Esempio n. 1
0
def constraint_condenser(sys, X_N, switching_sequence):
    N = len(switching_sequence)
    D_sequence = [sys.domains[switching_sequence[i]] for i in range(N)]
    lhs_x = linalg.block_diag(*[D.lhs_min[:, :sys.n_x]
                                for D in D_sequence] + [X_N.lhs_min])
    lhs_u = linalg.block_diag(*[D.lhs_min[:, sys.n_x:] for D in D_sequence])
    lhs_u = np.vstack((lhs_u, np.zeros(
        (X_N.lhs_min.shape[0], lhs_u.shape[1]))))
    rhs = np.vstack([D.rhs_min for D in D_sequence] + [X_N.rhs_min])
    A_bar, B_bar, c_bar = sys.condense(switching_sequence)
    G = (lhs_x.dot(B_bar) + lhs_u)
    W = rhs - lhs_x.dot(c_bar)
    E = -lhs_x.dot(A_bar)
    # # the following might be super slow (and is not necessary)
    # n_ineq_before = G.shape[0]
    # tic = time.time()
    # p = Polytope(np.hstack((G, -E)), W)
    # p.assemble()
    # if not p.empty:
    #     G = p.lhs_min[:,:sys.n_u*N]
    #     E = - p.lhs_min[:,sys.n_u*N:]
    #     W = p.rhs_min
    #     n_ineq_after = G.shape[0]
    # else:
    #     G = None
    #     W = None
    #     E = None
    # print '\n' + str(n_ineq_before - n_ineq_after) + 'on' + str(n_ineq_before) + 'redundant inequalities removed in', str(time.time()-tic),'s,',
    return G, W, E
Esempio n. 2
0
def linear_objective_condenser(sys, Q_bar, R_bar, switching_sequence):
    """
    \sum_i | (F_u u + F_x x + F)_i |
    """
    A_bar, B_bar, c_bar = sys.condense(switching_sequence)
    F_u = np.vstack((Q_bar.dot(B_bar), R_bar))
    F_x = np.vstack((Q_bar.dot(A_bar), np.zeros((R_bar.shape[0], A_bar.shape[1]))))
    F = np.vstack((Q_bar.dot(c_bar), np.zeros((R_bar.shape[0], 1))))
    return F_u, F_x, F
Esempio n. 3
0
def state_constraint_condenser(sys, X_N, switching_sequence):
    N = len(switching_sequence)
    X_sequence = [sys.state_domains[switching_sequence[i]] for i in range(N)]
    lhs_x = linalg.block_diag(*[X.lhs_min for X in X_sequence] + [X_N.lhs_min])
    rhs_x = np.vstack([X.rhs_min for X in X_sequence] + [X_N.rhs_min])
    A_bar, B_bar, c_bar = sys.condense(switching_sequence)
    G_x = lhs_x.dot(B_bar)
    W_x = rhs_x - lhs_x.dot(c_bar)
    E_x = - lhs_x.dot(A_bar)
    return G_x, W_x, E_x
Esempio n. 4
0
def quadratic_objective_condenser(sys, Q_bar, R_bar, switching_sequence):
    """
    .5 u' F_{uu} u + x0' F_{xu} u + F_u' u + .5 x0' F_{xx} x0 + F_x' x0 + F
    """
    A_bar, B_bar, c_bar = sys.condense(switching_sequence)
    F_uu = 2 * (R_bar + B_bar.T.dot(Q_bar).dot(B_bar))
    F_xu = 2 * A_bar.T.dot(Q_bar).dot(B_bar)
    F_xx = 2. * A_bar.T.dot(Q_bar).dot(A_bar)
    F_u = 2. * B_bar.T.dot(Q_bar).dot(c_bar)
    F_x = 2. * A_bar.T.dot(Q_bar).dot(c_bar)
    F = c_bar.T.dot(Q_bar).dot(c_bar)
    return F_uu, F_xu, F_xx, F_u, F_x, F