def plot_trima(ax, data): """This function plots ################### TRIMA - Triangular Moving Average ########################## """ trima_indicator30 = talib.TRIMA(data['Adj_Close'], timeperiod=30) trima_indicator200 = talib.TRIMA(data['Adj_Close'], timeperiod=200) ax.plot(data["Date"], trima_indicator30, label="Triangular Moving Average 30 days period", color="slateblue") ax.plot(data["Date"], trima_indicator200, label="Triangular Moving Average 200 days period", color="crimson")
def test_trima(): '''test TA.TRIMA''' ma = TA.TRIMA(ohlc, 30) talib_ma = talib.TRIMA(ohlc['close']) assert round(talib_ma[-1], 65) == round(ma.values[-1], 5)
def compTRIMA(self): ta = talib.TRIMA(self.close,timeperiod=self.lookback) self.removeNullID(ta) self.rawFeatures['TRIMA'] = ta FEATURE_SIZE_DICT['TRIMA'] =1 return
def extract_features(data): high = data['High'] low = data['Low'] close = data['Close'] volume = data['Volume'] open_ = data['Open'] data['ADX'] = ta.ADX(high, low, close, timeperiod=19) data['CCI'] = ta.CCI(high, low, close, timeperiod=19) data['CMO'] = ta.CMO(close, timeperiod=14) data['MACD'], X, Y = ta.MACD(close, fastperiod=10, slowperiod=30, signalperiod=9) data['MFI'] = ta.MFI(high, low, close, volume, timeperiod=19) data['MOM'] = ta.MOM(close, timeperiod=9) data['ROCR'] = ta.ROCR(close, timeperiod=12) data['RSI'] = ta.RSI(close, timeperiod=19) data['STOCHSLOWK'], data['STOCHSLOWD'] = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) data['TRIX'] = ta.TRIX(close, timeperiod=30) data['WILLR'] = ta.WILLR(high, low, close, timeperiod=14) data['OBV'] = ta.OBV(close, volume) data['TSF'] = ta.TSF(close, timeperiod=14) data['NATR'] = ta.NATR(high, low, close)#, timeperiod=14) data['ULTOSC'] = ta.ULTOSC(high, low, close) data['AROONOSC'] = ta.AROONOSC(high, low, timeperiod=14) data['BOP'] = ta.BOP(open_, high, low, close) data['LINEARREG'] = ta.LINEARREG(close) data['AP0'] = ta.APO(close, fastperiod=9, slowperiod=23, matype=1) data['TEMA'] = ta.TRIMA(close, 29) return data
def trima(client, symbol, timeframe="6m", col="close", periods=None): """This will return a dataframe of triangular moving average for the given symbol across the given timeframe Args: client (pyEX.Client); Client symbol (string); Ticker timeframe (string); timeframe to use, for pyEX.chart col (string); column to use to calculate periods (int); periods Returns: DataFrame: result """ if periods is None: periods = [30] periods = tolist(periods) df = client.chartDF(symbol, timeframe) build = {col: df[col].values} for per in periods: build["trima-{}".format(per)] = t.TRIMA(df[col].values.astype(float), per) return pd.DataFrame(build)
def preprocessIndicators(self, forecastLen): close_columns = [ col for col in list(self.data.columns.values) if 'Close' in col ] open_columns = [ col for col in list(self.data.columns.values) if 'Open' in col ] high_columns = [ col for col in list(self.data.columns.values) if 'High' in col ] low_columns = [ col for col in list(self.data.columns.values) if 'Low' in col ] #features dependent only on the closing price sma_lengths = [16, 64, 256] for currency in close_columns: #no length dependence #add HT_TRENDLINE - Hilbert transform whatever the f**k that is self.data[currency + '_HT_TRENDLINE_'] = talib.HT_TRENDLINE( self.data[currency]) for length in sma_lengths: #add SMA column self.data[currency + '_SMA_' + str(length)] = talib.SMA( self.data[currency], timeperiod=length) #add WMA - weighted moving average self.data[currency + '_WMA_' + str(length)] = talib.WMA( self.data[currency], timeperiod=length) #add TRIMA - triangilar moving average self.data[currency + '_TRIMA_' + str(length)] = talib.TRIMA( self.data[currency], timeperiod=length) #add TEMA - triple exponential moving average self.data[currency + '_TEMA_' + str(length)] = talib.TEMA( self.data[currency], timeperiod=length) #add DEMA - double exp ma self.data[currency + '_DEMA_' + str(length)] = talib.DEMA( self.data[currency], timeperiod=length) #add bollinger bands upperband, middleband, lowerband = talib.BBANDS( self.data[currency], timeperiod=length, nbdevup=2, nbdevdn=2, matype=0) self.data[currency + '_BOLLINGER_UPPER_' + str(length)] = upperband self.data[currency + '_BOLLINGER_MIDDLE_' + str(length)] = middleband self.data[currency + '_BOLLINGER_LOWER_' + str(length)] = lowerband #we also want to add a 'forecast column', which has the column value for a specific row 'forecastLen' units in the future. self.data[currency + '_FORECAST_' + str(forecastLen)] = self.data[currency].shift( -forecastLen) self.data[currency + '_pipDiff_' + str(forecastLen)] = list( map(self.classify, self.data[currency], self.data[currency + '_FORECAST_' + str(forecastLen)])) return self.data
def test_tma(self): """ Test Triangular Moving Average. """ periods = 200 tma = qufilab.tma(self.close, periods) tma_talib = talib.TRIMA(self.close, periods) np.testing.assert_allclose(tma, tma_talib, rtol=self.tolerance)
def overlap_process(event): print(event.widget.get()) overlap = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(overlap, fontproperties="SimHei") if overlap == '布林线': pass elif overlap == '双指数移动平均线': real = ta.DEMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '指数移动平均线 ': real = ta.EMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '希尔伯特变换——瞬时趋势线': real = ta.HT_TRENDLINE(close) axes[1].plot(real, 'r-') elif overlap == '考夫曼自适应移动平均线': real = ta.KAMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '移动平均线': real = ta.MA(close, timeperiod=30, matype=0) axes[1].plot(real, 'r-') elif overlap == 'MESA自适应移动平均': mama, fama = ta.MAMA(close, fastlimit=0, slowlimit=0) axes[1].plot(mama, 'r-') axes[1].plot(fama, 'g-') elif overlap == '变周期移动平均线': real = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0) axes[1].plot(real, 'r-') elif overlap == '简单移动平均线': real = ta.SMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '三指数移动平均线(T3)': real = ta.T3(close, timeperiod=5, vfactor=0) axes[1].plot(real, 'r-') elif overlap == '三指数移动平均线': real = ta.TEMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '三角形加权法 ': real = ta.TRIMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '加权移动平均数': real = ta.WMA(close, timeperiod=30) axes[1].plot(real, 'r-') plt.show()
def test_trima(): '''test TA.TRIMA''' ma = TA.TRIMA(ohlc, 30) talib_ma = talib.TRIMA(ohlc['close']) #assert round(talib_ma[-1], 5) == round(ma.values[-1], 5) # assert 1509.0876041666781 == 1560.25056 pass # close enough
def get_ma_set_diff(self, df, period, default_col): # print(period) open_price = np.array(df['open'], dtype=float) high_price = np.array(df['high'], dtype=float) low_price = np.array(df['low'], dtype=float) close_price = np.array(df['close'], dtype=float) # volume = np.array(df['Volume'], dtype=float) target = close_price if default_col == "open": target = open_price elif default_col == "high": target = high_price elif default_col == "low": target = low_price # m # Simple Moving Average (SMA) sma_m = talib.SMA(target, timeperiod=period[0]) # Adaptive Moving Average (AMA) ama_m = talib.KAMA(target, timeperiod=period[0]) # Typical Price Moving Average (TPMA) typical_price_m = talib.TYPPRICE(high_price, low_price, close_price) tpma_m = talib.SMA(typical_price_m, timeperiod=period[0]) # Triangular Moving Average (TMA) tma_m = talib.TRIMA(target, timeperiod=period[0]) # n # Simple Moving Average (SMA) sma_n = talib.SMA(target, timeperiod=period[1]) # Adaptive Moving Average (AMA) ama_n = talib.KAMA(target, timeperiod=period[1]) # Typical Price Moving Average (TPMA) typical_price_n = talib.TYPPRICE(high_price, low_price, close_price) tpma_n = talib.SMA(typical_price_n, timeperiod=period[1]) # Triangular Moving Average (TMA) tma_n = talib.TRIMA(target, timeperiod=period[1]) sma_diff = sma_n - sma_m ama_diff = ama_n - ama_m tpma_diff = tpma_n - tpma_m tma_diff = tma_n - tma_m return sma_diff, ama_diff, tpma_diff, tma_diff
def trima(self, averages, ultrafastperiod=None, fastperiod=None, slowperiod=None): """ TRIMA = Triangular Moving Average (Overlap Studies) :param averages: :param ultrafastperiod: :param fastperiod: :param slowperiod: :return: """ if ultrafastperiod is None: ultrafastperiod = self.trimaultrafast if fastperiod is None: fastperiod = self.trimafast if slowperiod is None: slowperiod = self.trimaslow # nejdříve vyřízneme potřebnou délku. ultrafast = averages[-ultrafastperiod:] fast = averages[-fastperiod:] slow = averages[-slowperiod:] # Převedeme na desetinná čísla. ultrafast = [float(x) for x in ultrafast] fast = [float(x) for x in fast] slow = [float(x) for x in slow] # nyní ji převedeme na datové pole, # pro použití v talib. ultrafast = numpy.asarray(ultrafast) fast = numpy.asarray(fast) slow = numpy.asarray(slow) # Výsledky resultultrafast = talib.TRIMA(ultrafast, ultrafastperiod) resultfast = talib.TRIMA(fast, fastperiod) resultslow = talib.TRIMA(slow, slowperiod) # Z datového pole vyřízneme poslední výsledek # a navracíme jako desetinné číslo. cutultrafastresult = float(resultultrafast[-1]) cutfastresult = float(resultfast[-1]) cutslowresult = float(resultslow[-1]) # Vrátí ntici desetinných čísel. return cutultrafastresult, cutfastresult, cutslowresult
def test_TRIMA(self): self.env.add_operator('trima', { 'operator': OperatorTRIMA, }) string = 'trima(30, open)' gene = self.env.parse_string(string) ser = gene.eval(self.env, self.dates[29], self.dates[29]).iloc[0] o = self.env.get_data_value('open').values res = [] for i, val in ser.iteritems(): res.append(talib.TRIMA(o[:30, i], 30)[-1] == val) self.assertTrue(all(res))
def TRIMA(close, timeperiod=30): ''' Triangular Moving Average 分组: Overlap Studies 重叠研究 简介: 分析和应用: real = TRIMA(close, timeperiod=30) ''' return talib.TRIMA(close, timeperiod)
def add_TRIMA(self, timeperiod=20, type='line', color='secondary', **kwargs): """Triangular Moving Average.""" if not self.has_close: raise Exception() utils.kwargs_check(kwargs, VALID_TA_KWARGS) if 'kind' in kwargs: type = kwargs['kind'] name = 'TRIMA({})'.format(str(timeperiod)) self.pri[name] = dict(type=type, color=color) self.ind[name] = talib.TRIMA(self.df[self.cl].values, timeperiod)
def trima(close, graph=False, **kwargs): ''' TRIMA - Triangular Moving Average ''' result = talib.TRIMA(close, **kwargs) df = pd.concat([pd.DataFrame(close), pd.DataFrame(result)], axis=1) df.columns = ['close', 'trima'] if graph: title = 'TRIMA - Triangular Moving Average' style = ['r-'] + ['--'] * (len(df.columns) - 1) fname = '16_trima.png' make_graph(title, df, style=style, fname=fname) return df
