Esempio n. 1
0
def filter_mag(filterfile, filterzero, syn_spec, syn_err=None, wrange=None):
    '''
    ######################################################
    # Input                                              #
    # -------------------------------------------------- #
    # filterfile: file containing filter function        #
    # filterzero: flux [Jy] corresponding to mag=0       #
    #   syn_spec: synphot spectrum object of source      #
    #     wrange: (start,end) observed wavelength range  #
    # -------------------------------------------------- #
    # Output                                             #
    # -------------------------------------------------- #
    # mag: magnitude of source in filter system.         #
    ######################################################
    '''
    from synphot import SpectralElement, Observation, Empirical1D, SourceSpectrum
    import astropy.units as u
    
    #Load ascii filter function
    if filterfile.split('/')[-1][:6] == 'Bessel':
        filt = SpectralElement.from_file(filterfile, wave_unit='nm')
    else:
        filt = SpectralElement.from_file(filterfile, wave_unit='AA')
    if wrange is None:
        fwave = filt.waveset
        swave = syn_spec.waveset
        wrange = (max(fwave[0],swave[0]),min(fwave[-1],swave[-1]))
    waves = np.linspace(wrange[0], wrange[-1], 10000)
    #Synthetic observation
    obs = Observation(syn_spec, filt, force='extrap')
    flux = obs.effstim(flux_unit='jy', waverange=wrange).value
    #flux = obs.effstim(flux_unit='jy', wavelengths=waves).value
    #Calibrate magnitude with zero point
    mag = -2.512*np.log10(flux/filterzero)
    #Synthetic observation of error spectrum
    if syn_err is not None:
        #square filter and error spectrum
        filt2 = SpectralElement(Empirical1D, points=fwave,
                                lookup_table=np.square(filt(fwave)))
        pseudo_flux = np.square(syn_err(swave,flux_unit='jy')).value
        syn_err2 = SourceSpectrum(Empirical1D, points=swave,
                                  lookup_table=pseudo_flux)
        #sum errors in quadrature
        obs = Observation(syn_err2, filt2, force='extrap')
        #flux_err = np.sqrt(obs.effstim(waverange=wrange).value)
        flux_err = np.sqrt(obs.effstim(wavelengths=waves).value)
        #convert to magnitude error
        mag_err = (2.5/np.log(10))*(flux_err/flux)
        return mag, mag_err
    else:
        return mag
Esempio n. 2
0
def filter_flux(filterfile, syn_spec, syn_err=None, wrange=None):
    '''
    ######################################################
    # Input                                              #
    # -------------------------------------------------- #
    # filterfile: file containing filter function        #
    #   syn_spec: synphot spectrum object of source      #
    #     wrange: (start,end) observed wavelength range  #
    # -------------------------------------------------- #
    # Output                                             #
    # -------------------------------------------------- #
    # flux: flux of source in filter system.             #
    ######################################################
    '''
    from synphot import SpectralElement, Observation, Empirical1D, SourceSpectrum
    import astropy.units as u
    
    #Load ascii filter function
    if filterfile.split('/')[-1][:6] == 'Bessel':
        filt = SpectralElement.from_file(filterfile, wave_unit='nm')
    else:
        filt = SpectralElement.from_file(filterfile, wave_unit='AA')
    if wrange is None:
        fwave = filt.waveset
        swave = syn_spec.waveset
        wrange = (max(fwave[0],swave[0]),min(fwave[-1],swave[-1]))
        wlengths = fwave[np.logical_and(fwave>wrange[0], fwave<wrange[1])]
    else:
        fwave = filt.waveset
        wlengths = fwave[np.logical_and(fwave>wrange[0]*u.AA, fwave<wrange[1]*u.AA)]
    #Synthetic observation
    obs = Observation(syn_spec, filt, force='extrap')
    flux = obs.effstim(flux_unit='jy', waverange=wrange).value
    #flux = obs.effstim(flux_unit='jy', wavelengths=wlengths).value
    #Synthetic observation of error spectrum
    if syn_err is not None:
        #square filter and error spectrum
        filt2 = SpectralElement(Empirical1D, points=fwave,
                          lookup_table=np.square(filt(fwave)))
        pseudo_flux = np.square(syn_err(swave,flux_unit='jy')).value
        syn_err2 = SourceSpectrum(Empirical1D, points=swave,
                                   lookup_table=pseudo_flux)
        #sum errors in quadrature
        obs = Observation(syn_err2, filt2, force='extrap')
        flux_err = np.sqrt(obs.effstim(waverange=wrange).value)
        return flux, flux_err
    else:
        return flux
def get_phot(waves, exts, bands):
    """
    Compute the extinction in the requested bands

    Parameters
    ----------
    waves : numpy.ndarray
        The wavelengths

    exts : numpy.ndarray
        The extinction values at wavelengths "waves"

    bands: list of strings
        Bands requested

    Outputs
    -------
    band extinctions : numpy array
        Calculated band extinctions
    """
    # create a SourceSpectrum object from the extinction curve
    spectrum = SourceSpectrum(
        Empirical1D,
        points=waves * 1e4,
        lookup_table=exts,
    )

