # If provided, make sure output object is appropriate if not inplace: if out is not None: try: data_parser(out, varname="out", writable=True, empty=True, dataclass=data.__class__.__name__, dimord=data.dimord) except Exception as exc: raise exc new_out = False else: out = data.__class__(dimord=data.dimord) new_out = True else: if out is not None: lgl = "no output object for in-place selection" raise SPYValueError(lgl, varname="out", actual=out.__class__.__name__) # FIXME: remove once tests are in place (cf #165) if channels_i is not None or channels_j is not None: SPYWarning( "CrossSpectralData channel selection currently untested and experimental!" ) # Collect provided keywords in dict selectDict = { "trials": trials, "channels": channels, "channels_i": channels_i, "channels_j": channels_j, "toi": toi, "toilim": toilim, "foi": foi, "foilim": foilim, "tapers": tapers, "units": units, "eventids": eventids } # First simplest case: determine whether we just need to clear an existing selection if clear: if any(value is not None for value in selectDict.values()): lgl = "no data selectors if `clear = True`" raise SPYValueError(lgl, varname="select", actual=selectDict) if data._selection is None: SPYInfo("No in-place selection found. ") else: data._selection = None SPYInfo("In-place selection cleared") return # Pass provided selections on to `Selector` class which performs error checking data._selection = selectDict # If an in-place selection was requested we're done if inplace: SPYInfo("In-place selection attached to data object: {}".format( data._selection)) return # Create inventory of all available selectors and actually provided values # to create a bookkeeping dict for logging log_dct = {"inplace": inplace, "clear": clear} log_dct.update(selectDict) log_dct.update(**kwargs) # Fire up `ComputationalRoutine`-subclass to do the actual selecting/copying selectMethod = DataSelection() selectMethod.initialize(data, out._stackingDim, chan_per_worker=kwargs.get("chan_per_worker")) selectMethod.compute(data, out, parallel=kwargs.get("parallel"), log_dict=log_dct) # Wipe data-selection slot to not alter input object data._selection = None # Either return newly created output object or simply quit return out if new_out else None
def esi_cluster_setup(partition="8GBS", n_jobs=2, mem_per_job=None, timeout=180, interactive=True, start_client=True, **kwargs): """ Start a distributed Dask cluster of parallel processing workers using SLURM (or local multi-processing) Parameters ---------- partition : str Name of SLURM partition/queue to use n_jobs : int Number of jobs to spawn mem_per_job : None or str Memory booking for each job. Can be specified either in megabytes (e.g., ``mem_per_job = 1500MB``) or gigabytes (e.g., ``mem_per_job = "2GB"``). If `mem_per_job` is `None`, it is attempted to infer a sane default value from the chosen queue, e.g., for ``partition = "8GBS"`` `mem_per_job` is automatically set to the allowed maximum of `'8GB'`. However, even in queues with guaranted memory bookings, it is possible to allocate less memory than the allowed maximum per job to spawn numerous low-memory jobs. See Examples for details. timeout : int Number of seconds to wait for requested jobs to start up. interactive : bool If `True`, user input is required in case not all jobs could be started in the provided waiting period (determined by `timeout`). If `interactive` is `False` and the jobs could not be started within `timeout` seconds, a `TimeoutError` is raised. start_client : bool If `True`, a distributed computing client is launched and attached to the workers. If `start_client` is `False`, only a distributed computing cluster is started to which compute-clients can connect. **kwargs : dict Additional keyword arguments can be used to control job-submission details. Returns ------- proc : object A distributed computing client (if ``start_client = True``) or a distributed computing cluster (otherwise). Examples -------- The following command launches 10 SLURM jobs with 2 gigabytes memory each in the `8GBS` partition >>> spy.esi_cluster_setup(n_jobs=10, partition="8GBS", mem_per_job="2GB") If you want to access properties of the created distributed computing client, assign an explicit return quantity, i.e., >>> client = spy.esi_cluster_setup(n_jobs=10, partition="8GBS", mem_per_job="2GB") The underlying distributed computing cluster can be accessed using >>> client.cluster Notes ----- Syncopy's parallel computing engine relies on the concurrent processing library `Dask <https://docs.dask.org/en/latest/>`_. Thus, the distributed computing clients used by Syncopy are in fact instances of :class:`dask.distributed.Client`. This function specifically acts as a wrapper for :class:`dask_jobqueue.SLURMCluster`. Users familiar with Dask in general and its distributed scheduler and cluster objects in particular, may leverage Dask's entire API to fine-tune parallel processing jobs to their liking (if wanted). See also -------- cluster_cleanup : remove dangling parallel processing job-clusters """ # For later reference: dynamically fetch name of current function funcName = "Syncopy <{}>".format(inspect.currentframe().f_code.co_name) # Be optimistic: prepare success message successMsg = "{name:s} Cluster dashboard accessible at {dash:s}" # Retrieve all partitions currently available in SLURM out, err = subprocess.Popen("sinfo -h -o %P", stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True).communicate() if len(err) > 0: # SLURM is not installed, either allocate `LocalCluster` or just leave if "sinfo: not found" in err: if interactive: msg = "{name:s} SLURM does not seem to be installed on this machine " +\ "({host:s}). Do you want to start a local multi-processing " +\ "computing client instead? " startLocal = user_yesno(msg.format(name=funcName, host=socket.gethostname()), default="no") else: startLocal = True if startLocal: client = Client() successMsg = "{name:s} Local parallel computing client ready. \n" + successMsg print(successMsg.format(name=funcName, dash=client.cluster.dashboard_link)) if start_client: return client return client.cluster return # SLURM is installed, but something's wrong msg = "SLURM queuing system from node {node:s}. " +\ "Original error message below:\n{error:s}" raise SPYIOError(msg.format(node=socket.gethostname(), error=err)) options = out.split() # Make sure we're in a valid partition (exclude IT partitions from output message) if partition not in options: valid = list(set(options).difference(["DEV", "PPC"])) raise SPYValueError(legal="'" + "or '".join(opt + "' " for opt in valid), varname="partition", actual=partition) # Parse job count try: scalar_parser(n_jobs, varname="n_jobs", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc # Get requested memory per job if mem_per_job is not None: if not isinstance(mem_per_job, str): raise SPYTypeError(mem_per_job, varname="mem_per_job", expected="string") if not any(szstr in mem_per_job for szstr in ["MB", "GB"]): lgl = "string representation of requested memory (e.g., '8GB', '12000MB')" raise SPYValueError(legal=lgl, varname="mem_per_job", actual=mem_per_job) # Query memory limit of chosen partition and ensure that `mem_per_job` is # set for partitions w/o limit idx = partition.find("GB") if idx > 0: mem_lim = int(partition[:idx]) * 1000 else: if partition == "PREPO": mem_lim = 16000 else: if mem_per_job is None: lgl = "explicit memory amount as required by partition '{}'" raise SPYValueError(legal=lgl.format(partition), varname="mem_per_job", actual=mem_per_job) mem_lim = np.inf # Consolidate requested memory with chosen partition (or assign default memory) if mem_per_job is None: mem_per_job = str(mem_lim) + "MB" else: if "MB" in mem_per_job: mem_req = int(mem_per_job[:mem_per_job.find("MB")]) else: mem_req = int(round(float(mem_per_job[:mem_per_job.find("GB")]) * 1000)) if mem_req > mem_lim: msg = "`mem_per_job` exceeds limit of {lim:d}GB for partition {par:s}. " +\ "Capping memory at partition limit. " SPYWarning(msg.format(lim=mem_lim, par=partition)) mem_per_job = str(int(mem_lim)) + "GB" # Parse requested timeout period try: scalar_parser(timeout, varname="timeout", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc # Determine if cluster allocation is happening interactively if not isinstance(interactive, bool): raise SPYTypeError(interactive, varname="interactive", expected="bool") # Determine if a dask client was requested if not isinstance(start_client, bool): raise SPYTypeError(start_client, varname="start_client", expected="bool") # Set/get "hidden" kwargs workers_per_job = kwargs.get("workers_per_job", 1) try: scalar_parser(workers_per_job, varname="workers_per_job", ntype="int_like", lims=[1, 8]) except Exception as exc: raise exc n_cores = kwargs.get("n_cores", 1) try: