Esempio n. 1
0
def SARX(ndh,
         ndl,
         init_val,
         tend,
         init_index=0,
         rev_val_per=0.002,
         AF_init=0.02,
         AF_increse=0.02,
         AF_max=0.2):
    if tend == 'long' or tend:
        sarx = ta.SAREXT(ndh,
                         ndl,
                         startvalue=init_val,
                         offsetonreverse=rev_val_per,
                         accelerationinitlong=AF_init,
                         accelerationlong=AF_increse,
                         accelerationmaxlong=AF_max,
                         accelerationinitshort=0,
                         accelerationshort=0,
                         accelerationmaxshort=0)
        return sarx
    if tend == 'short' or not tend:
        sarx = ta.SAREXT(ndh,
                         ndl,
                         startvalue=init_val,
                         offsetonreverse=rev_val_per,
                         accelerationinitlong=0,
                         accelerationlong=0,
                         accelerationmaxlong=0,
                         accelerationinitshort=AF_init,
                         accelerationshort=AF_increse,
                         accelerationmaxshort=AF_max)
        return sarx
Esempio n. 2
0
File: sarext.py Progetto: wcy/jesse
def sarext(candles: np.ndarray, start_value: float = 0, offset_on_reverse: float = 0, acceleration_init_long: float = 0,
           acceleration_long: float = 0, acceleration_max_long: float = 0, acceleration_init_short: float = 0,
           acceleration_short: float = 0, acceleration_max_short: float = 0, sequential: bool = False) -> Union[
    float, np.ndarray]:
    """
    SAREXT - Parabolic SAR - Extended

    :param candles: np.ndarray
    :param start_value: float - default: 0
    :param offsetonreverse: float - default: 0
    :param accelerationinitlong: float - default: 0
    :param accelerationlong: float - default: 0
    :param accelerationmaxlong: float - default: 0
    :param accelerationinitshort: float - default: 0
    :param accelerationshort: float - default: 0
    :param accelerationmaxshort: float - default: 0
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    warmup_candles_num = get_config('env.data.warmup_candles_num', 240)
    if not sequential and len(candles) > warmup_candles_num:
        candles = candles[-warmup_candles_num:]

    res = talib.SAREXT(candles[:, 3], candles[:, 4], startvalue=start_value, offsetonreverse=offset_on_reverse,
                       accelerationinitlong=acceleration_init_long, accelerationlong=acceleration_long,
                       accelerationmaxlong=acceleration_max_long, accelerationinitshort=acceleration_init_short,
                       accelerationshort=acceleration_short, accelerationmaxshort=acceleration_max_short)

    return res if sequential else res[-1]
Esempio n. 3
0
def sarext(high, low, graph=False, **kwargs):
    '''
    SAREXT - Parabolic SAR - Extended
    '''
    result = talib.SAREXT(high, low, **kwargs)
    df = pd.concat(
        [pd.DataFrame(high),
         pd.DataFrame(low),
         pd.DataFrame(result)], axis=1)
    df.columns = ['high', 'low', 'sarext']
    if graph:
        title = 'SAREXT - Parabolic SAR - Extended'
        fname = '12_sarext.png'

        fig, ax1 = plt.subplots()
        ax2 = ax1.twinx()
        fig.suptitle(title)
        ax1.plot(df['high'], label='high')
        ax1.plot(df['low'], label='low')
        ax2.plot(df['sarext'], label='sarext', color='green', alpha=0.7)
        h1, l1 = ax1.get_legend_handles_labels()
        h2, l2 = ax2.get_legend_handles_labels()
        ax1.legend(h1 + h2, l1 + l2, loc='upper left')
        plt.savefig(fname)
        if SHOW_GRAPH:
            plt.show()
        plt.close()
    return df
Esempio n. 4
0
 def riskControl_sarx(self,
                      open_price,
                      open_time,
                      time,
                      SLtype,
                      AF_increse=0.01,
                      AF_max=0.1):
     """
     riskControl_sarx(self, open_price, open_time, time, type, AF_increse=0.02, AF_max=0.2)
     
     type 0 : short
          1 : long
          
     return: float
     """
     if SLtype == 1:
         sarx = ta.SAREXT(self.high[open_time:time + 1],
                          self.low[open_time:time + 1],
                          startvalue=open_price,
                          offsetonreverse=0,
                          accelerationinitlong=AF_increse,
                          accelerationlong=AF_increse,
                          accelerationmaxlong=AF_max,
                          accelerationinitshort=0,
                          accelerationshort=0,
                          accelerationmaxshort=0)
         if sarx[-1] >= 0:
             return False
         elif sarx[-1] < 0:
             return True
     if SLtype == 0:
         sarx = ta.SAREXT(self.high[:time + 1],
                          self.low[:time + 1],
                          startvalue=open_price,
                          offsetonreverse=0,
                          accelerationinitlong=0,
                          accelerationlong=0,
                          accelerationmaxlong=AF_max,
                          accelerationinitshort=AF_increse,
                          accelerationshort=AF_increse,
                          accelerationmaxshort=AF_max)
         if sarx[-1] <= 0:
             return False
         elif sarx[-1] > 0:
             return True
     return False
    def sarext(self, sym, frequency, *args, **kwargs):
        if not self.kbars_ready(sym, frequency):
            return []

        highs = self.high(sym, frequency)
        lows = self.low(sym, frequency)

        return ta.SAREXT(highs, lows, *args, **kwargs)
Esempio n. 6
0
 def _get_indicators(security, open_name, close_name, high_name, low_name,
                     volume_name):
     """
     expand the features of the data through technical analysis across 26 different signals
     :param security: data which features are going to be expanded
     :param open_name: open price column name
     :param close_name: close price column name
     :param high_name: high price column name
     :param low_name: low price column name
     :param volume_name: traded volumn column name
     :return: expanded and extracted data
     """
     open_price = security[open_name].values
     close_price = security[close_name].values
     low_price = security[low_name].values
     high_price = security[high_name].values
     volume = security[volume_name].values if volume_name else None
     security['MOM'] = talib.MOM(close_price)
     security['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price)
     security['HT_DCPHASE'] = talib.HT_DCPHASE(close_price)
     security['SINE'], security['LEADSINE'] = talib.HT_SINE(close_price)
     security['INPHASE'], security['QUADRATURE'] = talib.HT_PHASOR(
         close_price)
     security['ADXR'] = talib.ADXR(high_price, low_price, close_price)
     security['APO'] = talib.APO(close_price)
     security['AROON_UP'], _ = talib.AROON(high_price, low_price)
     security['CCI'] = talib.CCI(high_price, low_price, close_price)
     security['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price)
     security['PPO'] = talib.PPO(close_price)
     security['MACD'], security['MACD_SIG'], security[
         'MACD_HIST'] = talib.MACD(close_price)
     security['CMO'] = talib.CMO(close_price)
     security['ROCP'] = talib.ROCP(close_price)
     security['FASTK'], security['FASTD'] = talib.STOCHF(
         high_price, low_price, close_price)
     security['TRIX'] = talib.TRIX(close_price)
     security['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price)
     security['WILLR'] = talib.WILLR(high_price, low_price, close_price)
     security['NATR'] = talib.NATR(high_price, low_price, close_price)
     security['RSI'] = talib.RSI(close_price)
     security['EMA'] = talib.EMA(close_price)
     security['SAREXT'] = talib.SAREXT(high_price, low_price)
     # security['TEMA'] = talib.EMA(close_price)
     security['RR'] = security[close_name] / security[close_name].shift(
         1).fillna(1)
     security['LOG_RR'] = np.log(security['RR'])
     if volume_name:
         security['MFI'] = talib.MFI(high_price, low_price, close_price,
                                     volume)
         # security['AD'] = talib.AD(high_price, low_price, close_price, volume)
         # security['OBV'] = talib.OBV(close_price, volume)
         security[volume_name] = np.log(security[volume_name])
     security.drop([open_name, close_name, high_name, low_name], axis=1)
     security = security.dropna().astype(np.float32)
     return security
Esempio n. 7
0
def sarext(
    client,
    symbol,
    timeframe="6m",
    highcol="high",
    lowcol="low",
    startvalue=0,
    offsetonreverse=0,
    accelerationinitlong=0,
    accelerationlong=0,
    accelerationmaxlong=0,
    accelerationinitshort=0,
    accelerationshort=0,
    accelerationmaxshort=0,
):
    """This will return a dataframe of parabolic sar extended
     for the given symbol across the given timeframe