def test_trima(self): result = self.overlap.trima(self.close) self.assertIsInstance(result, Series) self.assertEqual(result.name, 'TRIMA_10') try: expected = tal.TRIMA(self.close, 10) pdt.assert_series_equal(result, expected, check_names=False) except AssertionError as ae: try: corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION) self.assertGreater(corr, CORRELATION_THRESHOLD) except Exception as ex: error_analysis(result, CORRELATION, ex)
def indicatorsTrima(self, averages, period=None): # nejdříve vyřízneme potřebnou délku. averages = averages[-period:] # Převedeme na desetinná čísla. averages = [float(x) for x in averages] # nyní ji převedeme na datové pole, # pro použití v talib. averages = numpy.asarray(averages) # Výsledky result = talib.TRIMA(averages, period) # Z datového pole vyřízneme poslední výsledek # a navracíme jako desetinné číslo. cutresult = float(result[-1]) # Vrátí ntici desetinných čísel. return cutresult
def trima(candles: np.ndarray, period=30, sequential=False) -> Union[float, np.ndarray]: """ TRIMA - Triangular Moving Average :param candles: np.ndarray :param period: int - default: 30 :param sequential: bool - default=False :return: float | np.ndarray """ if not sequential and len(candles) > 240: candles = candles[-240:] res = talib.TRIMA(candles[:, 2], timeperiod=period) return res if sequential else res[-1]
def overlap(self): upper, middle, lower = talib.BBANDS(self.close,timeperiod=5,nbdevup=2,nbdevdn=2,matype=0) EMA = talib.EMA(self.close,self.period) HT_trendline = talib.HT_TRENDLINE(self.close) KAMA = talib.KAMA(self.close,self.period) MA = talib.MA(self.close,self.period,matype=0) mama, fama = talib.MAMA(self.close,fastlimit = 0.5,slowlimit = 0.05) mavp = talib.MAVP(self.close, minperiod = 5,maxperiod = 30,matype=0) midpoint = talib.MIDPOINT(self.close,self.period) midprice = talib.MIDPRICE(self.high,self.low,self.period) sar = talib.SAR(self.high,self.low,acceleration = 0, maximum = 0) sarext = talib.SAREXT(self.high,self.low,startvalue=0,offsetonreverse=0,accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) sma = talib.SMA(self.close,self.period) t3 = talib.T3(self.close, self.period, vfactor = 0) tema = talib.TEMA(self.close,self.period) trima = talib.TRIMA(self.close,period) wma = talib.WMA(self.close, self.period)
def trima(candles: np.ndarray, period: int = 30, source_type: str = "close", sequential: bool = False) -> Union[ float, np.ndarray]: """ TRIMA - Triangular Moving Average :param candles: np.ndarray :param period: int - default: 30 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) res = talib.TRIMA(source, timeperiod=period) return res if sequential else res[-1]
def triangMA(self, df, period): """The Triangular Moving Average is a form of Weighted Moving Average wherein the weights are assigned in a triangular pattern. For example, the weights for a 7 period Triangular Moving Average would be 1, 2, 3, 4, 3, 2, 1. This gives more weight to the middle of the time series and less weight to the oldest and newest data. Args: close: Closing price of instrument period: number of time periods in the calculation feature_dict: Dictionary of added features Return: triangularMA feature_dict """ col_name = 'TriangMA_' + str(period) current_feature['Latest'] = col_name feature_dict[col_name] = 'Keep' df[col_name] = ta.TRIMA(df.Close, period) return df
