Esempio n. 1
0
def get_volatility_indicators(df_price):

    df_local = df_price.copy()
    df_nonna_idxs = df_local[~df_local.Close.isna()].Close.index

    np_adj_close = df_local.Adj_Close.values
    np_close = df_local.Close.values
    np_open = df_local.Open.values
    np_high = df_local.High.values
    np_low = df_local.Low.values
    np_volume = df_local.Volume.values

    np_nan_indices = np.isnan(np_close)

    #ATR-Average True Range
    ATR = pd.Series(ta.ATR(np_high[~np_nan_indices], np_low[~np_nan_indices],
                           np_adj_close[~np_nan_indices]),
                    index=df_nonna_idxs)
    df_local['ATR'] = ATR

    #NATR-Normalized Average True Range
    NATR = pd.Series(ta.NATR(np_high[~np_nan_indices], np_low[~np_nan_indices],
                             np_adj_close[~np_nan_indices]),
                     index=df_nonna_idxs)
    df_local['NATR'] = NATR

    #TRANGE-True Range
    TRANGE = pd.Series(ta.TRANGE(np_high[~np_nan_indices],
                                 np_low[~np_nan_indices],
                                 np_adj_close[~np_nan_indices]),
                       index=df_nonna_idxs)
    df_local['TRANGE'] = TRANGE

    return df_local
Esempio n. 2
0
def natr(
    client,
    symbol,
    timeframe="6m",
    highcol="high",
    lowcol="low",
    closecol="close",
    period=14,
):
    """This will return a dataframe of normalized average true range for the given symbol across
    the given timeframe

    Args:
        client (pyEX.Client): Client
        symbol (string): Ticker
        timeframe (string): timeframe to use, for pyEX.chart
        highcol (string): column to use to calculate
        lowcol (string): column to use to calculate
        closecol (string): column to use to calculate
        period (int): time period to calculate over

    Returns:
        DataFrame: result
    """
    df = client.chartDF(symbol, timeframe)
    natr = t.NATR(df[highcol].values, df[lowcol].values, df[closecol].values,
                  period)
    return pd.DataFrame({
        highcol: df[highcol].values,
        lowcol: df[lowcol].values,
        closecol: df[closecol].values,
        "natr": natr,
    })
Esempio n. 3
0
def technical(df, rsi_range=15, kd_range=9, v_range=30):
    df_day = df.groupby(['timestamp'])
    volume_day = np.array(df_day.sum()['Amount (BTC)'])
    h = l = c = price_day = np.array(df_day.mean()['USD price'])
    raw_date = list(df_day.groups.keys())
    
    def iso_format(x):
        t = str(x)
        return t[:4]+'-'+t[4:6]+'-'+t[6:]+'T00:00:00Z'
    
    es_date = list(map(iso_format, list(df_day.groups.keys())))
    
    rsi = talib.RSI(volume_day, timeperiod=rsi_range)
    
    k, d = talib.STOCH(high=volume_day, 
                low=volume_day, 
                close=volume_day,
                fastk_period=kd_range,
                slowk_period=3,
                slowd_period=3
    )
    
    volatility = talib.NATR(h, l, c, timeperiod=v_range) * sqrt(365)
    
    df_technical = pd.DataFrame(data = {'es_date':es_date, 'timestamp':raw_date, 'btc_volume':volume_day, 'btc_price':price_day, 
                         'RSI_{}'.format(rsi_range):rsi, 
                         'K_{}'.format(kd_range):k, 'D_{}'.format(kd_range):d, 
                         'Vola_{}'.format(v_range): volatility
                                 })
    
    for i in ['btc_volume', 'Vola_{}'.format(v_range), 'btc_price']:
        df_technical[i] = df_technical[i].apply(round, args=(3, ))
    df_technical.index = pd.to_datetime(df_technical['timestamp'], format='%Y%m%d', errors='ignore')
    return df_technical
Esempio n. 4
0
def add_volatility_indicators(data_list):
    # (volatility) Indicators common for all Time-frames
    for data in data_list:

        # 1) ATR - Average True Range
        real = talib.ATR(data.High, data.Low, data.Close, timeperiod=14)
        data['ATR_14'] = real

        # 2) NATR - Normalized Average True Range
        real = talib.NATR(data.High, data.Low, data.Close, timeperiod=14)
        data['NATR_14'] = real