scalar_parser(n_cores, varname="n_cores", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc slurm_wdir = kwargs.get("slurmWorkingDirectory", None) if slurm_wdir is None: usr = getpass.getuser() slurm_wdir = "/mnt/hpx/slurm/{usr:s}/{usr:s}_{date:s}" slurm_wdir = slurm_wdir.format(usr=usr, date=datetime.now().strftime('%Y%m%d-%H%M%S')) os.makedirs(slurm_wdir, exist_ok=True) else: try: io_parser(slurm_wdir, varname="slurmWorkingDirectory", isfile=False) except Exception as exc: raise exc # Hotfix for upgraded cluster-nodes: point to correct Python executable if working from /home pyExec = sys.executable if sys.executable.startswith("/home"): pyExec = "/mnt/gs" + sys.executable # Create `SLURMCluster` object using provided parameters out_files = os.path.join(slurm_wdir, "slurm-%j.out") cluster = SLURMCluster(cores=n_cores, memory=mem_per_job, processes=workers_per_job, local_directory=slurm_wdir, queue=partition, name="spyswarm", python=pyExec, header_skip=["-t", "--mem"], job_extra=["--output={}".format(out_files)]) # interface="asdf", # interface is set via `psutil.net_if_addrs()` # job_extra=["--hint=nomultithread", # "--threads-per-core=1"] # Compute total no. of workers and up-scale cluster accordingly total_workers = n_jobs * workers_per_job cluster.scale(total_workers) # Fire up waiting routine to avoid premature cluster setups if _cluster_waiter(cluster, funcName, total_workers, timeout, interactive): return # Kill a zombie cluster in non-interactive mode if not interactive and _count_running_workers(cluster) == 0: cluster.close() err = "SLURM jobs could not be started within given time-out " +\ "interval of {0:d} seconds" raise TimeoutError(err.format(timeout)) # Highlight how to connect to dask performance monitor print(successMsg.format(name=funcName, dash=cluster.dashboard_link)) # If client was requested, return that instead of the created cluster if start_client: return Client(cluster) return cluster
def _layout_subplot_panels(npanels, nrow=None, ncol=None, ndefault=5, maxpanels=50): """ Create space-optimal subplot grid given required number of panels Parameters ---------- npanels : int Number of required subplot panels in figure nrow : int or None Required number of panel rows. Note, if both `nrow` and `ncol` are not `None`, then ``nrow * ncol >= npanels`` has to be satisfied, otherwise a :class:`~syncopy.shared.errors.SPYValueError` is raised. ncol : int or None Required number of panel columns. Note, if both `nrow` and `ncol` are not `None`, then ``nrow * ncol >= npanels`` has to be satisfied, otherwise a :class:`~syncopy.shared.errors.SPYValueError` is raised. ndefault: int Default number of panel columns for grid construction (only relevant if both `nrow` and `ncol` are `None`). maxpanels : int Maximally allowed number of subplot panels for which a grid is constructed Returns ------- nrow : int Number of rows of constructed subplot panel grid nrow : int Number of columns of constructed subplot panel grid Notes ----- If both `nrow` and `ncol` are `None`, the constructed grid will have the dimension `N` x `ndefault`, where `N` is chosen "optimally", i.e., the smallest integer that satisfies ``ndefault * N >= npanels``. Note further, that this is an auxiliary method that is intended purely for internal use. Thus, error-checking is only performed on potentially user-provided inputs (`nrow` and `ncol`). See also -------- :func:`._setup_figure` : create and prepare figures for Syncopy visualizations Examples -------- Create grid of default dimensions to hold eight panels >>> _layout_subplot_panels(8, ndefault=5) (2, 5) Create a grid that must have 4 rows >>> _layout_subplot_panels(8, nrow=4) (4, 2) Create a grid that must have 8 columns >>> _layout_subplot_panels(8, ncol=8) (1, 8) """ # Abort if requested panel count is less than one or exceeds provided maximum try: scalar_parser(npanels, varname="npanels", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc if npanels > maxpanels: lgl = "a maximum of {} panels in total".format(maxpanels) raise SPYValueError(legal=lgl, actual=str(npanels), varname="npanels") # Row specifcation was provided, cols may or may not if nrow is not None: try: scalar_parser(nrow, varname="nrow", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc if ncol is None: ncol = np.ceil(npanels / nrow).astype(np.intp) # Column specifcation was provided, rows may or may not if ncol is not None: try: scalar_parser(ncol, varname="ncol", ntype="int_like", lims=[1, np.inf]) except Exception as exc: raise exc if nrow is None: nrow = np.ceil(npanels / ncol).astype(np.intp) # After the preparations above, this condition is *only* satisfied if both # `nrow` = `ncol` = `None` -> then use generic grid-layout if nrow is None: ncol = ndefault nrow = np.ceil(npanels / ncol).astype(np.intp) ncol = min(ncol, npanels) # Complain appropriately if requested no. of panels does not fit inside grid if nrow * ncol < npanels: lgl = "row- and column-specification of grid to fit all panels" act = "grid with {0} rows and {1} columns but {2} panels" raise SPYValueError(legal=lgl, actual=act.format(nrow, ncol, npanels), varname="nrow/ncol") # In case a grid was provided too big for the requested no. of panels (e.g., # 8 panels in an 4 x 3 grid -> would fit in 3 x 3), just warn, don't crash if nrow * ncol - npanels >= ncol: msg = "Grid dimension ({0} rows x {1} columns) larger than necessary " +\ "for {2} panels. " SPYWarning(msg.format(nrow, ncol, npanels)) return nrow, ncol
def parallel_client_detector(*args, **kwargs): # Extract `parallel` keyword: if `parallel` is `False`, nothing happens parallel = kwargs.get("parallel") # Determine if multiple or a single object was supplied for processing objList = [] argList = list(args) nTrials = 0 for arg in args: if hasattr(arg, "trials"): objList.append(arg) nTrials = max(nTrials, len(arg.trials)) argList.remove(arg) nObs = len(objList) # If parallel processing was requested but ACME is not installed, show # warning but keep going if parallel is True and not spy.__acme__: wrng = "ACME seems not to be installed on this system. " +\ "Parallel processing capabilities cannot be used. " SPYWarning(wrng) parallel = False # If ACME is available but `parallel` was not set *and* no active # dask client is found, set `parallel` to`False` (i.e., sequential # processing as default) clientRunning = False if parallel is None and spy.__acme__: try: dd.get_client() parallel = True clientRunning = True except ValueError: parallel = False # If only one object was supplied, a dask client is set up in `ComputationalRoutine`; # for multiple objects, count the total number of trials and start a "global" # computing client with `n_jobs = nTrials` in here (unless a client is already running) cleanup = False if parallel and not clientRunning and nObs > 1: msg = "Syncopy <{fname:s}> Launching parallel computing client " +\ "to process {no:d} objects..." print(msg.format(fname=func.__name__, no=nObs)) client = esi_cluster_setup(n_jobs=nTrials, interactive=False) cleanup = True # Add/update `parallel` to/in keyword args kwargs["parallel"] = parallel # Process provided object(s) if nObs <= 1: results = func(*args, **kwargs) else: results = [] for obj in objList: results.append(func(obj, *argList, **kwargs)) # Kill "global" cluster started in here if cleanup: cluster_cleanup(client=client) return results
def compute(self, data, out, parallel=False, parallel_store=None, method=None, mem_thresh=0.5, log_dict=None, parallel_debug=False): """ Central management and processing method Parameters ---------- data : syncopy data object Syncopy data object to be processed (has to be the same object that was used by :meth:`initialize` in the pre-calculation dry-run). out : syncopy data object Empty object for holding results parallel : bool If `True`, processing is performed in parallel (i.e., :meth:`computeFunction` is executed concurrently across trials). If `parallel` is `False`, :meth:`computeFunction` is executed consecutively trial after trial (i.e., the calculation realized in :meth:`computeFunction` is performed sequentially). parallel_store : None or bool Flag controlling saving mechanism. If `None`, ``parallel_store = parallel``, i.e., the compute-paradigm dictates the employed writing method. Thus, in case of parallel processing, results are written in a fully concurrent manner (each worker saves its own local result segment on disk as soon as it is done with its part of the computation). If `parallel_store` is `False` and `parallel` is `True` the processing result is saved sequentially using a mutex. If both `parallel` and `parallel_store` are `False` standard single-process HDF5 writing is employed for saving the result of the (sequential) computation. method : None or str If `None` the predefined methods :meth:`compute_parallel` or :meth:`compute_sequential` are used to control the actual computation (specifically, calling :meth:`computeFunction`) depending on whether `parallel` is `True` or `False`, respectively. If `method` is a string, it has to specify the name of an alternative (provided) class method (starting with the word `"compute_"`). mem_thresh : float Fraction of available memory required to perform computation. By default, the largest single trial result must not occupy more than 50% (``mem_thresh = 0.5``) of available single-machine or worker memory (if `parallel` is `False` or `True`, respectively). log_dict : None or dict If `None`, the `log` properties of `out` is populated with the employed keyword arguments used in :meth:`computeFunction`. Otherwise, `out`'s `log` properties are filled with items taken from `log_dict`. parallel_debug : bool If `True`, concurrent processing is performed using a single-threaded scheduler, i.e., all parallel computing task are run in the current Python thread permitting usage of tools like `pdb`/`ipdb`, `cProfile` and the like in :meth:`computeFunction`. Note that enabling parallel debugging effectively runs the given computation on the calling machine locally thereby requiring sufficient memory and CPU capacity. Returns ------- Nothing : None The result of the computation is available in `out` once :meth:`compute` terminated successfully. Notes ----- This routine calls several other class methods to perform all necessary pre- and post-processing steps in a fully automatic manner without requiring any user-input. Specifically, the following class methods are invoked consecutively (in the given order): 1. :meth:`preallocate_output` allocates a (virtual) HDF5 dataset of appropriate dimension for storing the result 2. :meth:`compute_parallel` (or :meth:`compute_sequential`) performs the actual computation via concurrently (or sequentially) calling :meth:`computeFunction` 3. :meth:`process_metadata` attaches all relevant meta-information to the result `out` after successful termination of the calculation 4. :meth:`write_log` stores employed input arguments in `out.cfg` and `out.log` to reproduce all relevant computational steps that generated `out`. Parallel processing setup and input sanitization is performed by `ACME <https://github.com/esi-neuroscience/acme>`_. Specifically, all necessary information for parallel execution and storage of results is propagated to the :class:`~acme.ParallelMap` context manager. See also -------- initialize : pre-calculation preparations preallocate_output : storage provisioning compute_parallel : concurrent computation using :meth:`computeFunction` compute_sequential : sequential computation using :meth:`computeFunction` process_metadata : management of meta-information write_log : log-entry organization acme.ParallelMap : concurrent execution of Python callables """ # By default, use VDS storage for parallel computing if parallel_store is None: parallel_store = parallel # Do not spill trials on disk if they're supposed to be removed anyway if parallel_store and not self.keeptrials: msg = "trial-averaging only supports sequential writing!" SPYWarning(msg) parallel_store = False # Create HDF5 dataset of appropriate dimension self.preallocate_output(out, parallel_store=parallel_store) # Concurrent processing requires some additional prep-work... if parallel: # Construct list of dicts that will be passed on to workers: in the # parallel case, `trl_dat` is a dictionary! workerDicts = [{"hdr": self.hdr, "keeptrials": self.keeptrials, "infile": data.filename, "indset": data.data.name, "ingrid": self.sourceLayout[chk], "sigrid": self.sourceSelectors[chk], "fancy": self.useFancyIdx, "vdsdir": self.virtualDatasetDir, "outfile": self.outFileName.format(chk), "outdset": self.tmpDsetName, "outgrid": self.targetLayout[chk], "outshape": self.targetShapes[chk], "dtype": self.dtype} for chk in range(self.numCalls)] # If channel-block parallelization has been set up, positional args of # `computeFunction` need to be massaged: any list whose elements represent # trial-specific args, needs to be expanded (so that each channel-block # per trial receives the correct number of pos. args) ArgV = list(self.argv) if self.numBlocksPerTrial > 1: for ak, arg in enumerate(self.argv): if isinstance(arg, (list, tuple)): if len(arg) == self.numTrials: unrolled = chain.from_iterable([[ag] * self.numBlocksPerTrial for ag in