Esempio n. 1
0
def test_check_dist_normal():
    sc.heading(
        'Testing test_check_dist_normal() (statistical tests for a continuous distribution)...'
    )
    # Normal tests
    np.random.seed(0)  # set random seed for test
    n = 100
    expected = 5
    invalid = 15
    std = 3
    valid_ndata = np.random.randn(n) * std + expected
    invalid_ndata = np.random.randn(n) * std + invalid
    alpha = 1e-3
    print(
        f"If any of test_check_dist_normal() tests fail, try to rerun this by resetting the random seed. With alpha: {alpha} we expect 1 out of {1/alpha:.0f} tests to fail."
    )
    sp.check_normal(actual=valid_ndata,
                    expected=expected,
                    alpha=alpha,
                    die=True)
    with pytest.raises(ValueError):
        sp.check_normal(actual=invalid_ndata,
                        expected=expected,
                        alpha=alpha,
                        die=True)
Esempio n. 2
0
def test_student_all_staff_ratio(average_student_all_staff_ratio,
                                 do_show,
                                 do_save,
                                 get_fig_dir,
                                 threshold=2):
    """
    Test case to check average_student_all_staff_ratio by taking average of students contacts from teachers and staff

    Args:
        average_student_all_staff_ratio: The average number of students per staff members at school
        (including both teachers and non teachers)

    Returns:
        None
    """
    testpars = dict(
        average_student_all_staff_ratio=average_student_all_staff_ratio, )
    pop = sp.Pop(**pars, **testpars)
    ratios = get_teacher_staff_ratio(pop.popdict,
                                     "average_student_all_staff_ratio",
                                     average_student_all_staff_ratio, do_show,
                                     do_save, get_fig_dir)
    sp.check_normal(actual=ratios,
                    expected=average_student_all_staff_ratio,
                    label='average_student_all_staff_ratio',
                    check='mean')
    return
Esempio n. 3
0
def test_average_student_teacher_ratio(average_student_teacher_ratio,
                                       do_show,
                                       do_save,
                                       get_fig_dir,
                                       threshold=2):
    """
    Test case for average_student_teacher_ratio by taking average of student contacts per teacher

    Args:
        average_student_teacher_ratio: The average number of students per teacher

    Returns:
        None
    """
    testpars = dict(
        average_student_teacher_ratio=average_student_teacher_ratio, )
    pop = sp.Pop(**pars, **testpars)
    ratios = get_teacher_staff_ratio(pop.popdict,
                                     "average_student_teacher_ratio",
                                     average_student_teacher_ratio, do_show,
                                     do_save, get_fig_dir)
    sp.check_normal(actual=ratios,
                    expected=average_student_teacher_ratio,
                    label='average_student_teacher_ratio',
                    check='mean')
    return
Esempio n. 4
0
def test_average_teacher_teacher_degree(average_teacher_teacher_degree,
                                        do_show,
                                        do_save,
                                        get_fig_dir,
                                        threshold=2):
    """
    Test case for average_teacher_teacher_degree by taking average of teachers' contacts per teacher

    Args:
        average_teacher_teacher_degree: The average number of contacts per teacher with other teachers

    Returns:
        None
    """
    testpars = dict(
        average_teacher_teacher_degree=average_teacher_teacher_degree,
        with_school_types=1,
        school_mixing_type={
            'pk':
            'age_and_class_clustered',  # average_teacher_teacher_degree will not be used in school_mixing_type == 'random' scenario
            'es': 'age_and_class_clustered',
            'ms': 'age_and_class_clustered',
            'hs': 'age_clustered',
            'uv': 'age_clustered'
        })
    pop = sp.Pop(**pars, **testpars)
    plotting_kwargs = sc.objdict(do_show=do_show,
                                 do_save=do_save,
                                 figdir=get_fig_dir)
    contacts = sp.get_contact_counts_by_layer(pop.popdict, with_layer_ids=1)[0]
    plotting_kwargs.append(
        "title_prefix",
        f"Average Teacher-Teacher Degree = {average_teacher_teacher_degree}")
    plotting_kwargs.append(
        "figname",
        f"contact_average_teacher_teacher_degree_{average_teacher_teacher_degree}"
    )
    sp.plot_contact_counts(contacts, **plotting_kwargs)
    counts = contacts['sc_teacher']['sc_teacher']
    sp.check_normal(actual=counts,
                    expected=average_teacher_teacher_degree,
                    label='teacher degree',
                    check='mean')
    return
Esempio n. 5
0
def test_average_additional_staff_degree(average_additional_staff_degree,
                                         do_show,
                                         do_save,
                                         get_fig_dir,
                                         threshold=2):
    """
    Test case to check average_additional_staff_degree by taking average of all contacts per staff

    Args:
        average_additional_staff_degree: The average number of contacts per additional non teaching staff in schools

    Returns:
        None
    """
    # note this must be greater than default average_student_all_staff_ratio (20)
    testpars = dict(
        average_additional_staff_degree=average_additional_staff_degree,
        with_school_types=1,
    )
    pop = sp.Pop(**pars, **testpars)
    plotting_kwargs = sc.objdict(do_show=do_show,
                                 do_save=do_save,
                                 figdir=get_fig_dir)
    contacts = sp.get_contact_counts_by_layer(pop.popdict, with_layer_ids=1)[0]
    plotting_kwargs.append(
        "title_prefix",
        f"Average Additional Staff Degree = {average_additional_staff_degree}")
    plotting_kwargs.append(
        "figname",
        f"contact_average_additional_staff_degree_{average_additional_staff_degree}"
    )
    sp.plot_contact_counts(contacts, **plotting_kwargs)
    counts = contacts['sc_staff']['all']
    sp.check_normal(actual=counts,
                    expected=average_additional_staff_degree,
                    label='staff degree',
                    check='mean')
    return