    Args:
        client (pyEX.Client); Client
        symbol (string); Ticker
        timeframe (string); timeframe to use, for pyEX.chart
        highcol (string); high column to use
        lowcol (string); low column to use
        startvalue (int); startvalue
        offsetonreverse (int); offsetonreverse
        accelerationinitlong (int); accelerationinitlong
        accelerationlong (int); accelerationlong
        accelerationmaxlong (int); accelerationmaxlong
        accelerationinitshort (int); accelerationinitshort
        accelerationshort (int); accelerationshort
        accelerationmaxshort (int); accelerationmaxshort

    Returns:
        DataFrame: result
    """
    df = client.chartDF(symbol, timeframe)
    sar = t.SAREXT(
        df[highcol].values.astype(float),
        df[lowcol].values.astype(float),
        startvalue=startvalue,
        offsetonreverse=offsetonreverse,
        accelerationinitlong=accelerationinitlong,
        accelerationlong=accelerationlong,
        accelerationmaxlong=accelerationmaxlong,
        accelerationinitshort=accelerationinitshort,
        accelerationshort=accelerationshort,
        accelerationmaxshort=accelerationmaxshort,
    )
    return pd.DataFrame({
        highcol: df[highcol].values,
        lowcol: df[lowcol].values,
        "sar": sar
    })
Esempio n. 8
0
def extract_sar(data):
    data['sar'] = ta.SAREXT(data['high'].values,
                            data['low'].values,
                            startvalue=0,
                            offsetonreverse=0,
                            accelerationinitlong=0.01,
                            accelerationlong=0.06,
                            accelerationmaxlong=0.2,
                            accelerationinitshort=0.01,
                            accelerationshort=0.06,
                            accelerationmaxshort=0.2)
    return data
Esempio n. 9
0
 def SAREXT_factor(self, df, startvalue=0,
                   offsetonreverse=0, accelerationinitlong=0,
                   accelerationlong=0, accelerationmax=0,
                   accelerationinitshort=0, accelerationshort=0,
                   accelerationmaxshort=0):
     return talib.SAREXT(
         df.loc[:, self.map_dict['high']].values,
         df.loc[:, self.map_dict['low']].values,
         startvalue, offsetonreverse, accelerationinitlong,
         accelerationlong, accelerationmax,
         accelerationinitshort, accelerationshort,
         accelerationmaxshort)
def SAREXT(DataFrame,
           startvalue=0,
           offsetonreverse=0,
           accelerationinitlong=0,
           accelerationlong=0,
           accelerationmaxlong=0,
           accelerationinitshort=0,
           accelerationshort=0,
           accelerationmaxshort=0):
    res = talib.SAREXT(DataFrame.high.values, DataFrame.low.values, startvalue,
                       offsetonreverse, accelerationinitlong, accelerationlong,
                       accelerationmaxlong, accelerationinitshort,
                       accelerationshort, accelerationmaxshort)
    return pd.DataFrame({'SAREXT': res}, index=DataFrame.index)
def get_sar(high_list, low_list):
    """
    sar<0 down 开空 >0 up 开多
    1.任何时候都可以使用SAR 为停损点;
    2.价格涨跌的速度必须比SAR 升降的速度快,否则必会产生停损信号;
    3.SAR 由红色变成绿色时,卖出;
    4.SAR 由绿色变成红色时,买进;
    5.本指标周期参数一般设定为4天;
    6.本设定主要为寻找出现多头停损或空头停损的个股。
    """
    high_ndarray = np.array(high_list)
    low_ndarray = np.array(low_list)
    sar = talib.SAREXT(high_ndarray, low_ndarray)
    return sar.tolist()
Esempio n. 12
0
def TALIB_SAREXT(close,
                 startvalue=0,
                 offsetonreverse=0,
                 accelerationinitlong=0.02,
                 accelerationlong=0.02,
                 accelerationmaxlong=0.02,
                 accelerationinitshort=0.02,
                 accelerationshort=0.02,
                 accelerationmaxshort=0.02):
    '''00379,9,1'''
    return talib.SAREXT(close, startvalue, offsetonreverse,
                        accelerationinitlong, accelerationlong,
                        accelerationmaxlong, accelerationinitshort,
                        accelerationshort, accelerationmaxshort)
Esempio n. 13
0
def get_sarext(ohlc):
    sarext = ta.SAREXT(ohlc['2_high'],
                       ohlc['3_low'],
                       startvalue=0,
                       offsetonreverse=0,
                       accelerationinitlong=0,
                       accelerationlong=0,
                       accelerationmaxlong=0,
                       accelerationinitshort=0,
                       accelerationshort=0,
                       accelerationmaxshort=0)

    ohlc['sarext'] = sarext
    return ohlc
Esempio n. 14
0
def SAREXT(raw_df,
           startvalue=0,
           offsetonreverse=0,
           accelerationinitlong=0,
           accelerationlong=0,
           accelerationmaxlong=0,
           accelerationinitshort=0,
           accelerationshort=0,
           accelerationmaxshort=0):
    # extract necessary data from raw dataframe (high, low)
    return ta.SAREXT(raw_df.High.values, raw_df.Low.values, startvalue,
                     offsetonreverse, accelerationinitlong, accelerationlong,
                     accelerationmaxlong, accelerationinitshort,
                     accelerationshort, accelerationmaxshort)
Esempio n. 15
0
def sarext(high,
           low,
           startvalue=0,
           offsetonreverse=0,
           accelerationinitlong=0.02,
           accelerationlong=0.02,
           accelerationmaxlong=0.2,
           accelerationinitshort=0.02,
           accelerationshort=0.02,
           accelerationmaxshort=0.2):
    values = ta.SAREXT(high, low, startvalue, offsetonreverse,
                       accelerationinitlong, accelerationlong,
                       accelerationmaxlong, accelerationinitshort,
                       accelerationshort, accelerationmaxshort)
    return {"sarext": values}
Esempio n. 16
0
def add_SAREXT(
    self,
    startvalue=0,
    offsetonreverse=0,
    accelerationinitlong=0.02,
    accelerationlong=0.02,
    accelerationmaxlong=0.20,
    accelerationinitshort=0.02,
    accelerationshort=0.02,
    accelerationmaxshort=0.20,
    type="scatter",
    color="tertiary",
    **kwargs
):
    """Parabolic SAR Extended."""