        # 3) TRANGE - True Range
        real = talib.TRANGE(data.High, data.Low, data.Close)
        data['TRANGE'] = real

    data_weekly = data_list[6]
    data_monthly = data_list[7]
    data_15min = data_list[2]
    data_daily = data_list[5]
    data_60min = data_list[4]
    data_1min = data_list[0]
    data_5min = data_list[1]
    data_30min = data_list[3]

    # Create (volatility) indicators for a only to a particular timeframe here..

    return data_list
Esempio n. 5
0
def NATR(df):
    high = df['High'].as_matrix()
    low = df['Low'].as_matrix()
    close = df['Close'].as_matrix()

    real = ta.NATR(high, low, close, timeperiod=20)
    return real
Esempio n. 6
0
 def compNATR(self):
     natr = talib.NATR(self.high,self.low,self.close,timeperiod=self.lookback)
     self.removeNullID(natr)
     self.rawFeatures['NATR'] = natr 
     
     FEATURE_SIZE_DICT['NATR'] = 1
     return
Esempio n. 7
0
def getData(code,start,end):
    data = pandasData.DataReader(code,'yahoo',start,end)
    # print len(data)
    f_ema = ta.EMA(data['Close'].values, timeperiod=30).tolist()
    # print f_ema
    f_ma = ta.MA(data['Close'].values, timeperiod=30, matype=0).tolist()
    f_wma = ta.WMA(data['Close'].values, timeperiod=30).tolist()
    f_momentum = ta.MOM(data['Close'].values, timeperiod=10).tolist()
    f_roc = ta.ROC(data['Close'].values, timeperiod=10).tolist()
    # f_cycle = ta.HT_DCPERIOD(data['Close'].values).tolist()
    f_price = ta.WCLPRICE(data['High'].values, data['Low'].values, data['Close'].values).tolist()
    f_natr = ta.NATR(data['High'].values, data['Low'].values, data['Close'].values, timeperiod=14).tolist()
    f_stddev = ta.STDDEV(data['Close'].values, timeperiod=5, nbdev=1).tolist()
    X = pd.DataFrame(
        pd.np.array([f_ema, f_ma, f_wma, f_momentum, f_roc, f_price, f_natr, f_stddev]).T[32:]
        ,columns=['f_ema','f_ma','f_wma','f_momentum','f_roc','f_price','f_natr','f_stddev'])
    # print X['f_ema'].size
    # print X
    data = data['Close'].tolist()
    finaldata = [[] for i in range(2)]
    for i in range(0, len(data) - 1):
        temp = (data[i + 1] - data[i]) / data[i]
        finaldata[0].append(temp)
        if (temp > 0):
            finaldata[1].append(1)
        else:
            finaldata[1].append(0)
    # print len(data)
    data = data[31:len(data) - 1]
    # print data
    Y = pd.DataFrame(pd.np.array(finaldata).T, columns=['change', 'label'])
    X = X.join(Y)
    return X
Esempio n. 8
0
def handle_volatility_indicators(args, axes, i, klines_df, close_times,
                                 display_count):
    # talib
    if args.ATR:
        name = 'ATR'
        real = talib.ATR(klines_df["high"],
                         klines_df["low"],
                         klines_df["close"],
                         timeperiod=14)
        i += 1
        axes[i].set_ylabel(name)
        axes[i].grid(True)
        axes[i].plot(close_times, real[-display_count:], "y:", label=name)

    if args.NATR:
        name = 'NATR'
        real = talib.NATR(klines_df["high"],
                          klines_df["low"],
                          klines_df["close"],
                          timeperiod=14)
        i += 1
        axes[i].set_ylabel(name)
        axes[i].grid(True)
        axes[i].plot(close_times, real[-display_count:], "y:", label=name)