arg]) if isinstance(arg, list): ArgV[ak] = list(unrolled) else: ArgV[ak] = tuple(unrolled) elif isinstance(arg, np.ndarray): if len(arg.squeeze().shape) == 1 and arg.squeeze().size == self.numTrials: ArgV[ak] = np.array(chain.from_iterable([[ag] * self.numBlocksPerTrial for ag in arg])) # Positional args for computeFunctions consist of `trl_dat` + others # (stored in `ArgV`). Account for this when seeting up `ParallelMap` if len(ArgV) == 0: inargs = (workerDicts, ) else: inargs = (workerDicts, *ArgV) # Let ACME take care of argument distribution and memory checks: note # that `cfg` is trial-independent, i.e., we can simply throw it in here! self.pmap = ParallelMap(self.computeFunction, *inargs, n_inputs=self.numCalls, write_worker_results=False, write_pickle=False, partition="auto", n_jobs="auto", mem_per_job="auto", setup_timeout=60, setup_interactive=False, stop_client="auto", verbose=None, logfile=None, **self.cfg) # Edge-case correction: if by chance, any array-like element `x` of `cfg` # satisfies `len(x) = numCalls`, `ParallelMap` attempts to tear open `x` and # distribute its elements across workers. Prevent this! if self.numCalls > 1: for key, value in self.pmap.kwargv.items(): if isinstance(value, (list, tuple)): if len(value) == self.numCalls: self.pmap.kwargv[key] = [value] elif isinstance(value, np.ndarray): if len(value.squeeze().shape) == 1 and value.squeeze().size == self.numCalls: self.pmap.kwargv[key] = [value] # Check if trials actually fit into memory before we start computation client = self.pmap.daemon.client if isinstance(client.cluster, (dd.LocalCluster, dj.SLURMCluster)): workerMem = [w["memory_limit"] for w in client.cluster.scheduler_info["workers"].values()] if len(workerMem) == 0: raise SPYParallelError("no online workers found", client=client) workerMemMax = max(workerMem) if self.chunkMem >= mem_thresh * workerMemMax: self.chunkMem /= 1024**3 workerMemMax /= 1000**3 msg = "Single-trial result sizes ({0:2.2f} GB) larger than available " +\ "worker memory ({1:2.2f} GB) currently not supported" raise NotImplementedError(msg.format(self.chunkMem, workerMemMax)) else: msg = "`ComputationalRoutine` only supports `LocalCluster` and " +\ "`SLURMCluster` dask cluster objects. Proceed with caution. " SPYWarning(msg) # Store provided debugging state self.parallelDebug = parallel_debug # For sequential processing, just ensure enough memory is available else: memSize = psutil.virtual_memory().available if self.chunkMem >= mem_thresh * memSize: self.chunkMem /= 1024**3 memSize /= 1024**3 msg = "Single-trial result sizes ({0:2.2f} GB) larger than available " +\ "memory ({1:2.2f} GB) currently not supported" raise NotImplementedError(msg.format(self.chunkMem, memSize)) # The `method` keyword can be used to override the `parallel` flag if method is None: if parallel: computeMethod = self.compute_parallel else: computeMethod = self.compute_sequential else: computeMethod = getattr(self, "compute_" + method, None) # Ensure `data` is openend read-only to permit (potentially concurrent) # reading access to backing device on disk data.mode = "r" # Take care of `VirtualData` objects self.hdr = getattr(data, "hdr", None) # Perform actual computation computeMethod(data, out) # Reset data access mode data.mode = self.dataMode # Attach computed results to output object out.data = h5py.File(out.filename, mode="r+")[self.outDatasetName] # Store meta-data, write log and get outta here self.process_metadata(data, out) self.write_log(data, out, log_dict)
def singlepanelplot(self, trials="all", channels="all", tapers="all", toilim=None, foilim=None, avg_channels=True, avg_tapers=True, interp="spline36", cmap="plasma", vmin=None, vmax=None, title=None, grid=None, fig=None, **kwargs): """ Plot contents of :class:`~syncopy.SpectralData` objects using single-panel figure(s) Please refer to :func:`syncopy.singlepanelplot` for detailed usage information. Examples -------- Show frequency range 30-80 Hz of channel `'ecog_mua2'` averaged across trials 2, 4, and 6: >>> fig = spy.singlepanelplot(freqData, trials=[2, 4, 6], channels=["ecog_mua2"], foilim=[30, 80]) Overlay channel `'ecog_mua3'` with same settings: >>> fig2 = spy.singlepanelplot(freqData, trials=[2, 4, 6], channels=['ecog_mua3'], foilim=[30, 80], fig=fig) Plot time-frequency contents of channel `'ecog_mua1'` present in both objects `tfData1` and `tfData2` using the 'viridis' colormap, a