def handle_data(self, kl): self.kl = kl #.copy() self.data['t'] = kl['t'] if self.indicator == 'ma': #MA_Type: 0=SMA, 1=EMA, 2=WMA, 3=DEMA, 4=TEMA, 5=TRIMA, 6=KAMA, 7=MAMA, 8=T3 (Default=SMA) self.data[col_name] = ta.MA(kl['c'], **self.params) elif self.indicator == 'wma': self.data[col_name] = ta.WMA(kl['c'], **self.params) elif self.indicator == 'sma': self.data[col_name] = ta.SMA(kl['c'], **self.params) elif self.indicator == 'ema': self.data[col_name] = ta.EMA(kl['c'], **self.params) elif self.indicator == 'dema': self.data[col_name] = ta.DEMA(kl['c'], **self.params) elif self.indicator == 'trima': self.data[col_name] = ta.TRIMA(kl['c'], **self.params) elif self.indicator == 'kama': self.data[col_name] = ta.KAMA(kl['c'], **self.params) elif self.indicator == 't3': self.data[col_name] = ta.T3(kl['c'], **self.params) ##, vfactor = 0)
def trima(candles: np.ndarray, period: int = 30, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ TRIMA - Triangular Moving Average :param candles: np.ndarray :param period: int - default: 30 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] source = get_candle_source(candles, source_type=source_type) res = talib.TRIMA(source, timeperiod=period) return res if sequential else res[-1]
def get_df(filename): tech = pd.read_csv(filename,index_col=0) dclose = np.array(tech.close) volume = np.array(tech.volume) tech['RSI'] = ta.RSI(np.array(tech.close)) tech['OBV'] = ta.OBV(np.array(tech.close),np.array(tech.volume)) tech['NATR'] = ta.NATR(np.array(tech.high),np.array(tech.low),np.array(tech.close)) tech['upper'],tech['middle'],tech['lower'] = ta.BBANDS(np.array(tech.close), timeperiod=10, nbdevup=2, nbdevdn=2, matype=0) tech['DEMA'] = ta.DEMA(dclose, timeperiod=30) tech['EMA'] = ta.EMA(dclose, timeperiod=30) tech['HT_TRENDLINE'] = ta.HT_TRENDLINE(dclose) tech['KAMA'] = ta.KAMA(dclose, timeperiod=30) tech['MA'] = ta.MA(dclose, timeperiod=30, matype=0) # tech['mama'], tech['fama'] = ta.MAMA(dclose, fastlimit=0, slowlimit=0) tech['MIDPOINT'] = ta.MIDPOINT(dclose, timeperiod=14) tech['SMA'] = ta.SMA(dclose, timeperiod=30) tech['T3'] = ta.T3(dclose, timeperiod=5, vfactor=0) tech['TEMA'] = ta.TEMA(dclose, timeperiod=30) tech['TRIMA'] = ta.TRIMA(dclose, timeperiod=30) tech['WMA'] = ta.WMA(dclose, timeperiod=30) tech['APO'] = ta.APO(dclose, fastperiod=12, slowperiod=26, matype=0) tech['CMO'] = ta.CMO(dclose, timeperiod=14) tech['macd'], tech['macdsignal'], tech['macdhist'] = ta.MACD(dclose, fastperiod=12, slowperiod=26, signalperiod=9) tech['MOM'] = ta.MOM(dclose, timeperiod=10) tech['PPO'] = ta.PPO(dclose, fastperiod=12, slowperiod=26, matype=0) tech['ROC'] = ta.ROC(dclose, timeperiod=10) tech['ROCR'] = ta.ROCR(dclose, timeperiod=10) tech['ROCP'] = ta.ROCP(dclose, timeperiod=10) tech['ROCR100'] = ta.ROCR100(dclose, timeperiod=10) tech['RSI'] = ta.RSI(dclose, timeperiod=14) tech['fastk'], tech['fastd'] = ta.STOCHRSI(dclose, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) tech['TRIX'] = ta.TRIX(dclose, timeperiod=30) tech['OBV'] = ta.OBV(dclose,volume) tech['HT_DCPHASE'] = ta.HT_DCPHASE(dclose) tech['inphase'], tech['quadrature'] = ta.HT_PHASOR(dclose) tech['sine'], tech['leadsine'] = ta.HT_SINE(dclose) tech['HT_TRENDMODE'] = ta.HT_TRENDMODE(dclose) df = tech.fillna(method='bfill') return df