    if args.TRANGE:
        name = 'TRANGE'
        real = talib.TRANGE(klines_df["high"], klines_df["low"],
                            klines_df["close"])
        i += 1
        axes[i].set_ylabel(name)
        axes[i].grid(True)
        axes[i].plot(close_times, real[-display_count:], "y:", label=name)
Esempio n. 9
0
def buildTAindicators(stock_df):
    stock_df['REDORGREEN'] = stock_df.loc[:, 'Open'].subtract(
        stock_df.loc[:, 'Close']).apply(lambda x: 1 if x > 0 else 0).values
    stock_df['CANDLE_HEIGHT'] = stock_df.loc[:, 'Open'].subtract(
        stock_df.loc[:, 'Close']).values
    stock_df['NATR'] = ta.NATR(stock_df.loc[:, 'High'].values,
                               stock_df.loc[:, 'Low'].values,
                               stock_df.loc[:, 'Close'].values, 5)
    close = stock_df.loc[:, 'Close'].values
    high = stock_df.loc[:, 'High'].values
    low = stock_df.loc[:, 'Low'].values
    volume = pd.Series.astype(stock_df.loc[:, 'Volume'], dtype='double').values
    adx = ta.ADX(high, low, close, timeperiod=14)
    macd, macdsignal, macdhist = ta.MACD(close,
                                         fastperiod=12,
                                         slowperiod=26,
                                         signalperiod=9)
    mfi = ta.MFI(high, low, close, volume, timeperiod=14)
    rsi = ta.RSI(close, timeperiod=14)
    beta = ta.BETA(high, low, timeperiod=5)
    stock_df['ADX'] = pd.Series(adx).values
    stock_df['MFI'] = pd.Series(mfi).values
    stock_df['RSI'] = pd.Series(rsi).values
    stock_df['MACD'] = pd.Series(macd).values
    stock_df['BETA'] = pd.Series(beta).values
    stock_df = stock_df.iloc[33:, :]
    return stock_df
Esempio n. 10
0
def extract_features(data):
    high = data['High']
    low = data['Low']
    close = data['Close']
    volume = data['Volume']
    open_ = data['Open']
    
    data['ADX'] = ta.ADX(high, low, close, timeperiod=19)
    data['CCI'] = ta.CCI(high, low, close, timeperiod=19)  
    data['CMO'] = ta.CMO(close, timeperiod=14)
    data['MACD'], X, Y = ta.MACD(close, fastperiod=10, slowperiod=30, signalperiod=9)
    data['MFI'] = ta.MFI(high, low, close, volume, timeperiod=19)
    data['MOM'] = ta.MOM(close, timeperiod=9)
    data['ROCR'] = ta.ROCR(close, timeperiod=12) 
    data['RSI'] = ta.RSI(close, timeperiod=19)  
    data['STOCHSLOWK'], data['STOCHSLOWD'] = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
    data['TRIX'] = ta.TRIX(close, timeperiod=30)
    data['WILLR'] = ta.WILLR(high, low, close, timeperiod=14)
    data['OBV'] = ta.OBV(close, volume)
    data['TSF'] = ta.TSF(close, timeperiod=14)
    data['NATR'] = ta.NATR(high, low, close)#, timeperiod=14)
    data['ULTOSC'] = ta.ULTOSC(high, low, close)
    data['AROONOSC'] = ta.AROONOSC(high, low, timeperiod=14)
    data['BOP'] = ta.BOP(open_, high, low, close)
    data['LINEARREG'] = ta.LINEARREG(close)
    data['AP0'] = ta.APO(close, fastperiod=9, slowperiod=23, matype=1)
    data['TEMA'] = ta.TRIMA(close, 29)
    
    return data
Esempio n. 11
0
 def natr(self):
     # Normalized Average True Range (NATR)
     natr = talib.NATR(self.price.high,
                       self.price.low,
                       self.price.close,
                       timeperiod=14)
     return natr[-analyzePeriod * 2:]
Esempio n. 12
0
File: natr.py Progetto: wcy/jesse
def natr(candles: np.ndarray,
         period: int = 14,
         sequential: bool = False) -> Union[float, np.ndarray]:
    """
    NATR - Normalized Average True Range

    :param candles: np.ndarray
    :param period: int - default=14
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    warmup_candles_num = get_config('env.data.warmup_candles_num', 240)
    if not sequential and len(candles) > warmup_candles_num:
        candles = candles[-warmup_candles_num:]

    res = talib.NATR(candles[:, 3],
                     candles[:, 4],
                     candles[:, 2],
                     timeperiod=period)

    if sequential:
        return res
    else:
        return None if np.isnan(res[-1]) else res[-1]
Esempio n. 13
0
def run_indicators(symbol, file):
    try:
        if os.path.exists(file):
            # read file
            df = np.genfromtxt(file, delimiter=',')

            # run talib indicators using dataframe
            # create additional columns in the datafarame
            closePrice = df[:, 4]
            openPrice = df[:, 1]
            highPrice = df[:, 2]
            lowPrice = df[:, 3]
            volume = df[:, 5]

            sma = talib.SMA(closePrice)
            atr = talib.ATR(highPrice, lowPrice, closePrice)
            natr = talib.NATR(highPrice, lowPrice, closePrice)
            adx = talib.ADX(highPrice, lowPrice, closePrice)
            mfi = talib.MFI(highPrice, lowPrice, closePrice, volume)
            ppo = talib.PPO(closePrice, fastperiod=12, slowperiod=26, matype=0)
            rsi = talib.RSI(closePrice)
            slowk, slowd = talib.STOCH(highPrice,
                                       lowPrice,
                                       closePrice,
                                       fastk_period=14,
                                       slowk_period=3,
                                       slowd_period=3)
            macd, macdsignal, macdhist = talib.MACD(closePrice,
                                                    fastperiod=12,
                                                    slowperiod=26,
                                                    signalperiod=9)