plot grid, manually defined lower and upper color value limits and no interpolation >>> fig1, fig2 = spy.singlepanelplot(tfData1, tfData2, channels=['ecog_mua1'], cmap="viridis", vmin=0.25, vmax=0.95, interp=None, grid=True, overlay=False) Note that overlay plotting is **not** supported for time-frequency objects. See also -------- syncopy.singlepanelplot : visualize Syncopy data objects using single-panel plots """ # Collect input arguments in dict `inputArgs` and process them inputArgs = locals() inputArgs.pop("self") (dimArrs, dimCounts, isTimeFrequency, complexConversion, pltDtype, dataLbl) = _prep_spectral_plots(self, "singlepanelplot", **inputArgs) (nTrials, nChan, nFreq, nTap) = dimCounts (trList, chArr, freqArr, tpArr) = dimArrs # If we're overlaying, ensure data and plot type match up if hasattr(fig, "objCount"): if isTimeFrequency: msg = "Overlay plotting not supported for time-frequency data" raise SPYError(msg) if not hasattr(fig, "spectralPlot"): lgl = "figure visualizing data from a Syncopy `SpectralData` object" act = "visualization of other Syncopy data" raise SPYValueError(legal=lgl, varname="fig", actual=act) if hasattr(fig, "multipanelplot"): lgl = "single-panel figure generated by `singleplot`" act = "multi-panel figure generated by `multipanelplot`" raise SPYValueError(legal=lgl, varname="fig", actual=act) # No time-frequency shenanigans: this is a simple power-spectrum (line-plot) if not isTimeFrequency: # Generic titles for figures overlayTitle = "Overlay of {} datasets" # Either create new figure or fetch existing if fig is None: fig, ax = _setup_figure(1, xLabel="Frequency [Hz]", yLabel=dataLbl, grid=grid) fig.spectralPlot = True else: ax, = fig.get_axes() # Average across channels, tapers or both using local helper func nTime = 1 if not avg_channels and not avg_tapers and nTap > 1: msg = "Either channels or trials need to be averaged for single-panel plot" SPYWarning(msg) return if avg_channels and not avg_tapers: panelTitle = "{} tapers averaged across {} channels and {} trials".format( nTap, nChan, nTrials) pltArr = _compute_pltArr(self, nFreq, nTap, nTime, complexConversion, pltDtype, avg1="channel") if avg_tapers and not avg_channels: panelTitle = "{} channels averaged across {} tapers and {} trials".format( nChan, nTap, nTrials) pltArr = _compute_pltArr(self, nFreq, nChan, nTime, complexConversion, pltDtype, avg1="taper") if avg_tapers and avg_channels: panelTitle = "Average of {} channels, {} tapers and {} trials".format( nChan, nTap, nTrials) pltArr = _compute_pltArr(self, nFreq, 1, nTime, complexConversion, pltDtype, avg1="taper", avg2="channel") # Perform the actual plotting ax.plot(freqArr, np.log10(pltArr), label=os.path.basename(self.filename)) ax.set_xlim([freqArr[0], freqArr[-1]]) # Set plot title depending on dataset overlay if fig.objCount == 0: if title is None: title = panelTitle ax.set_title(title, size=pltConfig["singleTitleSize"]) else: handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) if title is None: title = overlayTitle.format(len(handles)) ax.set_title(title, size=pltConfig["singleTitleSize"]) else: # For a single-panel TF visualization, we need to average across both tapers + channels if not avg_channels and (not avg_tapers and nTap > 1): msg = "Single-panel time-frequency visualization requires averaging " +\ "across both tapers and channels" SPYWarning(msg) return # Compute (and verify) length of selected time intervals and assemble array for plotting panelTitle = "Average of {} channels, {} tapers and {} trials".format( nChan, nTap, nTrials) tLengths = _prep_toilim_avg(self) nTime = tLengths[0] pltArr = _compute_pltArr(self, nFreq, 1, nTime, complexConversion, pltDtype, avg1="taper", avg2="channel") # Prepare figure fig, ax, cax = _setup_figure(1, xLabel="Time [s]", yLabel="Frequency [Hz]", include_colorbar=True, grid=grid) fig.spectralPlot = True # Use `imshow` to render array as image time = self.time[trList[0]][self._selection.time[0]] ax.imshow(pltArr, origin="lower", interpolation=interp, cmap=cmap, vmin=vmin, vmax=vmax, extent=(time[0], time[-1], freqArr[0], freqArr[-1]), aspect="auto") cbar = _setup_colorbar(fig, ax, cax, label=dataLbl.replace(" [dB]", "")) if title is None: title = panelTitle ax.set_title(title, size=pltConfig["singleTitleSize"]) # Increment overlay-counter and draw figure fig.objCount += 1 plt.draw() self._selection = None return fig