Esempio n. 1
0
def test_model_train(sess, params):
    sample_rate = 44100
    time_length = 1
    n_points = sample_rate * time_length

    t = np.arange(0, n_points) / sample_rate
    freq = 440
    sine_wave = np.sin(t * 2 * np.pi * t * freq).reshape((-1, 1))
    conditioning = compute_features(sine_wave, params)
    sine_wave = sine_wave[np.newaxis, :, :]
    conditioning = conditioning[np.newaxis, :, :]

    sine_wave_encoded = mu_law_encode(sine_wave, params.quantisation)

    train_spec = model_fn(
        {'waveform': tf.constant(sine_wave_encoded),
         'conditioning': tf.constant(conditioning)},
        tf.estimator.ModeKeys.TRAIN,
        params
    )

    with tf.variable_scope('', reuse=tf.AUTO_REUSE):
        predict_spec = model_fn(
            {'waveform': tf.constant(sine_wave_encoded),
             'conditioning': tf.constant(conditioning)},
            tf.estimator.ModeKeys.PREDICT,
            params
        )

    sess.run(tf.global_variables_initializer())

    for i in range(2000):
        train_value, loss_value = sess.run([train_spec.train_op,
                                            train_spec.loss])
        print(f'{i} - {loss_value}')
        if loss_value < 0.8:
            break
    else:
        raise AssertionError(
            f'Training did not converge. Final loss: {loss_value}'
        )

    predictions = sess.run(predict_spec.predictions)
    actual = mu_law_decode(predictions[0, :-1], params.quantisation)
    expected = sine_wave[0, params.receptive_field:, 0]
    accuracy = np.mean(np.abs(actual - expected))
    # Channels are quantised as per mu_law_encode, assert that average error
    # is less that the quantisation level, i.e, 1.
    assert accuracy < 1.0
Esempio n. 2
0
def test_model_shape_predict(sess, params):
    features = make_inputs(params, params.receptive_field)
    model = model_fn(
        features,
        tf.estimator.ModeKeys.PREDICT,
        params
    )

    sess.run(tf.global_variables_initializer())
    predictions = sess.run(model.predictions)
    assert predictions.shape[1] == 1
Esempio n. 3
0
def test_conditioning_shape_eval(sess, params):
    params.conditioning = True
    features = make_inputs(params, params.receptive_field + 1)
    model = model_fn(
        features,
        tf.estimator.ModeKeys.EVAL,
        params
    )

    sess.run(tf.global_variables_initializer())
    predictions = sess.run(model.predictions)
    assert predictions.shape[1] == 1
Esempio n. 4
0
    def loop(i, waveform_):
        features = {
            'waveform': waveform_[tf.newaxis, -slice_size:, :],
            'conditioning': conditioning_tf[i:i + slice_size, :]
        }

        estimator_spec = model_fn(features, tf.estimator.ModeKeys.PREDICT,
                                  params)

        next_point = estimator_spec.predictions
        waveform_ = tf.concat([waveform_, next_point[0, -1:, tf.newaxis]],
                              axis=0)

        return [tf.add(i, 1), waveform_]