            # get ticker current price
            client = Client(os.environ.get('BINANCE_API_KEY'),
                            os.environ.get('BINANCE_SECRET_KEY'),
                            {"timeout": 100})
            closing_price = client.get_symbol_ticker(symbol=symbol)

            # create crypto object
            crypto = {}

            crypto['ticker'] = symbol
            crypto['price'] = closing_price['price']
            crypto['SMA14'] = sma[-1]
            crypto['ATR'] = atr[-1]
            crypto['NATR'] = natr[-1]
            crypto['ADX'] = adx[-1]
            crypto['MFI'] = mfi[-1]
            crypto['RSI'] = rsi[-1]
            crypto['STO'] = slowk[-1], slowd[-1]
            crypto['MACD'] = macd[-1]
            crypto['PPO'] = ppo[-1]
        else:
            crypto = {}
            crypto['ticker'] = symbol

        return crypto
    except Exception as e:
        print(str(e))
Esempio n. 14
0
 def natr(self, n, array=False):
     """
     NATR.
     """
     result = talib.NATR(self.high, self.low, self.close, n)
     if array:
         return result
     return result[-1]
Esempio n. 15
0
 def natr(self, n: int, array: bool = False) -> Union[float, np.ndarray]:
     """
     NATR.
     """
     result = talib.NATR(self.high, self.low, self.close, n)
     if array:
         return result
     return result[-1]
Esempio n. 16
0
def get_natr(ohlc):
    natr = ta.NATR(ohlc['2_high'],
                   ohlc['3_low'],
                   ohlc['4_close'],
                   timeperiod=14)

    ohlc['natr'] = natr

    return ohlc
Esempio n. 17
0
    def natr(self, sym, frequency, period=14):
        if not self.kbars_ready(sym, frequency):
            return []

        highs = self.high(sym, frequency)
        lows = self.low(sym, frequency)
        closes = self.close(sym, frequency)

        natr = ta.NATR(highs, lows, closes, timeperiod=period)
        return natr
Esempio n. 18
0
def NATR(high, low, close, timeperiod=14):
    ''' Normalized Average True Range 归一化波动幅度均值

    分组: Volatility Indicator 波动率指标

    简介:

    real = NATR(high, low, close, timeperiod=14)
    '''
    return talib.NATR(high, low, close, timeperiod)
Esempio n. 19
0
def getVolatilityIndicators(df):
    high = df['High']
    low = df['Low']
    close = df['Close']
    open = df['Open']
    volume = df['Volume']