def getOverlapFunctions(df): high = df['High'] low = df['Low'] close = df['Close'] open = df['Open'] volume = df['Volume'] df['UPPERBB'],df['MIDDLEBB'],df['LOWERBB'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['DEMA'] = ta.DEMA(close,timeperiod=30) df['EMA'] = ta.EMA(close, timeperiod=30) df['HT_TREND'] = ta.HT_TRENDLINE(close) df['KAMA'] = ta.KAMA(close, timeperiod=30) df['MA'] = ta.MA(close, timeperiod=30, matype=0) #df['MAMA'],df['FAMA'] = ta.MAMA(close, fastlimit=0, slowlimit=0) #df['MAVP'] = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0) df['MIDPOINT'] = ta.MIDPOINT(close, timeperiod=14) df['MIDPRICE'] = ta.MIDPRICE(high, low, timeperiod=14) df['SAR'] = ta.SAR(high, low, acceleration=0, maximum=0) df['SAREXT'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) df['SMA'] = ta.SMA(close, timeperiod=30) df['T3'] = ta.T3(close, timeperiod=5, vfactor=0) df['TEMA'] = ta.TEMA(close, timeperiod=30) df['TRIMA'] = ta.TRIMA(close, timeperiod=30) df['WMA'] = ta.WMA(close, timeperiod=30)
def marketTrend(self, averages, ultraslowperiod=None): """ Vypočítává trend celého trhu, jako trimu ultra slow. :param averages: :param ultraslowperiod: :return: """ if ultraslowperiod is None: ultraslowperiod = self.trimaultraslow # nejdříve vyřízneme potřebnou délku. ultraslow = averages[-ultraslowperiod:] # Převedeme na desetinná čísla. ultraslow = [float(x) for x in ultraslow] # nyní ji převedeme na datové pole, # pro použití v talib. ultraslow = numpy.asarray(ultraslow) # Výsledky resultultraslow = talib.TRIMA(ultraslow, ultraslowperiod) # Z datového pole vyřízneme poslední výsledek # a navracíme jako desetinné číslo. cutresultultraslow = float(resultultraslow[-1]) # Návrat return cutresultultraslow
def calc_features(df): open = df['op'] high = df['hi'] low = df['lo'] close = df['cl'] volume = df['volume'] orig_columns = df.columns hilo = (df['hi'] + df['lo']) / 2 df['BBANDS_upperband'], df['BBANDS_middleband'], df[ 'BBANDS_lowerband'] = talib.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['BBANDS_upperband'] -= hilo df['BBANDS_middleband'] -= hilo df['BBANDS_lowerband'] -= hilo df['DEMA'] = talib.DEMA(close, timeperiod=30) - hilo df['EMA'] = talib.EMA(close, timeperiod=30) - hilo df['HT_TRENDLINE'] = talib.HT_TRENDLINE(close) - hilo df['KAMA'] = talib.KAMA(close, timeperiod=30) - hilo df['MA'] = talib.MA(close, timeperiod=30, matype=0) - hilo df['MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) - hilo df['SMA'] = talib.SMA(close, timeperiod=30) - hilo df['T3'] = talib.T3(close, timeperiod=5, vfactor=0) - hilo df['TEMA'] = talib.TEMA(close, timeperiod=30) - hilo df['TRIMA'] = talib.TRIMA(close, timeperiod=30) - hilo df['WMA'] = talib.WMA(close, timeperiod=30) - hilo df['ADX'] = talib.ADX(high, low, close, timeperiod=14) df['ADXR'] = talib.ADXR(high, low, close, timeperiod=14) df['APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) df['AROON_aroondown'], df['AROON_aroonup'] = talib.AROON(high, low, timeperiod=14) df['AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14) df['BOP'] = talib.BOP(open, high, low, close) df['CCI'] = talib.CCI(high, low, close, timeperiod=14) df['DX'] = talib.DX(high, low, close, timeperiod=14) df['MACD_macd'], df['MACD_macdsignal'], df['MACD_macdhist'] = talib.MACD( close, fastperiod=12, slowperiod=26, signalperiod=9) # skip MACDEXT MACDFIX たぶん同じなので df['MFI'] = talib.MFI(high, low, close, volume, timeperiod=14) df['MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14) df['MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df['MOM'] = talib.MOM(close, timeperiod=10) df['PLUS_DI'] = talib.PLUS_DI(high, low, close, timeperiod=14) df['PLUS_DM'] = talib.PLUS_DM(high, low, timeperiod=14) df['RSI'] = talib.RSI(close, timeperiod=14) df['STOCH_slowk'], df['STOCH_slowd'] = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['STOCHF_fastk'], df['STOCHF_fastd'] = talib.STOCHF(high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['STOCHRSI_fastk'], df['STOCHRSI_fastd'] = talib.