    if not (self.has_high and self.has_low):
        raise Exception()

    utils.kwargs_check(kwargs, VALID_TA_KWARGS)
    if "kind" in kwargs:
        type = kwargs["kind"]

    name = "SAREXT({},{},{},{}," "{},{},{},{})".format(
        str(startvalue),
        str(offsetonreverse),
        str(accelerationinitlong),
        str(accelerationlong),
        str(accelerationmaxlong),
        str(accelerationinitshort),
        str(accelerationshort),
        str(accelerationmaxshort),
    )
    self.pri[name] = dict(type=type, color=color)
    self.ind[name] = talib.SAREXT(
        self.df[self.hi].values,
        self.df[self.lo].values,
        startvalue,
        offsetonreverse,
        accelerationinitlong,
        accelerationlong,
        accelerationmaxlong,
        accelerationinitshort,
        accelerationshort,
        accelerationmaxshort,
    )
    self.ind[name] = self.ind[name].abs()  # Bug right now with negative value
Esempio n. 17
0
	def overlap(self):
		upper, middle, lower = talib.BBANDS(self.close,timeperiod=5,nbdevup=2,nbdevdn=2,matype=0)
		EMA = talib.EMA(self.close,self.period)
		HT_trendline = talib.HT_TRENDLINE(self.close)
		KAMA = talib.KAMA(self.close,self.period)
		MA = talib.MA(self.close,self.period,matype=0)
		mama, fama = talib.MAMA(self.close,fastlimit = 0.5,slowlimit = 0.05)
		mavp = talib.MAVP(self.close, minperiod = 5,maxperiod = 30,matype=0)
		midpoint = talib.MIDPOINT(self.close,self.period)
		midprice = talib.MIDPRICE(self.high,self.low,self.period)
		sar = talib.SAR(self.high,self.low,acceleration = 0, maximum = 0)
		sarext = talib.SAREXT(self.high,self.low,startvalue=0,offsetonreverse=0,accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
		sma = talib.SMA(self.close,self.period)
		t3 = talib.T3(self.close, self.period, vfactor = 0)
		tema = talib.TEMA(self.close,self.period)
		trima = talib.TRIMA(self.close,period)
		wma = talib.WMA(self.close, self.period)
Esempio n. 18
0
 def SAREXT(High,
            Low,
            startvalue=0,
            offsetonreverse=0,
            accelerationinitlong=0,
            accelerationlong=0,
            accelerationmaxlong=0,
            accelerationinitshort=0,
            accelerationshort=0,
            accelerationmaxshort=0):
     sarext = pd.DataFrame()
     for i in High.columns:
         sarext[i] = ta.SAREXT(High[i], Low[i], startvalue, offsetonreverse,
                               accelerationinitlong, accelerationlong,
                               accelerationmaxlong, accelerationinitshort,
                               accelerationshort, accelerationmaxshort)
     return sarext
Esempio n. 19
0
def generate_tech_data_default(stock,
                               open_name,
                               close_name,
                               high_name,
                               low_name,
                               volume_name='vol'):
    open_price = stock[open_name].values
    close_price = stock[close_name].values
    low_price = stock[low_name].values
    high_price = stock[high_name].values
    volume = stock[volume_name].values
    data = stock.copy()
    data['MOM'] = talib.MOM(close_price)
    data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price)
    data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price)
    data['sine'], data['leadsine'] = talib.HT_SINE(close_price)
    data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price)
    data['ADXR'] = talib.ADXR(high_price, low_price, close_price)
    data['APO'] = talib.APO(close_price)
    data['AROON_UP'], _ = talib.AROON(high_price, low_price)
    data['CCI'] = talib.CCI(high_price, low_price, close_price)
    data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price)
    data['PPO'] = talib.PPO(close_price)
    data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD(close_price)
    data['CMO'] = talib.CMO(close_price)
    data['ROCP'] = talib.ROCP(close_price)
    data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price,
                                                close_price)
    data['TRIX'] = talib.TRIX(close_price)
    data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price)
    data['WILLR'] = talib.WILLR(high_price, low_price, close_price)
    data['NATR'] = talib.NATR(high_price, low_price, close_price)
    data['MFI'] = talib.MFI(high_price, low_price, close_price, volume)
    data['RSI'] = talib.RSI(close_price)
    data['AD'] = talib.AD(high_price, low_price, close_price, volume)
    data['OBV'] = talib.OBV(close_price, volume)
    data['EMA'] = talib.EMA(close_price)
    data['SAREXT'] = talib.SAREXT(high_price, low_price)
    data['TEMA'] = talib.EMA(close_price)
    #data = data.drop([open_name, close_name, high_name, low_name, volume_name, 'amount', 'count'], axis=1)
    data = drop_columns(data, [
        open_name, close_name, high_name, low_name, volume_name, 'amount',
        'count'
    ])
    data = data.dropna().astype(np.float32)
    return data
Esempio n. 20
0
def generate_tech_data(stock, open_name, close_name, high_name, low_name):
    open_price = stock[open_name].values
    close_price = stock[close_name].values
    low_price = stock[low_name].values
    high_price = stock[high_name].values
    data = pd.DataFrame(stock)
    data['MOM'] = talib.MOM(close_price)
    data['SMA'] = talib.SMA(close_price)
    data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price)
    data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price)
    data['sine'], data['leadsine'] = talib.HT_SINE(close_price)
    data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price)
    data['HT_TRENDMODE'] = talib.HT_TRENDMODE(close_price)
    data['SAREXT'] = talib.SAREXT(high_price, low_price)
    data['ADX'] = talib.ADX(high_price, low_price, close_price)
    data['ADXR'] = talib.ADX(high_price, low_price, close_price)
    data['APO'] = talib.APO(close_price)
    data['AROON_UP'], data['AROON_DOWN'] = talib.AROON(high_price, low_price)
    data['AROONOSC'] = talib.AROONOSC(high_price, low_price)
    data['BOP'] = talib.BOP(open_price, high_price, low_price, close_price)
    data['CCI'] = talib.CCI(high_price, low_price, close_price)
    data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price)
    data['PLUS_DM'] = talib.PLUS_DM(high_price, low_price)
    data['PPO'] = talib.PPO(close_price)
    data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD(close_price)
    data['RSI'] = talib.RSI(close_price)
    data['CMO'] = talib.CMO(close_price)
    data['ROC'] = talib.ROC(close_price)
    data['ROCP'] = talib.ROCP(close_price)
    data['ROCR'] = talib.ROCR(close_price)
    data['slowk'], data['slowd'] = talib.STOCH(high_price, low_price,
                                               close_price)
    data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price,
                                                close_price)
    data['TRIX'] = talib.TRIX(close_price)
    data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price)
    data['WILLR'] = talib.WILLR(high_price, low_price, close_price)
    data['NATR'] = talib.NATR(high_price, low_price, close_price)
    data['TRANGE'] = talib.TRANGE(high_price, low_price, close_price)
    data = data.drop([open_name, close_name, high_name, low_name], axis=1)
    data = data.dropna()
    return data
Esempio n. 21
0
 def _get_indicators(security, open_name, close_name, high_name, low_name,
                     volume_name):
     open_price = security[open_name].values
     close_price = security[close_name].values
     low_price = security[low_name].values
     high_price = security[high_name].values
     volume = security[volume_name].values if volume_name else None
     security['MOM'] = talib.MOM(close_price)
     security['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price)
     security['HT_DCPHASE'] = talib.HT_DCPHASE(close_price)
     security['SINE'], security['LEADSINE'] = talib.HT_SINE(close_price)
     security['INPHASE'], security['QUADRATURE'] = talib.HT_PHASOR(
         close_price)
     security['ADXR'] = talib.ADXR(high_price, low_price, close_price)
     security['APO'] = talib.APO(close_price)
     security['AROON_UP'], _ = talib.AROON(high_price, low_price)
     security['CCI'] = talib.CCI(high_price, low_price, close_price)
     security['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price)
     security['PPO'] = talib.PPO(close_price)
     security['MACD'], security['MACD_SIG'], security[
         'MACD_HIST'] = talib.MACD(close_price)
     security['CMO'] = talib.CMO(close_price)
     security['ROCP'] = talib.ROCP(close_price)
     security['FASTK'], security['FASTD'] = talib.STOCHF(
         high_price, low_price, close_price)
     security['TRIX'] = talib.TRIX(close_price)
     security['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price)
     security['WILLR'] = talib.WILLR(high_price, low_price, close_price)
     security['NATR'] = talib.NATR(high_price, low_price, close_price)
     security['RSI'] = talib.RSI(close_price)
     security['EMA'] = talib.EMA(close_price)
     security['SAREXT'] = talib.SAREXT(high_price, low_price)
     security['RR'] = security[close_name] / security[close_name].shift(
         1).fillna(1)
     security['LOG_RR'] = np.log(security['RR'])
     if volume_name:
         security['MFI'] = talib.MFI(high_price, low_price, close_price,
                                     volume)
         security[volume_name] = np.log(security[volume_name])
     security.drop([open_name, close_name, high_name, low_name], axis=1)
     security = security.dropna().astype(np.float32)
     return security
Esempio n. 22
0
def sarext(candles: np.ndarray,
           startvalue=0,
           offsetonreverse=0,
           accelerationinitlong=0,
           accelerationlong=0,
           accelerationmaxlong=0,
           accelerationinitshort=0,
           accelerationshort=0,
           accelerationmaxshort=0,
           sequential=False) -> Union[float, np.ndarray]:
    """
    SAREXT - Parabolic SAR - Extended