    df['ATR'] = ta.ATR(high, low, close, timeperiod=14)
    df['NATR'] = ta.NATR(high, low, close, timeperiod=14)
    df['TRANGE'] = ta.TRANGE(high, low, close)
Esempio n. 20
0
 def _get_indicators(security, open_name, close_name, high_name, low_name,
                     volume_name):
     """
     expand the features of the data through technical analysis across 26 different signals
     :param security: data which features are going to be expanded
     :param open_name: open price column name
     :param close_name: close price column name
     :param high_name: high price column name
     :param low_name: low price column name
     :param volume_name: traded volumn column name
     :return: expanded and extracted data
     """
     open_price = security[open_name].values
     close_price = security[close_name].values
     low_price = security[low_name].values
     high_price = security[high_name].values
     volume = security[volume_name].values if volume_name else None
     security['MOM'] = talib.MOM(close_price)
     security['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price)
     security['HT_DCPHASE'] = talib.HT_DCPHASE(close_price)
     security['SINE'], security['LEADSINE'] = talib.HT_SINE(close_price)
     security['INPHASE'], security['QUADRATURE'] = talib.HT_PHASOR(
         close_price)
     security['ADXR'] = talib.ADXR(high_price, low_price, close_price)
     security['APO'] = talib.APO(close_price)
     security['AROON_UP'], _ = talib.AROON(high_price, low_price)
     security['CCI'] = talib.CCI(high_price, low_price, close_price)
     security['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price)
     security['PPO'] = talib.PPO(close_price)
     security['MACD'], security['MACD_SIG'], security[
         'MACD_HIST'] = talib.MACD(close_price)
     security['CMO'] = talib.CMO(close_price)
     security['ROCP'] = talib.ROCP(close_price)
     security['FASTK'], security['FASTD'] = talib.STOCHF(
         high_price, low_price, close_price)
     security['TRIX'] = talib.TRIX(close_price)
     security['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price)
     security['WILLR'] = talib.WILLR(high_price, low_price, close_price)
     security['NATR'] = talib.NATR(high_price, low_price, close_price)
     security['RSI'] = talib.RSI(close_price)
     security['EMA'] = talib.EMA(close_price)
     security['SAREXT'] = talib.SAREXT(high_price, low_price)
     # security['TEMA'] = talib.EMA(close_price)
     security['RR'] = security[close_name] / security[close_name].shift(
         1).fillna(1)
     security['LOG_RR'] = np.log(security['RR'])
     if volume_name:
         security['MFI'] = talib.MFI(high_price, low_price, close_price,
                                     volume)
         # security['AD'] = talib.AD(high_price, low_price, close_price, volume)
         # security['OBV'] = talib.OBV(close_price, volume)
         security[volume_name] = np.log(security[volume_name])
     security.drop([open_name, close_name, high_name, low_name], axis=1)
     security = security.dropna().astype(np.float32)
     return security
Esempio n. 21
0
 def eval(self, environment, gene, date1, date2):
     timeperiod = int(gene.next_value(environment, date1, date2))
     date1_ = environment.shift_date(date1, -(self.window-1), -1)
     high = gene.next_value(environment, date1_, date2)
     low = gene.next_value(environment, date1_, date2)
     close = gene.next_value(environment, date1_, date2)
     res = pd.DataFrame(np.nan, index=high.ix[date1:date2].index, columns=high.columns)
     for i, j in product(range(res.shape[0]), range(res.shape[1])):
         res.iloc[i, j] = talib.NATR(
                 high.values[i: i+self.window, j], low.values[i: i+self.window, j], close.values[i: i+self.window, j],
                 timeperiod=timeperiod)[-1]
     return res
Esempio n. 22
0
 def get_quota(self):
     #stock_amount = cral_CNstock_order_ana.main()
     close = self.__df['close']
     high_prices = self.__df['high'].values
     low_prices = self.__df['low'].values
     close_prices = close.values
     ma5 = talib.MA(close_prices,5)
     ma10 = talib.MA(close_prices,10)
     ma20 = talib.MA(close_prices,20)
     ma30 = talib.MA(close_prices,30)
     K, D = talib.STOCH(high_prices,low_prices,close_prices, fastk_period=9, slowk_period=3)
     J = K * 3 - D * 2
     sar = talib.SAR(high_prices, low_prices, acceleration=0.05, maximum=0.2)
     sar = pd.DataFrame(sar-close)
     sar.index = self.__df.date
     atr = talib.ATR(high_prices,low_prices,close_prices)
     natr = talib.NATR(high_prices,low_prices,close_prices)
     trange = talib.TRANGE(high_prices,low_prices,close_prices)
     cci = talib.CCI(high_prices,low_prices,close_prices,14)
     dif, dea, bar = talib.MACDFIX(close_prices)
     bar = bar * 2
     df_all = self.__df.drop(['code','open','low', 'high','volume'],axis=1).set_index('date')
     df_all.insert(0,'ma5',ma5)
     df_all.insert(0,'ma10',ma10)
     df_all.insert(0,'ma20',ma20)
     df_all.insert(0,'ma30',ma30)
     df_all.insert(0,'K',K)
     df_all.insert(0,'D',D)
     df_all.insert(0,'J',J)
     df_all.insert(0,'cci',cci)
     df_all.insert(0,'bar',bar)
     df_all.insert(0,'dif',dif)
     df_all.insert(0,'dea',dea)
     df_all.insert(0,'sar',sar)
     #df_all = pd.concat([df_all,stock_amount],axis=1)
     df_yesterday = df_all.T
     index_c = df_all.index
     added = [np.nan] * len(df_all.columns)
     df_yesterday.insert(0, len(df_yesterday.columns), added)
     df_yesterday = df_yesterday.T
     df_yesterday = df_yesterday.drop(df_all.index[len(df_all.index)-1])
     df_yesterday.insert(0, 'index_c', index_c)
     df_yesterday = df_yesterday.set_index('index_c')
     df_dif = df_all - df_yesterday
     df_dif_close_plus_one_day = df_dif.copy()
     for i in range(len(df_dif_close_plus_one_day['close'])-1):
         df_dif_close_plus_one_day['close'][i] = df_dif_close_plus_one_day['close'][i+1]
     df_dif_close_plus_one_day['close'][len(df_dif_close_plus_one_day['close'])-1] = np.nan
     df_dif = df_dif.dropna(axis=0,how='any')
     df_dif_close_plus_one_day = df_dif_close_plus_one_day.dropna(axis=0,how='any')
     return df_dif, df_dif_close_plus_one_day
    def test_natr(self):
        result = pandas_ta.natr(self.high, self.low, self.close)
        self.assertIsInstance(result, Series)
        self.assertEqual(result.name, "NATR_14")