    # path for band response curves
    band_path = (
        "/Users/mdecleir/measure_extinction/measure_extinction/data/Band_RespCurves/"
    )

    # dictionary linking the bands to their response curves
    bandnames = {
        "J": "2MASSJ",
        "H": "2MASSH",
        "K": "2MASSKs",
        "IRAC1": "IRAC1",
        "IRAC2": "IRAC2",
        "WISE1": "WISE1",
        "WISE2": "WISE2",
        "L": "AAOL",
        "M": "AAOM",
    }

    # compute the extinction value in each band
    band_ext = np.zeros(len(bands))
    for k, band in enumerate(bands):
        # create the bandpass (as a SpectralElement object)
        bp = SpectralElement.from_file(
            "%s%s.dat" %
            (band_path,
             bandnames[band]))  # assumes wavelengths are in Angstrom!!
        # integrate the extinction curve over the bandpass, only if the bandpass fully overlaps with the extinction curve (this actually excludes WISE2)
        if bp.check_overlap(spectrum) == "full":
            obs = Observation(spectrum, bp)
            band_ext[k] = obs.effstim().value
        else:
            band_ext[k] = np.nan
    return band_ext
Esempio n. 4
0
def calculate_values(detector, filt, mjd, aper):
    # parameters can be removed from obsmode as needed
    obsmode = 'wfc3,{},{},mjd#{},aper#{}'.format(detector, filt, mjd, aper)
    bp = stsyn.band(obsmode)

    # STMag
    photflam = bp.unit_response(stsyn.conf.area)  # inverse sensitivity in flam
    stmag = -21.1 - 2.5 * log10(photflam.value)

    # Pivot Wavelength and bandwidth
    photplam = bp.pivot()  # pivot wavelength in angstroms
    bandwidth = bp.photbw()  # bandwidth in angstroms

    # ABMag
    abmag = stmag - 5 * log10(photplam.value) + 18.6921

    # Vegamag
    #for some reason stsyn.Vega doesn't load so we redefine it
    stsyn.Vega = SourceSpectrum.from_vega()
    obs = Observation(
        stsyn.Vega, bp, binset=bp.binset
    )  # synthetic observation of vega in bandpass using vega spectrum
    vegamag = -obs.effstim(flux_unit='obmag', area=stsyn.conf.area)

    return obsmode, photplam.value, bandwidth.value, photflam.value, stmag, abmag, vegamag.value
Esempio n. 5
0
File: dust.py Progetto: rtanmay/sbpy
 def _observe_through_filter(bp, B, unit):
     if not synphot:
         raise AstropyWarning('synphot is required for bandpass filtering.')
     obs = Observation(B, bp)
     wave = obs.effective_wavelength()
     fluxd = obs.effstim(unit)
     return wave, fluxd
Esempio n. 6
0
def get_phot(spec, bands):
    """
    Compute the fluxes in the requested bands.

    Parameters
    ----------
    spec : SpecData object
        the spectrum

    bands: list of strings
        bands requested

    Outputs
    -------
    band fluxes : numpy array
        calculated band fluxes
    """

    # create a SourceSpectrum object from the spectrum, excluding the bad regions
    spectrum = SourceSpectrum(
        Empirical1D,
        points=spec.waves.to(u.Angstrom)[spec.npts != 0],
        lookup_table=spec.fluxes[spec.npts != 0],
    )

    # path for band response curves
    band_path = pkg_resources.resource_filename("measure_extinction",
                                                "data/Band_RespCurves/")

    # dictionary linking the bands to their response curves
    bandnames = {
        "J": "2MASSJ",
        "H": "2MASSH",
        "K": "2MASSKs",
        "IRAC1": "IRAC1",
        "IRAC2": "IRAC2",
        "WISE1": "WISE1",
        "WISE2": "WISE2",
        "L": "AAOL",
        "M": "AAOM",
    }

    # define the units of the output fluxes
    funit = u.erg / (u.s * u.cm * u.cm * u.Angstrom)

    # compute the flux in each band
    fluxes = np.zeros(len(bands))
    for k, band in enumerate(bands):
        # create the bandpass (as a SpectralElement object)
        bp = SpectralElement.from_file(
            "%s%s.dat" %
            (band_path,
             bandnames[band]))  # assumes wavelengths are in Angstrom!!
        # integrate the spectrum over the bandpass, only if the bandpass fully overlaps with the spectrum (this actually excludes WISE2)
        if bp.check_overlap(spectrum) == "full":
            obs = Observation(spectrum, bp)
            fluxes[k] = obs.effstim(funit).value
        else:
            fluxes[k] = np.nan
    return fluxes
Esempio n. 7
0
def filter_vega_zp(filterfile, filterzero):
    '''
    ######################################################
    # Input                                              #
    # -------------------------------------------------- #
    # filterfile: file containing filter function        #
    # filterzero: flux corresponding to mag=0            #
    # -------------------------------------------------- #
    # Output                                             #
    # -------------------------------------------------- #
    # mag_0: magnitude of Vega in filter system.         #
    ######################################################
    '''
    from synphot import SourceSpectrum, SpectralElement, Observation
    