    :param candles: np.ndarray
    :param startvalue: float - default: 0
    :param offsetonreverse: float - default: 0
    :param accelerationinitlong: float - default: 0
    :param accelerationlong: float - default: 0
    :param accelerationmaxlong: float - default: 0
    :param accelerationinitshort: float - default: 0
    :param accelerationshort: float - default: 0
    :param accelerationmaxshort: float - default: 0
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    if not sequential and len(candles) > 240:
        candles = candles[-240:]

    res = talib.SAREXT(candles[:, 3],
                       candles[:, 4],
                       startvalue=startvalue,
                       offsetonreverse=offsetonreverse,
                       accelerationinitlong=accelerationinitlong,
                       accelerationlong=accelerationlong,
                       accelerationmaxlong=accelerationmaxlong,
                       accelerationinitshort=accelerationinitshort,
                       accelerationshort=accelerationshort,
                       accelerationmaxshort=accelerationmaxshort)

    return res if sequential else res[-1]
Esempio n. 23
0
def sarext(candles: np.ndarray,
           start_value: float = 0,
           offset_on_reverse: float = 0,
           acceleration_init_long: float = 0,
           acceleration_long: float = 0,
           acceleration_max_long: float = 0,
           acceleration_init_short: float = 0,
           acceleration_short: float = 0,
           acceleration_max_short: float = 0,
           sequential: bool = False) -> Union[float, np.ndarray]:
    """
    SAREXT - Parabolic SAR - Extended

    :param candles: np.ndarray
    :param start_value: float - default: 0
    :param offsetonreverse: float - default: 0
    :param accelerationinitlong: float - default: 0
    :param accelerationlong: float - default: 0
    :param accelerationmaxlong: float - default: 0
    :param accelerationinitshort: float - default: 0
    :param accelerationshort: float - default: 0
    :param accelerationmaxshort: float - default: 0
    :param sequential: bool - default: False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    res = talib.SAREXT(candles[:, 3],
                       candles[:, 4],
                       startvalue=start_value,
                       offsetonreverse=offset_on_reverse,
                       accelerationinitlong=acceleration_init_long,
                       accelerationlong=acceleration_long,
                       accelerationmaxlong=acceleration_max_long,
                       accelerationinitshort=acceleration_init_short,
                       accelerationshort=acceleration_short,
                       accelerationmaxshort=acceleration_max_short)

    return res if sequential else res[-1]
Esempio n. 24
0
    def add_SAREXT(self,
                   df,
                   startvalue=0,
                   offsetonreverse=0,
                   accelerationinitlong=0,
                   accelerationlong=0,
                   accelerationmaxlong=0,
                   accelerationinitshort=0,
                   accelerationshort=0,
                   accelerationmaxshort=0):

        df['SAREXT_'] = ta.SAREXT(df['high'],
                                  df['low'],
                                  startvalue=startvalue,
                                  offsetonreverse=offsetonreverse,
                                  accelerationinitlong=accelerationinitlong,
                                  accelerationlong=accelerationlong,
                                  accelerationmaxlong=accelerationmaxlong,
                                  accelerationinitshort=accelerationinitshort,
                                  accelerationshort=accelerationshort,
                                  accelerationmaxshort=accelerationmaxshort)
        return df
Esempio n. 25
0
def getOverlapFunctions(df):
    high = df['High']
    low = df['Low']
    close = df['Close']
    open = df['Open']
    volume = df['Volume']
    df['UPPERBB'],df['MIDDLEBB'],df['LOWERBB'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    df['DEMA'] = ta.DEMA(close,timeperiod=30)
    df['EMA'] = ta.EMA(close, timeperiod=30)
    df['HT_TREND'] = ta.HT_TRENDLINE(close)
    df['KAMA'] = ta.KAMA(close, timeperiod=30)
    df['MA'] = ta.MA(close, timeperiod=30, matype=0)
    #df['MAMA'],df['FAMA'] = ta.MAMA(close, fastlimit=0, slowlimit=0)
    #df['MAVP'] = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
    df['MIDPOINT'] = ta.MIDPOINT(close, timeperiod=14)
    df['MIDPRICE'] = ta.MIDPRICE(high, low, timeperiod=14)
    df['SAR'] = ta.SAR(high, low, acceleration=0, maximum=0)
    df['SAREXT'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
    df['SMA'] = ta.SMA(close, timeperiod=30)
    df['T3'] = ta.T3(close, timeperiod=5, vfactor=0)
    df['TEMA'] = ta.TEMA(close, timeperiod=30)
    df['TRIMA'] = ta.TRIMA(close, timeperiod=30)
    df['WMA'] = ta.WMA(close, timeperiod=30)
Esempio n. 26
0
def SAREXT(high,
           low,
           startvalue=0,
           offsetonreverse=0,
           accelerationinitlong=0,
           accelerationlong=0,
           accelerationmaxlong=0,
           accelerationinitshort=0,
           accelerationshort=0,
           accelerationmaxshort=0):
    ''' Parabolic SAR - Extended