        try:
            expected = tal.NATR(self.high, self.low, self.close)
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError as ae:
            try:
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                error_analysis(result, CORRELATION, ex)
Esempio n. 24
0
def getRequirementData(req: ReqParam, data, reqMap):
    stocks = getStocks()
    for count, ticker in enumerate(stocks):
        df = data.get(ticker)

        if req.condition == 1:
            if req.indicatorPeriod is None:
                raise ValueError('Need to provide indicator period')
            df['ADX'] = talib.ADX(df['High'].values, df['Low'].values,
                                  df['Close'].values, req.indicatorPeriod)
            reqMap[ticker + '_' + str(req.indicatorPeriod)] = removeNaN(
                df['ADX'].values)
        if req.condition == 2:
            if req.fastPeriod is None or req.slowPeriod is None:
                raise ValueError('Need to provide fastperiod or slowperiod')
            df['chaikin'] = talib.ADOSC(df['High'].values, df['Low'].values,
                                        df['Close'].values,
                                        df['Volume'].values, req.fastPeriod,
                                        req.slowPeriod)
            reqMap[ticker + '_' + str(req.fastPeriod) + '_' +
                   str(req.slowPeriod)] = removeNaN(df['chaikin'].values)
        if req.condition == 3:
            if req.indicatorPeriod is None or req.fastPeriod is None or req.slowPeriod is None:
                raise ValueError(
                    'Need to provide indicatorPeriod, fastPeriod or slowPeriod'
                )
            _, __, df['MACDHist'] = talib.MACD(
                df['Close'].values,
                fastperiod=req.fastPeriod,
                slowperiod=req.slowPeriod,
                signalperiod=req.indicatorPeriod)
            reqMap[ticker + '_' + str(req.indicatorPeriod) + '_' +
                   str(req.fastPeriod) + '_' +
                   str(req.slowPeriod)] = removeNaN(df['MACDHist'].values)
        if req.condition == 4:
            if req.rollingPeriod is None:
                raise ValueError('Need to provide rollingPeriod')
            df['vol'] = np.where(
                df['Volume'] > df['Volume'].rolling(req.rollingPeriod).mean())
            reqMap[ticker + '_' + str(req.rollingPeriod)] = df['vol'].values
        if req.condition == 6:
            if req.indicatorPeriod is None:
                raise ValueError('Need to provide indicator period')
            df['NATR'] = talib.NATR(df['High'].values, df['Low'].values,
                                    df['Close'].values, req.indicatorPeriod)
            reqMap[ticker + '_' + str(req.indicatorPeriod)] = removeNaN(
                df['NATR'].values)

    return reqMap
Esempio n. 25
0
def compute_features(data):
    close = data['close']
    rsi_indicator = talib.RSI(data['close'], 14)
    rsi_indicator = talib.SMA(rsi_indicator, 10)
    rsi_indicator = rsi_indicator / 100

    bbands_indicator = talib.BBANDS(close, 20, 2, 2)
    low = bbands_indicator[2]
    mid = bbands_indicator[1]
    high = bbands_indicator[0]
    width = (high - low) / mid * 100

    m = mid - low
    h = high - mid
    c = talib.SMA(close, 10) - mid

    close_in_bb = c / h

    natr = talib.NATR(data['high'], data['low'], data['close'], timeperiod=14)

    vol_sma = talib.SMA(data['volume'], 5)

    def zscore(x, window):
        r = x.rolling(window=window)
        m = r.mean().shift(1)
        s = r.std(ddof=0).shift(1)
        z = (x - m) / s
        return z

    z = zscore(vol_sma, 60 * 24)
    z = z / 10

    df = pd.DataFrame({
        'vol_z': z,
        'rsi': rsi_indicator,
        'bb_width': width,
        'natr': natr,
        'close_pct_change': talib.SMA(close, 10).pct_change() * 100,
        'time': data['time'],
        'trades_count': data['trades'] / 100
    })
    for c in data.columns:
        df[c] = data[c]

