def lose_it_upload(request): session = Session() # TODO: duplicate detection input_file = request.POST['file'].file reader = LoseItDataReader(input_file) existing_for_date = {} ignored = [] for entry in reader: existing_food = session.query(Food).filter_by(name=entry.name).all() food = None if len(existing_food) == 0: food = Food(entry.name) session.add(food) else: food = existing_food[0] if not entry.date in existing_for_date: existing_entries = session.query(FoodEntry).filter_by(date=entry.date).all() existing_for_date[entry.date] = existing_entries if existing_for_date[entry.date]: ignored.append(entry) else: new_entry = FoodEntry(food, entry.calories, entry.date) session.add(new_entry) session.commit() if ignored: return {'title': 'Existing Data Not Imported', 'ignored': ignored} else: return HTTPFound('/food_entry/lose_it_upload_form')
def food_edit_food_tags(request): food_id = request.matchdict['id'] tag_ids = map(int, request.params.getall('tag_id')) session = Session() food = session.query(Food).filter_by(id=food_id).first() already_tagged = [] to_remove = [] for food_tag in food.food_tags: if not food_tag.id in tag_ids: to_remove.append(food_tag) else: already_tagged.append(food_tag.id) for tag in to_remove: food.food_tags.remove(tag) to_add = session.query(FoodTag).filter(FoodTag.id.in_(set(tag_ids)-set(already_tagged))).all() food.food_tags.extend(to_add) session.commit() session = Session() food = session.query(Food).filter_by(id=food_id).first() session.close() if request.is_xhr: return {'request': request, 'food': food} else: return HTTPFound('/food/list')
def add_job(self, valid_datetime, job_type, details): session = Session() new_job = Job(timestamp_when_valid=valid_datetime, job_type=job_type, details=details) session.add(new_job) session.commit() session.close()
def food_tag_add(request): name = request.params['name'] session = Session() new_tag = FoodTag(name) session.add(new_tag) session.commit() return HTTPFound('/food_tag/list')
def init_result(): session = Session() entry = Session(Result).filter(Result.id == 1).one_or_none() # 如数据不存在,就新增一条为1的空数据 if not entry: session.add(Result(modules="", total_time="", data="", dev="")) session.commit() else: pass session.close()
def commit_entry(self, staged_entry): session = Session() indicator_values = {} for indicator in self.indicators_metadata: value_location = self.location_engine.convert_postcode( staged_entry.postcode, self.indicators_metadata[indicator]['resolution']) previous_value_entry = session.query(IndicatorValue)\ .filter(IndicatorValue.indicator == indicator, IndicatorValue.location == value_location, IndicatorValue.date < staged_entry.date)\ .order_by(IndicatorValue.date.desc())\ .first() following_value_entry = session.query(IndicatorValue)\ .filter(IndicatorValue.indicator == indicator, IndicatorValue.location == value_location, IndicatorValue.date > staged_entry.date)\ .order_by(IndicatorValue.date)\ .first() if previous_value_entry is None and following_value_entry is None: value = None indicator_date = None elif following_value_entry is None \ or abs((previous_value_entry.date - staged_entry.date).days) \ < abs((following_value_entry.date - staged_entry.date).days): value = previous_value_entry.value indicator_date = previous_value_entry.date else: value = following_value_entry.value indicator_date = following_value_entry.date # Check if value falls within frequency range if indicator_date is not None and (abs(staged_entry.date - indicator_date)).days\ > (FREQUENCY_DAY_COUNTS[self.indicators_metadata[indicator]['frequency']] / 2): value = None indicator_values[indicator] = value new_entry = TargetEntry( entry_id=staged_entry.entry_id, sale_id=staged_entry.sale_id, date=staged_entry.date, value=staged_entry.value, PDD_type=staged_entry.PDD_type, postcode=staged_entry.postcode, town_or_city=staged_entry.town_or_city, district=staged_entry.district, county=staged_entry.county, new_property_flag=staged_entry.new_property_flag, property_type=staged_entry.property_type, tenure_type=staged_entry.tenure_type) for indicator in indicator_values: setattr(new_entry, indicator, indicator_values[indicator]) session.add(new_entry) session.commit() session.close()