    分组: Overlap Studies 重叠研究

    简介:

    分析和应用:

    real = SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
    '''
    return talib.SAREXT(high, low, startvalue, offsetonreverse,
                        accelerationinitlong, accelerationlong,
                        accelerationmaxlong, accelerationinitshort,
                        accelerationshort, accelerationmaxshort)
Esempio n. 27
0
def main():
    ohlcv = api_ohlcv('20191017')
    open, high, low, close, volume, timestamp = [], [], [], [], [], []

    for i in ohlcv:
        open.append(int(i[0]))
        high.append(int(i[1]))
        low.append(int(i[2]))
        close.append(int(i[3]))
        volume.append(float(i[4]))
        time_str = str(i[5])
        timestamp.append(
            datetime.fromtimestamp(int(
                time_str[:10])).strftime('%Y/%m/%d %H:%M:%M'))

    date_time_index = pd.to_datetime(
        timestamp)  # convert to DateTimeIndex type
    df = pd.DataFrame(
        {
            'open': open,
            'high': high,
            'low': low,
            'close': close,
            'volume': volume
        },
        index=date_time_index)
    # df.index += pd.offsets.Hour(9) # adjustment for JST if required
    print(df.shape)
    print(df.columns)

    # pct_change
    f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan
    y = df.rename(columns={
        'close': 'y'
    }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0)
    X = df.copy()
    y_ = pd.DataFrame(y.map(f), columns=['y'])
    y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0)
    df_ = pd.concat([X, y_], axis=1)

    # check the shape
    print(
        '----------------------------------------------------------------------------------------'
    )
    print('X shape: (%i,%i)' % X.shape)
    print('y shape: (%i,%i)' % y_.shape)
    print(
        '----------------------------------------------------------------------------------------'
    )
    print(y_.groupby('y').size())
    print('y=1 up, y=0 stay, y=-1 down')
    print(
        '----------------------------------------------------------------------------------------'
    )

    # feature calculation
    open = pd.Series(df['open'])
    high = pd.Series(df['high'])
    low = pd.Series(df['low'])
    close = pd.Series(df['close'])
    volume = pd.Series(df['volume'])

    # pct_change for new column
    X['diff'] = y

    # Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())

    # Momentum
    momentum = talib.MOM(close, timeperiod=5)
    momentum = momentum.fillna(momentum.mean())

    # RSI
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())

    # ADX
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())

    # ADX change
    adx_change = adx.pct_change(1).shift(-1)
    adx_change = adx_change.fillna(adx_change.mean())

    # AD
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())

    X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad],
                   axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad']
    X_.join(y_).head(10)

    # default parameter models
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)
    print('X_train shape: {}'.format(X_train.shape))
    print('X_test shape: {}'.format(X_test.shape))
    print('y_train shape: {}'.format(y_train.shape))
    print('y_test shape: {}'.format(y_test.shape))

    pipe_knn = Pipeline([('scl', StandardScaler()),
                         ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic = Pipeline([('scl', StandardScaler()),
                              ('est',
                               LogisticRegression(solver='lbfgs',
                                                  multi_class='multinomial',
                                                  random_state=39))])
    pipe_rf = Pipeline([('scl', StandardScaler()),
                        ('est', RandomForestClassifier(random_state=39))])
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb]

    for (i, pipe) in enumerate(pipe_lines):
        pipe.fit(X_train, y_train.values.ravel())
        print(pipe)
        print('%s: %.3f' %
              (pipe_names[i] + ' Train Accuracy',
               accuracy_score(y_train.values.ravel(), pipe.predict(X_train))))
        print('%s: %.3f' %
              (pipe_names[i] + ' Test Accuracy',
               accuracy_score(y_test.values.ravel(), pipe.predict(X_test))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train.values.ravel(),
                                     pipe.predict(X_train),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test.values.ravel(),
                                     pipe.predict(X_test),
                                     average='micro')))

    for (i, pipe) in enumerate(pipe_lines):
        predict = pipe.predict(X_test)
        cm = confusion_matrix(y_test.values.ravel(),
                              predict,
                              labels=[-1, 0, 1])
        print('{} Confusion Matrix'.format(pipe_names[i]))
        print(cm)

    ## Overlap Studies Functions
    # DEMA - Double Exponential Moving Average
    dema = talib.DEMA(close, timeperiod=3)
    dema = dema.fillna(dema.mean())
    print('DEMA - Double Exponential Moving Average shape: {}'.format(
        dema.shape))

    # EMA - Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())
    print('EMA - Exponential Moving Average shape: {}'.format(ema.shape))

    # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    hilbert = talib.HT_TRENDLINE(close)
    hilbert = hilbert.fillna(hilbert.mean())
    print(
        'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'.
        format(hilbert.shape))

    # KAMA - Kaufman Adaptive Moving Average
    kama = talib.KAMA(close, timeperiod=3)
    kama = kama.fillna(kama.mean())
    print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format(
        kama.shape))

    # MA - Moving average
    ma = talib.MA(close, timeperiod=3, matype=0)
    ma = ma.fillna(ma.mean())
    print('MA - Moving average shape: {}'.format(kama.shape))

    # MIDPOINT - MidPoint over period
    midpoint = talib.MIDPOINT(close, timeperiod=7)
    midpoint = midpoint.fillna(midpoint.mean())
    print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape))

    # MIDPRICE - Midpoint Price over period
    midprice = talib.MIDPRICE(high, low, timeperiod=7)
    midprice = midprice.fillna(midprice.mean())
    print('MIDPRICE - Midpoint Price over period shape: {}'.format(
        midprice.shape))

    # SAR - Parabolic SAR
    sar = talib.SAR(high, low, acceleration=0, maximum=0)
    sar = sar.fillna(sar.mean())
    print('SAR - Parabolic SAR shape: {}'.format(sar.shape))

    # SAREXT - Parabolic SAR - Extended
    sarext = talib.SAREXT(high,
                          low,
                          startvalue=0,
                          offsetonreverse=0,
                          accelerationinitlong=0,
                          accelerationlong=0,
                          accelerationmaxlong=0,
                          accelerationinitshort=0,
                          accelerationshort=0,
                          accelerationmaxshort=0)
    sarext = sarext.fillna(sarext.mean())
    print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape))

    # SMA - Simple Moving Average
    sma = talib.SMA(close, timeperiod=3)
    sma = sma.fillna(sma.mean())
    print('SMA - Simple Moving Average shape: {}'.format(sma.shape))

    # T3 - Triple Exponential Moving Average (T3)
    t3 = talib.T3(close, timeperiod=5, vfactor=0)
    t3 = t3.fillna(t3.mean())
    print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape))