    df = df[60 * 24 + 100:]

    return df
Esempio n. 26
0
def generate_tech_data_default(stock,
                               open_name,
                               close_name,
                               high_name,
                               low_name,
                               volume_name='vol'):
    open_price = stock[open_name].values
    close_price = stock[close_name].values
    low_price = stock[low_name].values
    high_price = stock[high_name].values
    volume = stock[volume_name].values
    data = stock.copy()
    data['MOM'] = talib.MOM(close_price)
    data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price)
    data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price)
    data['sine'], data['leadsine'] = talib.HT_SINE(close_price)
    data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price)
    data['ADXR'] = talib.ADXR(high_price, low_price, close_price)
    data['APO'] = talib.APO(close_price)
    data['AROON_UP'], _ = talib.AROON(high_price, low_price)
    data['CCI'] = talib.CCI(high_price, low_price, close_price)
    data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price)
    data['PPO'] = talib.PPO(close_price)
    data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD(close_price)
    data['CMO'] = talib.CMO(close_price)
    data['ROCP'] = talib.ROCP(close_price)
    data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price,
                                                close_price)
    data['TRIX'] = talib.TRIX(close_price)
    data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price)
    data['WILLR'] = talib.WILLR(high_price, low_price, close_price)
    data['NATR'] = talib.NATR(high_price, low_price, close_price)
    data['MFI'] = talib.MFI(high_price, low_price, close_price, volume)
    data['RSI'] = talib.RSI(close_price)
    data['AD'] = talib.AD(high_price, low_price, close_price, volume)
    data['OBV'] = talib.OBV(close_price, volume)
    data['EMA'] = talib.EMA(close_price)
    data['SAREXT'] = talib.SAREXT(high_price, low_price)
    data['TEMA'] = talib.EMA(close_price)
    #data = data.drop([open_name, close_name, high_name, low_name, volume_name, 'amount', 'count'], axis=1)
    data = drop_columns(data, [
        open_name, close_name, high_name, low_name, volume_name, 'amount',
        'count'
    ])
    data = data.dropna().astype(np.float32)
    return data
Esempio n. 27
0
def main():
    # read csv file and transform it to datafeed (df):
    df = pd.read_csv(current_dir + "/" + base_dir + "/" + in_dir + "/" +
                     in_dir + '_' + stock_symbol + '.csv')

    # set numpy datafeed from df:
    df_numpy = {
        'Date': np.array(df['date']),
        'Open': np.array(df['open'], dtype='float'),
        'High': np.array(df['high'], dtype='float'),
        'Low': np.array(df['low'], dtype='float'),
        'Close': np.array(df['close'], dtype='float'),
        'Volume': np.array(df['volume'], dtype='float')
    }

    date = df_numpy['Date']
    openp = df_numpy['Open']
    high = df_numpy['High']
    low = df_numpy['Low']
    close = df_numpy['Close']
    volume = df_numpy['Volume']

    #########################################
    ###  Volatility Indicator Functions  ####
    #########################################

    #ATR - Average True Range
    atr = ta.ATR(high, low, close, timeperiod=14)

    #NATR - Normalized Average True Range
    natr = ta.NATR(high, low, close, timeperiod=14)

    #TRANGE - True Range
    trange = ta.TRANGE(high, low, close)

    df_save = pd.DataFrame(data={
        'date': np.array(df['date']),
        'atr': atr,
        'natr': natr,
        'trange': trange
    })

    df_save.to_csv(current_dir + "/" + base_dir + "/" + out_dir + '/' +
                   stock_symbol + "/" + out_dir + '_ta_volatility_indicator_' +
                   stock_symbol + '.csv',
                   index=False)
Esempio n. 28
0
def get_additional_factors(open, high, low, close, volume):

    # Overlap Studies Functions
    mat = get_all_factors(open, high, low, close, volume)

    mat = np.column_stack((mat, talib.HT_TRENDLINE(close)))  ## close
    mat = np.column_stack((mat, talib.KAMA(close, timeperiod=30)))  ##close

    #Momentum Indicator Functions
    mat = np.column_stack((mat, talib.ADX(high, low, close, timeperiod=14)))
    mat = np.column_stack((mat, talib.ADXR(high, low, close, timeperiod=14)))
    mat = np.column_stack(
        (mat, talib.APO(close, fastperiod=12, slowperiod=26, matype=0)))
    mat = np.column_stack((mat, talib.AROONOSC(high, low, timeperiod=14)))
    mat = np.column_stack((mat, talib.BOP(open, high, low, close)))
    mat = np.column_stack((mat, talib.MOM(close, timeperiod=10)))