    #load Vega spectrum
    spec = SourceSpectrum.from_vega()
    #Load ascii filter function
    if filterfile.split('/')[-1][:6] == 'Bessel':
        filt = SpectralElement.from_file(filterfile, wave_unit='nm')
    else:
        filt = SpectralElement.from_file(filterfile, wave_unit='AA')
    wave = filt.waveset
    #Synthetic observation
    obs = Observation(spec, filt)
    flux = obs.effstim(flux_unit='jy', waverange=(wave[0],wave[-1]))
    #Calibrate to zero point (zp)
    mag_0 = -2.512*np.log10(flux/filterzero)
    return mag_0
Esempio n. 8
0
    def kvega_to_f335abmag(self, kmag):
        '''Convert K band vegamag to F335M ABmag'''

        kmag = kmag * units.VEGAMAG
        new_g2v = self.g2v.normalize(kmag,
                                     band=self.kband,
                                     area=self.telescope_area,
                                     vegaspec=self.vega)
        obs = Observation(new_g2v, self.bp, binset=self.wave_bins)
        abmag = obs.effstim('ABmag', area=self.telescope_area)
        return abmag
Esempio n. 9
0
    def f335abmag_to_kvega(self, abmag):
        '''Convert F335M ABmag to K band vegamag'''

        abmag = abmag * u.ABmag
        new_g2v = self.g2v.normalize(abmag,
                                     band=self.bp,
                                     area=self.telescope_area,
                                     vegaspec=self.vega)
        obs = Observation(new_g2v, self.kband, binset=self.wave_bins)
        kmag = obs.effstim('Vegamag',
                           area=self.telescope_area,
                           vegaspec=self.vega)
        return kmag
Esempio n. 10
0
def zero_mag_flux(filter_name, photometric_system, return_filter=False):
    """
    Returns the zero magnitude photon flux for a filter

    Acceptable filter names are those given in
    ``scopesim.effects.ter_curves_utils.FILTER_DEFAULTS`` or a string with an
    appropriate name for a filter in the Spanish-VO filter-service. Such strings
    must use the naming convention: observatory/instrument.filter. E.g:
    ``paranal/HAWKI.Ks``, or ``Gemini/GMOS-N.CaT``.

    Parameters
    ----------
    filter_name : str
        Name of the filter - see above

    photometric_system : str
        ["vega", "AB", "ST"] Name of the photometric system

    return_filter : bool, optional
        If True, also returns the filter curve object

    Returns
    -------
    flux : float
        [PHOTLAM]
    filt : ``synphot.SpectralElement``
        If ``return_filter`` is True

    """

    filt = get_filter(filter_name)
    spec = get_zero_mag_spectrum(photometric_system)

    obs = Observation(spec, filt)
    flux = obs.effstim(flux_unit=PHOTLAM)

    if return_filter:
        return flux, filt
    else:
        return flux
Esempio n. 11
0
    def synphot_calcs(self, bpfile):
        """
        Calculate zeropoint for a given bandpass in several 
        photometric systems

        Arguments:
        ----------
        bpfile -- Text file containing the throuput table for 
                  a single bandpass

        Returns:
        --------
        Bandpass zeropoint value in Vega mags, AB mags, ST mags,
        photflam, photfnu, and megajansky. Also returns pivot wavelength
        """
        # Define wavelength list to use
        #wave_bins = np.arange(0.5, 5, 0.1) * u.micron

        # Use refactored synphot to calculate zeropoints
        orig_bp = SpectralElement.from_file(bpfile)

        # Now reduce the PCE curve by a factor equal to
        # the gain, in order to get the output to translate
        # from ADU/sec rather than e/sec
        bp = orig_bp / self.gain
        #bp.model.lookup_table = bp.model.lookup_table / self.gain

        photflam = bp.unit_response(self.telescope_area)
        photplam = bp.pivot()
        st_zpt = -2.5 * np.log10(photflam.value) - 21.1
        ab_zpt = (-2.5 * np.log10(photflam.value) - 21.1 -
                  5 * np.log10(photplam.value) + 18.6921)
        #mjy_zpt = units.convert_flux(photplam,photflam, 'MJy')
        mjy_zpt = photflam.to(u.MJy, u.spectral_density(photplam))
        obs = Observation(self.vega, bp, binset=wave_bins)
        vega_zpt = -obs.effstim(flux_unit='obmag', area=self.telescope_area)
        photfnu = units.convert_flux(photplam, photflam, units.FNU)
        return (vega_zpt.value, ab_zpt, st_zpt, photflam.value, photfnu.value,
                mjy_zpt.value, photplam.value)