    # TEMA - Triple Exponential Moving Average
    tema = talib.TEMA(close, timeperiod=3)
    tema = tema.fillna(tema.mean())
    print('TEMA - Triple Exponential Moving Average shape: {}'.format(
        tema.shape))

    # TRIMA - Triangular Moving Average
    trima = talib.TRIMA(close, timeperiod=3)
    trima = trima.fillna(trima.mean())
    print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape))

    # WMA - Weighted Moving Average
    wma = talib.WMA(close, timeperiod=3)
    wma = wma.fillna(wma.mean())
    print('WMA - Weighted Moving Average shape: {}'.format(wma.shape))

    ## Momentum Indicator Functions
    # ADX - Average Directional Movement Index
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())
    print('ADX - Average Directional Movement Index shape: {}'.format(
        adx.shape))

    # ADXR - Average Directional Movement Index Rating
    adxr = talib.ADXR(high, low, close, timeperiod=7)
    adxr = adxr.fillna(adxr.mean())
    print('ADXR - Average Directional Movement Index Rating shape: {}'.format(
        adxr.shape))

    # APO - Absolute Price Oscillator
    apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0)
    apo = apo.fillna(apo.mean())
    print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape))

    # AROONOSC - Aroon Oscillator
    aroon = talib.AROONOSC(high, low, timeperiod=14)
    aroon = aroon.fillna(aroon.mean())
    print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape))

    # BOP - Balance Of Power
    bop = talib.BOP(open, high, low, close)
    bop = bop.fillna(bop.mean())
    print('BOP - Balance Of Power shape: {}'.format(apo.shape))

    # CCI - Commodity Channel Index
    cci = talib.CCI(high, low, close, timeperiod=7)
    cci = cci.fillna(cci.mean())
    print('CCI - Commodity Channel Index shape: {}'.format(cci.shape))

    # CMO - Chande Momentum Oscillator
    cmo = talib.CMO(close, timeperiod=7)
    cmo = cmo.fillna(cmo.mean())
    print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape))

    # DX - Directional Movement Index
    dx = talib.DX(high, low, close, timeperiod=7)
    dx = dx.fillna(dx.mean())
    print('DX - Directional Movement Index shape: {}'.format(dx.shape))

    # MFI - Money Flow Index
    mfi = talib.MFI(high, low, close, volume, timeperiod=7)
    mfi = mfi.fillna(mfi.mean())
    print('MFI - Money Flow Index shape: {}'.format(mfi.shape))

    # MINUS_DI - Minus Directional Indicator
    minusdi = talib.MINUS_DI(high, low, close, timeperiod=14)
    minusdi = minusdi.fillna(minusdi.mean())
    print('MINUS_DI - Minus Directional Indicator shape: {}'.format(
        minusdi.shape))

    # MINUS_DM - Minus Directional Movement
    minusdm = talib.MINUS_DM(high, low, timeperiod=14)
    minusdm = minusdm.fillna(minusdm.mean())
    print('MINUS_DM - Minus Directional Movement shape: {}'.format(
        minusdm.shape))

    # MOM - Momentum
    mom = talib.MOM(close, timeperiod=5)
    mom = mom.fillna(mom.mean())
    print('MOM - Momentum shape: {}'.format(mom.shape))

    # PLUS_DI - Plus Directional Indicator
    plusdi = talib.PLUS_DI(high, low, close, timeperiod=14)
    plusdi = plusdi.fillna(plusdi.mean())
    print('PLUS_DI - Plus Directional Indicator shape: {}'.format(
        plusdi.shape))

    # PLUS_DM - Plus Directional Movement
    plusdm = talib.PLUS_DM(high, low, timeperiod=14)
    plusdm = plusdm.fillna(plusdm.mean())
    print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape))

    # PPO - Percentage Price Oscillator
    ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0)
    ppo = ppo.fillna(ppo.mean())
    print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape))

    # ROC - Rate of change:((price/prevPrice)-1)*100
    roc = talib.ROC(close, timeperiod=10)
    roc = roc.fillna(roc.mean())
    print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format(
        roc.shape))

    # RSI - Relative Strength Index
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())
    print('RSI - Relative Strength Index shape: {}'.format(rsi.shape))

    # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    trix = talib.TRIX(close, timeperiod=30)
    trix = trix.fillna(trix.mean())
    print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'.
          format(trix.shape))

    # ULTOSC - Ultimate Oscillator
    ultosc = talib.ULTOSC(high,
                          low,
                          close,
                          timeperiod1=7,
                          timeperiod2=14,
                          timeperiod3=28)
    ultosc = ultosc.fillna(ultosc.mean())
    print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape))

    # WILLR - Williams'%R
    willr = talib.WILLR(high, low, close, timeperiod=7)
    willr = willr.fillna(willr.mean())
    print("WILLR - Williams'%R shape: {}".format(willr.shape))

    ## Volume Indicator Functions
    # AD - Chaikin A/D Line
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())
    print('AD - Chaikin A/D Line shape: {}'.format(ad.shape))

    # ADOSC - Chaikin A/D Oscillator
    adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10)
    adosc = adosc.fillna(adosc.mean())
    print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape))

    # OBV - On Balance Volume
    obv = talib.OBV(close, volume)
    obv = obv.fillna(obv.mean())
    print('OBV - On Balance Volume shape: {}'.format(obv.shape))

    ## Volatility Indicator Functions
    # ATR - Average True Range
    atr = talib.ATR(high, low, close, timeperiod=7)
    atr = atr.fillna(atr.mean())
    print('ATR - Average True Range shape: {}'.format(atr.shape))

    # NATR - Normalized Average True Range
    natr = talib.NATR(high, low, close, timeperiod=7)
    natr = natr.fillna(natr.mean())
    print('NATR - Normalized Average True Range shape: {}'.format(natr.shape))

    # TRANGE - True Range
    trange = talib.TRANGE(high, low, close)
    trange = trange.fillna(trange.mean())
    print('TRANGE - True Range shape: {}'.format(natr.shape))

    ## Price Transform Functions
    # AVGPRICE - Average Price
    avg = talib.AVGPRICE(open, high, low, close)
    avg = avg.fillna(avg.mean())
    print('AVGPRICE - Average Price shape: {}'.format(natr.shape))

    # MEDPRICE - Median Price
    medprice = talib.MEDPRICE(high, low)
    medprice = medprice.fillna(medprice.mean())
    print('MEDPRICE - Median Price shape: {}'.format(medprice.shape))

    # TYPPRICE - Typical Price
    typ = talib.TYPPRICE(high, low, close)
    typ = typ.fillna(typ.mean())
    print('TYPPRICE - Typical Price shape: {}'.format(typ.shape))

    # WCLPRICE - Weighted Close Price
    wcl = talib.WCLPRICE(high, low, close)
    wcl = wcl.fillna(wcl.mean())
    print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape))

    ## Cycle Indicator Functions
    # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
    dcperiod = talib.HT_DCPERIOD(close)
    dcperiod = dcperiod.fillna(dcperiod.mean())
    print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'.
          format(dcperiod.shape))

    # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
    dcphase = talib.HT_DCPHASE(close)
    dcphase = dcphase.fillna(dcphase.mean())
    print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'.
          format(dcperiod.shape))

    ## Statistic Functions
    # BETA - Beta
    beta = talib.BETA(high, low, timeperiod=3)
    beta = beta.fillna(beta.mean())
    print('BETA - Beta shape: {}'.format(beta.shape))

    # CORREL - Pearson's Correlation Coefficient(r)
    correl = talib.CORREL(high, low, timeperiod=30)
    correl = correl.fillna(correl.mean())
    print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format(
        beta.shape))

    # LINEARREG - Linear Regression
    linreg = talib.LINEARREG(close, timeperiod=7)
    linreg = linreg.fillna(linreg.mean())
    print("LINEARREG - Linear Regression shape: {}".format(linreg.shape))

    # STDDEV - Standard Deviation
    stddev = talib.STDDEV(close, timeperiod=5, nbdev=1)
    stddev = stddev.fillna(stddev.mean())
    print("STDDEV - Standard Deviation shape: {}".format(stddev.shape))

    # TSF - Time Series Forecast
    tsf = talib.TSF(close, timeperiod=7)
    tsf = tsf.fillna(tsf.mean())
    print("TSF - Time Series Forecast shape: {}".format(tsf.shape))

    # VAR - Variance
    var = talib.VAR(close, timeperiod=5, nbdev=1)
    var = var.fillna(var.mean())
    print("VAR - Variance shape: {}".format(var.shape))

    ## Feature DataFrame
    X_full = pd.concat([
        X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma,
        t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi,
        minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc,
        willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl,
        dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var
    ],
                       axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_full.columns = [
        'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint',
        'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma',
        'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi',
        'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix',
        'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange',
        'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta',
        'correl', 'linreg', 'stddev', 'tsf', 'var'
    ]
    X_full.join(y_).head(10)

    # full feature models
    X_train_full, X_test_full, y_train_full, y_test_full = train_test_split(
        X_full, y_, test_size=0.33, random_state=42)
    print('X_train shape: {}'.format(X_train_full.shape))
    print('X_test shape: {}'.format(X_test_full.shape))
    print('y_train shape: {}'.format(y_train_full.shape))
    print('y_test shape: {}'.format(y_test_full.shape))

    pipe_knn_full = Pipeline([('scl', StandardScaler()),
                              ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic_full = Pipeline([
        ('scl', StandardScaler()),
        ('est',
         LogisticRegression(solver='lbfgs',
                            multi_class='multinomial',
                            random_state=39))
    ])
    pipe_rf_full = Pipeline([('scl', StandardScaler()),
                             ('est', RandomForestClassifier(random_state=39))])
    pipe_gb_full = Pipeline([('scl', StandardScaler()),
                             ('est',
                              GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines_full = [
        pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full
    ]

    for (i, pipe) in enumerate(pipe_lines_full):
        pipe.fit(X_train_full, y_train_full.values.ravel())
        print(pipe)
        print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy',
                            accuracy_score(y_train_full.values.ravel(),
                                           pipe.predict(X_train_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy',
                            accuracy_score(y_test_full.values.ravel(),
                                           pipe.predict(X_test_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train_full.values.ravel(),
                                     pipe.predict(X_train_full),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test_full.values.ravel(),
                                     pipe.predict(X_test_full),
                                     average='micro')))

    # Univariate Statistics
    select = SelectPercentile(percentile=25)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_selected = select.transform(X_train_full)
    X_test_selected = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Univariate Statistics-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Cllassifier with Univariate Statistics
    print(
        '---------------------------With Univariate Statistics--------------------------------------'
    )
    pipe_gb_percentile = Pipeline([
        ('scl', StandardScaler()),
        ('est', GradientBoostingClassifier(random_state=39))
    ])
    pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_percentile.predict(X_train_selected))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_percentile.predict(X_test_selected))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_percentile.predict(X_train_selected),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_percentile.predict(X_test_selected),
                 average='micro')))

    # Model-based Selection
    select = SelectFromModel(RandomForestClassifier(n_estimators=100,
                                                    random_state=42),
                             threshold="1.25*mean")
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_model = select.transform(X_train_full)
    X_test_model = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Model-based Selection--------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Model-based Selection
    print(
        '----------------------------With Model-based Selection--------------------------------------'
    )
    pipe_gb_model = Pipeline([('scl', StandardScaler()),
                              ('est',
                               GradientBoostingClassifier(random_state=39))])
    pipe_gb_model.fit(X_train_model, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_model.predict(X_train_model))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_model.predict(X_test_model))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_model.predict(X_train_model),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_model.predict(X_test_model),
                 average='micro')))

    # Recursive Feature Elimination
    select = RFE(RandomForestClassifier(n_estimators=100, random_state=42),
                 n_features_to_select=15)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_rfe = select.transform(X_train_full)
    X_test_rfe = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Recursive Feature Elimination-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Recursive Feature Elimination
    print(
        '----------------------------With Recursive Feature Elimination--------------------------------------'
    )
    pipe_gb_rfe = Pipeline([('scl', StandardScaler()),
                            ('est',
                             GradientBoostingClassifier(random_state=39))])
    pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_rfe.predict(X_train_rfe))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_rfe.predict(X_test_rfe))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_rfe.predict(X_train_rfe),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_rfe.predict(X_test_rfe),
                 average='micro')))

    cv = cross_val_score(pipe_gb,
                         X_,
                         y_.values.ravel(),
                         cv=StratifiedKFold(n_splits=10,
                                            shuffle=True,
                                            random_state=39))
    print('Cross validation with StratifiedKFold scores: {}'.format(cv))
    print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean()))

    # GridSearch
    n_features = len(df.columns)
    param_grid = {
        'learning_rate': [0.01, 0.1, 1, 10],
        'n_estimators': [1, 10, 100, 200, 300],
        'max_depth': [1, 2, 3, 4, 5]
    }
    stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39)
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)

    grid_search = GridSearchCV(GradientBoostingClassifier(),
                               param_grid,
                               cv=stratifiedcv)
    grid_search.fit(X_train, y_train.values.ravel())
    print('GridSearch Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train.values.ravel(), grid_search.predict(X_train))))
    print('GridSearch Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test.values.ravel(), grid_search.predict(X_test))))
    print('GridSearch Train F1 Score: {:.3f}'.format(
        f1_score(y_train.values.ravel(),
                 grid_search.predict(X_train),
                 average='micro')))
    print('GridSearch Test F1 Score: {:.3f}'.format(
        f1_score(y_test.values.ravel(),
                 grid_search.predict(X_test),
                 average='micro')))

    # GridSearch results
    print("Best params:\n{}".format(grid_search.best_params_))
    print("Best cross-validation score: {:.2f}".format(
        grid_search.best_score_))
    results = pd.DataFrame(grid_search.cv_results_)
    corr_params = results.drop(results.columns[[
        0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20
    ]],
                               axis=1)
    corr_params.head()