    #Volume Indicator Functions
    mat = np.column_stack((mat, talib.AD(high, low, close, volume)))
    mat = np.column_stack(
        (mat, talib.ADOSC(high,
                          low,
                          close,
                          volume,
                          fastperiod=3,
                          slowperiod=10)))
    mat = np.column_stack((mat, talib.OBV(close, volume)))

    #Volatility Indicator Functions
    mat = np.column_stack((mat, talib.NATR(high, low, close, timeperiod=14)))
    mat = np.column_stack((mat, talib.TRANGE(high, low, close)))

    #Price Transform Functions
    mat = np.column_stack((mat, talib.AVGPRICE(open, high, low, close)))
    mat = np.column_stack((mat, talib.MEDPRICE(high, low)))
    mat = np.column_stack((mat, talib.TYPPRICE(high, low, close)))
    mat = np.column_stack((mat, talib.WCLPRICE(high, low, close)))

    #Cycle Indicator Functions
    mat = np.column_stack((mat, talib.HT_DCPERIOD(close)))
    mat = np.column_stack((mat, talib.HT_DCPHASE(close)))
    mat = np.column_stack((mat, talib.HT_TRENDMODE(close)))

    # 20

    return mat
Esempio n. 29
0
def corr_rate_calc(code):
    df = pd.read_sql(
        'select * from day_k_data where code="' + code +
        '" order by date asc;', engine)
    ma5 = talib.MA(df['close'].values, 5)
    ma10 = talib.MA(df['close'].values, 10)
    ma20 = talib.MA(df['close'].values, 20)
    ma30 = talib.MA(df['close'].values, 30)
    K, D = talib.STOCH(df['high'].values,
                       df['low'].values,
                       df['close'].values,
                       fastk_period=9,
                       slowk_period=3)
    J = K * 3 - D * 2
    atr = talib.ATR(df['high'].values, df['low'].values, df['close'].values)
    natr = talib.NATR(df['high'].values, df['low'].values, df['close'].values)
    trange = talib.TRANGE(df['high'].values, df['low'].values,
                          df['close'].values)
    cci = talib.CCI(df['high'].values, df['low'].values, df['close'].values,
                    14)
    dif, dea, bar = talib.MACDFIX(df['close'].values)
    bar = bar * 2
    df = df.drop(['code', 'open', 'low', 'high'], axis=1).set_index('date')
    df.insert(0, 'ma5', ma5)
    df.insert(0, 'ma10', ma10)
    df.insert(0, 'ma20', ma20)
    df.insert(0, 'ma30', ma30)
    df.insert(0, 'K', K)
    df.insert(0, 'D', D)
    df.insert(0, 'J', J)
    df.insert(0, 'cci', cci)
    df.insert(0, 'bar', bar)
    df.insert(0, 'dif', dif)
    df.insert(0, 'dea', dea)
    df_yesterday = df.T
    index_c = df.index
    added = [0] * len(df.columns)
    df_yesterday.insert(0, len(df_yesterday.columns), added)
    df_yesterday = df_yesterday.T
    df_yesterday = df_yesterday.drop(df.index[len(df.index) - 1])
    df_yesterday.insert(0, 'index_c', index_c)
    df_yesterday = df_yesterday.set_index('index_c')
    dfd = df - df_yesterday
    return dfd.corr()
Esempio n. 30
0
def sig_macd(df):
    highs = df['high'].values
    lows = df['low'].values
    closes = df['close'].values

    df['ta_NATR_%d' % 14] = talib.NATR(highs, lows, closes, 14)
    df = df.join(pta.MACD(df, fast, slow))

    df["cross_%d_%d" %
       (fast, slow)] = df["ta_MACD_%d_%d" %
                          (fast, slow)] / df["ta_MACDsign_%d_%d" %
                                             (fast, slow)]
    df["ta_MACD_%d_%d_shift_1" % (fast, slow)] = df["ta_MACD_%d_%d" %
                                                    (fast, slow)].shift(1)
    df["cross_%d_%dshift_1" % (fast, slow)] = df["cross_%d_%d" %
                                                 (fast, slow)].shift(1)
    df["ta_macd_signal_%d_%d" % (fast, slow)] = df.apply(
        lambda row: adx_signal(row), axis=1)
    return df