def set_result(data): session = Session() entry = Session(Result).filter(Result.id == data["id"]).one_or_none() if entry: entry.modules = data["modules"] entry.total_time = data["total_time"] entry.data = data["data"] entry.dev = data["dev"] session.commit() else: print("实体类不存在") session.close()
def add_new_model(self, settings): new_model_name = settings['name'] new_model = Model(settings) self.models[new_model_name] = new_model self.save_model(new_model_name) new_model_record = ModelEntry(name=settings['name'], type=settings['type'], dataset=settings['dataset'], state='untrained') session = Session() session.add(new_model_record) session.commit() session.close()
def main(): engine = create_engine('postgresql://[email protected]/my_metrics') Base.metadata.create_all(engine) Session.configure(bind=engine) session = Session() food_entries = session.query(FoodEntry).order_by(FoodEntry.date) for entry in food_entries: food_name = entry.name existing_food = session.query(Food).filter_by(name=food_name).all() if len(existing_food) == 0: new_food = Food(food_name) session.add(new_food) session.commit()
def pull_land_registry(self): session = Session() data = request.urlopen(LAND_REGISTRY_URL).read() data = str(data, 'utf-8') data_frame = pandas.read_csv(StringIO(data), header=None, names=LAND_REGISTRY_DATA_HEADERS) # Only include entries with PPD type A # data_frame = [data_frame.PDD_type == 'A'] # Convert date strings to date objects data_frame['date'] = pandas.to_datetime( data_frame['date'], format=LAND_REGISTRY_TIMESTAMP_FORMAT) # Reorder columns data_frame = data_frame[STAGED_ENTRY_HEADERS] # Convert old or new character value to boolean data_frame['new_property_flag'] = data_frame['new_property_flag'].map( dict(Y=True, N=False)) current_highest_id = -1 latest_entry = session.query(StagedEntry).order_by( desc(StagedEntry.entry_id)).first() if latest_entry is not None: current_highest_id = latest_entry.id batch_start_id = current_highest_id + 1 batch_end_id = batch_start_id + len(data_frame) # Add id column data_frame.insert(0, 'entry_id', range(batch_start_id, batch_end_id)) data_frame.to_sql('staged_entries', con=self.database_engine, if_exists='append', index=False) # Process deletion entries deletion_entries = session.query(StagedEntry).filter( StagedEntry.record_type == 'D') for deletion_entry in deletion_entries: session.query(TargetEntry).filter( TargetEntry.sale_id == deletion_entry.sale_id).delete() deletion_entry.delete() # Get update entries update_entries = session.query(StagedEntry).filter( StagedEntry.record_type == 'C') for update_entry in update_entries: existing_entry = session.query(TargetEntry).filter( TargetEntry.sale_id == update_entry.sale_id).one() if existing_entry is not None: update_entry_from_land_registry(update_entry, existing_entry) update_entry.delete() session.commit() session.close() return str(batch_end_id)
def delete_model(self, model_name): session = Session() model_record = session.query(ModelEntry).filter( ModelEntry.name == model_name) model_record.delete() session.commit() del self.models[model_name] os.remove(model_name) # Update max inputs value self.max_inputs = 0 for model_name in self.get_trained_model_names(): model_input_count = len(self.get_model_inputs(model_name)) if model_input_count > self.max_inputs: self.max_inputs = model_input_count session.close()
def main(): engine = create_engine('postgresql://[email protected]/my_metrics') Base.metadata.create_all(engine) Session.configure(bind=engine) session = Session() foods = session.query(Food) foods_by_name = {} for food in foods: foods_by_name[food.name] = food food_entries = session.query(FoodEntry).order_by(FoodEntry.date) for entry in food_entries: food = foods_by_name[entry.name] entry.food = food session.commit()
def food_entry_add(request): name = request.params['name'] calories = int(request.params['calories']) day = date.today() - timedelta(int(request.params['days_ago'])) session = Session() existing_food = session.query(Food).filter_by(name=food_name).all() food = None if len(existing_food) == 0: food = Food(food_name) session.add(food) else: food = existing_food[0] new_entry = FoodEntry(food, calories, day) session.add(new_entry) session.commit() return HTTPFound('/food_entry/add_form')