    # GridSearch in nested
    cv_gb = cross_val_score(grid_search,
                            X_,
                            y_.values.ravel(),
                            cv=StratifiedKFold(n_splits=3,
                                               shuffle=True,
                                               random_state=39))
    print('Grid Search with nested cross validation scores: {}'.format(cv_gb))
    print('Grid Search with nested cross validation mean: {}'.format(
        cv_gb.mean()))
Esempio n. 28
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)
Esempio n. 29
0
def handle_overlap_studies(args, kax, klines_df, close_times, display_count):
    all_name = ""
    if args.ABANDS:  # ATR BANDS
        name = 'ABANDS'
        real = talib.ATR(klines_df["high"],
                         klines_df["low"],
                         klines_df["close"],
                         timeperiod=14)
        emas = talib.EMA(klines_df["close"], timeperiod=26)
        kax.plot(close_times, emas[-display_count:], "b--", label=name)

        #cs = ['y', 'c', 'm', 'k']
        for idx, n in enumerate(args.ABANDS):
            """
            if idx >= len(cs):
                break
            c = cs[idx]
            """
            c = 'y'
            cl = c + '--'
            n = int(n)
            kax.plot(close_times, (emas + n * real)[-display_count:],
                     cl,
                     label=name + ' upperband')
            kax.plot(close_times, (emas - n * real)[-display_count:],
                     cl,
                     label=name + ' lowerband')

    if args.BANDS:  # BANDS
        name = 'BANDS'
        emas = talib.EMA(klines_df["close"], timeperiod=26)
        kax.plot(close_times, emas[-display_count:], "b--", label=name)
        r = args.BANDS
        kax.plot(close_times, (1 + r) * emas[-display_count:],
                 'y--',
                 label=name + ' upperband')
        kax.plot(close_times, (1 - r) * emas[-display_count:],
                 'y--',
                 label=name + ' lowerband')

    # talib
    os_key = 'BBANDS'
    if args.BBANDS:
        upperband, middleband, lowerband = talib.BBANDS(klines_df["close"],
                                                        timeperiod=5,
                                                        nbdevup=2,
                                                        nbdevdn=2,
                                                        matype=0)
        kax.plot(close_times,
                 upperband[-display_count:],
                 "y",
                 label=os_key + ' upperband')
        kax.plot(close_times,
                 middleband[-display_count:],
                 "b",
                 label=os_key + ' middleband')
        kax.plot(close_times,
                 lowerband[-display_count:],
                 "y",
                 label=os_key + ' lowerband')

    os_key = 'DEMA'
    if args.DEMA:
        real = talib.DEMA(klines_df["close"], timeperiod=args.DEMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    if args.EMA:
        name = 'EMA'
        all_name += "  %s%s" % (name, args.EMA)
        for idx, e_p in enumerate(args.EMA):
            if idx >= len(plot_colors):
                break
            e_p = int(e_p)
            emas = talib.EMA(klines_df["close"], timeperiod=e_p)
            kax.plot(close_times,
                     emas[-display_count:],
                     plot_colors[idx] + '--',
                     label="%sEMA" % (e_p))

    os_key = 'HT_TRENDLINE'
    if args.HT_TRENDLINE:
        real = talib.HT_TRENDLINE(klines_df["close"])
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'KAMA'
    if args.KAMA:
        real = talib.KAMA(klines_df["close"], timeperiod=args.KAMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    if args.MA:
        name = 'MA'
        all_name += "  %s%s" % (name, args.MA)
        for idx, e_p in enumerate(args.MA):
            if idx >= len(plot_colors):
                break
            e_p = int(e_p)
            emas = talib.MA(klines_df["close"], timeperiod=e_p)
            kax.plot(close_times,
                     emas[-display_count:],
                     plot_colors[idx],
                     label="%sMA" % (e_p))

    os_key = 'MAMA'
    if args.MAMA:
        mama, fama = talib.MAMA(klines_df["close"], fastlimit=0, slowlimit=0)
        kax.plot(close_times, mama[-display_count:], "b", label=os_key)
        kax.plot(close_times, fama[-display_count:], "c", label=os_key)

    os_key = 'MIDPOINT'
    if args.MIDPOINT:
        real = talib.MIDPOINT(klines_df["close"], timeperiod=args.MIDPOINT)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'MIDPRICE'
    if args.MIDPRICE:
        real = talib.MIDPRICE(klines_df["high"],
                              klines_df["low"],
                              timeperiod=args.MIDPRICE)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'SAR'
    if args.SAR:
        real = talib.SAR(klines_df["high"],
                         klines_df["low"],
                         acceleration=0,
                         maximum=0)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'SAREXT'
    if args.SAREXT:
        real = talib.SAREXT(klines_df["high"],
                            klines_df["low"],
                            startvalue=0,
                            offsetonreverse=0,
                            accelerationinitlong=0,
                            accelerationlong=0,
                            accelerationmaxlong=0,
                            accelerationinitshort=0,
                            accelerationshort=0,
                            accelerationmaxshort=0)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'SMA'
    if args.SMA:
        real = talib.SMA(klines_df["close"], timeperiod=args.SMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'T3'
    if args.T3:
        real = talib.T3(klines_df["close"], timeperiod=args.T3, vfactor=0)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'TEMA'
    if args.TEMA:
        real = talib.TEMA(klines_df["close"], timeperiod=args.TEMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'TRIMA'
    if args.TRIMA:
        real = talib.TRIMA(klines_df["close"], timeperiod=args.TRIMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    os_key = 'WMA'
    if args.WMA:
        real = talib.WMA(klines_df["close"], timeperiod=args.WMA)
        kax.plot(close_times, real[-display_count:], "y", label=os_key)

    return all_name
# df['mama'],df['fama'] = ta.MAMA(np.array(df['Adj Close'].shift(1)), fastlimit=0, slowlimit=0)
# df['MAVP'] =ta.MAVP(np.array(df['Adj Close'].shift(1)),periods=14, minperiod=2, maxperiod=30, matype=0)
df['MIDPOINT'] = ta.MIDPOINT(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['MIDPRICE'] = ta.MIDPRICE(np.array(df['High'].shift(1)),
                             np.array(df['Low'].shift(1)),
                             timeperiod=n)
df['SAR'] = ta.SAR(np.array(df['High'].shift(1)),
                   np.array(df['Low'].shift(1)),
                   acceleration=0,
                   maximum=0)

df['SAREXT'] = ta.SAREXT(np.array(df['High'].shift(1)),
                         np.array(df['Low'].shift(1)),
                         startvalue=0,
                         offsetonreverse=0,
                         accelerationinitlong=0,
                         accelerationlong=0,
                         accelerationmaxlong=0,
                         accelerationinitshort=0,
                         accelerationshort=0,
                         accelerationmaxshort=0)

df['SMA'] = ta.SMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['T3'] = ta.T3(np.array(df['Adj Close'].shift(1)), timeperiod=n, vfactor=0)
df['TEMA'] = ta.TEMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['TRIMA'] = ta.TRIMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['WMA'] = ta.WMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)

df['20d_ma'] = df['Adj Close'].shift(1).rolling(window=20).mean()
df['50d_ma'] = df['Adj Close'].shift(1).rolling(window=50).mean()
df['Bol_upper'] = df['Adj Close'].shift(1).rolling(
    window=20).mean() + 2 * df['Adj Close'].shift(1).rolling(window=20).std()