def update_entries_from_source(self, source_entry_date, frequency, indicators, area_resolution): session = Session() frequency_radius_delta = relativedelta( FREQUENCY_DAY_COUNTS[frequency] / 2) lower_threshold_date = source_entry_date - frequency_radius_delta upper_threshold_date = source_entry_date + frequency_radius_delta # noinspection PyComparisonWithNone entries_to_update = session.query(TargetEntry).filter( getattr(TargetEntry, indicators[0]) == None, TargetEntry.date >= lower_threshold_date, TargetEntry.date <= upper_threshold_date) for entry in entries_to_update: location = self.location_engine.convert_postcode( entry.postcode, area_resolution) for indicator in indicators: value = session.query(IndicatorValue).filter( IndicatorValue == source_entry_date, IndicatorValue.location == location) setattr(entry, indicator, value) session.commit() session.close()
def train_model(self, model_name): session = Session() model_record = session.query(ModelEntry).filter(ModelEntry.name == model_name).one() model_record.state = 'training' session.commit() parent_models = self.model_manager.models[model_name].input_models for parent_model in parent_models: # Train any untrained parent models if session.query(ModelEntry).filter(ModelEntry.name == parent_model, ModelEntry.state == 'untrained')\ is not None: self.train_model(parent_model) # Wait for any parent models that are still in training, in cases where another process started the training while session.query(ModelEntry).filter(ModelEntry.name == parent_model, ModelEntry.state == 'training').one_or_none()\ is not None: time.sleep(30) model = self.model_manager.models[model_name] dataset_name = model.dataset entry_count = model.training_entry_count if dataset_name == 'core_dataset': dataframe = pandas.read_sql(session.query(Base.metadata.tables['core_dataset']).order_by(func.rand()).limit(entry_count).statement, self.database_engine) else: dataframe = pandas.read_csv(DEFAULT_DATA_PATH, sep='\s+', names=DEFAULT_DATA_HEADERS) if entry_count > len(dataframe): entry_count = len(dataframe) dataframe = dataframe.sample(entry_count) for parent_model in parent_models: self.recursive_process(parent_model, dataframe) model.train(dataframe) self.model_manager.save_model(model_name) model_record.state = 'trained' session.commit() # Update the model manager max input count - done here to happen at the end of training self.model_manager.update_max_inputs(len(self.model_manager.get_model_inputs(model_name))) session.close()
qset291= session.query(func.count(Emp.ename)).filter(Emp.job=='董事长').filter(Emp.sal>15000).first() qset292= session.query(func.count(Emp.ename)).filter(Emp.job=='经理').filter(Emp.sal>15000).first() qset293= session.query(func.count(Emp.ename)).filter(Emp.job=='分析师').filter(Emp.sal>15000).first() qset294= session.query(func.count(Emp.ename)).filter(Emp.job=='销售员').filter(Emp.sal>15000).first() qset295= session.query(func.count(Emp.ename)).filter(Emp.job=='文员').filter(Emp.sal>15000).first() print('\033[35;1m工资大于15000的董事长有%s位\033[0m' % qset291) print('\033[35;1m工资大于15000的经理有%s位\033[0m' % qset292) print('\033[35;1m工资大于15000的分析师有%s位\033[0m' % qset293) print('\033[35;1m工资大于15000的销售员有%s位\033[0m' % qset294) print('\033[35;1m工资大于15000的文员有%s位\033[0m' % qset295) print(38*"*") # #第30题 # print(38*"*") # print('\033[31;1m第二十九题:统计工资大于 15000 的每个工作岗位人数,并且该工作岗位的人数大于等于 3\033[0m') # qset301= session.query(Emp).filter(func.sum(Emp.sal,Emp.COMM)>15000) # # qset302= session.query(func.count(Emp.ename)).filter(Emp.job=='经理').filter(Emp.sal>15000).first() # # qset303= session.query(func.count(Emp.ename)).filter(Emp.job=='分析师').filter(Emp.sal>15000).first() # # qset304= session.query(func.count(Emp.ename)).filter(Emp.job=='销售员').filter(Emp.sal>15000).first() # # qset305= session.query(func.count(Emp.ename)).filter(Emp.job=='文员').filter(Emp.sal>15000).first() # print(qset301) # for data in qset301: # print('%s' % (data.ename)) # # print(data) # 确认 session.commit() # 关闭 session.close()