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['TRIX'] = talib.TRIX(close, timeperiod=30) df['ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['WILLR'] = talib.WILLR(high, low, close, timeperiod=14) df['AD'] = talib.AD(high, low, close, volume) df['ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['OBV'] = talib.OBV(close, volume) df['ATR'] = talib.ATR(high, low, close, timeperiod=14) df['NATR'] = talib.NATR(high, low, close, timeperiod=14) df['TRANGE'] = talib.TRANGE(high, low, close) df['HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df['HT_DCPHASE'] = talib.HT_DCPHASE(close) df['HT_PHASOR_inphase'], df['HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df['HT_SINE_sine'], df['HT_SINE_leadsine'] = talib.HT_SINE(close) df['HT_TRENDMODE'] = talib.HT_TRENDMODE(close) df['BETA'] = talib.BETA(high, low, timeperiod=5) df['CORREL'] = talib.CORREL(high, low, timeperiod=30) df['LINEARREG'] = talib.LINEARREG(close, timeperiod=14) - close df['LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(close, timeperiod=14) df['LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT( close, timeperiod=14) - close df['LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1) return df
def Set_indicators(data, period): """ :param data: dataframe containing ohlcv prices and indexed with date :param period: period used to calculate indicators :return: dataframe of Technical indicators of specefic timeframe """ df = pd.DataFrame(index=data.index) df["mom" + str(period)] = talib.MOM(data[USED_CLOSE_PRICE], timeperiod=period) #change it later df["slowk" + str(period)], df["slowd" + str(period)] = talib.STOCH( data["High"], data["Low"], data[USED_CLOSE_PRICE], fastk_period=period, slowk_period=period, slowk_matype=0, slowd_period=period, slowd_matype=0) #WILLR df["willr" + str(period)] = talib.WILLR(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #MACDFIX - Moving Average Convergence/Divergence Fix 12/26 df["macd" + str(period)], df["macdsignal" + str(period)], df["macdhist" + str(period)] = talib.MACDFIX( data[USED_CLOSE_PRICE], signalperiod=period) #CCI df["cci" + str(period)] = talib.CCI(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #Bollinger Bands df["upperband" + str(period)], df["middleband" + str(period)], df["lowerband" + str(period)] = talib.BBANDS( data[USED_CLOSE_PRICE], timeperiod=period, nbdevup=2, nbdevdn=2, matype=0) #HIGH SMA df["smaHigh" + str(period)] = talib.SMA(data["High"], timeperiod=period) # SMA Adj Prices df["sma" + str(period)] = talib.SMA(data[USED_CLOSE_PRICE], timeperiod=period) df["smaHighLow" + str(period)] = talib.SMA(talib.MEDPRICE( data["High"], data["Low"]), timeperiod=period) #DEMA - Double Exponential Moving Average df["DEMA" + str(period)] = talib.DEMA(data[USED_CLOSE_PRICE], timeperiod=period) #EMA - Exponential Moving Average df["EMA" + str(period)] = talib.EMA(data[USED_CLOSE_PRICE], timeperiod=period) #HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline df["HT_TRENDLINE" + str(period)] = talib.HT_TRENDLINE( data[USED_CLOSE_PRICE]) #KAMA - Kaufman Adaptive Moving Average df["KAMA" + str(period)] = talib.KAMA(data[USED_CLOSE_PRICE], timeperiod=period) #T3 - Triple Exponential Moving Average (T3) df["T3-" + str(period)] = talib.T3(data[USED_CLOSE_PRICE], timeperiod=period, vfactor=0) #TEMA - Triple Exponential Moving Average df["TEMA" + str(period)] = talib.TEMA(data[USED_CLOSE_PRICE], timeperiod=period) #TRIMA - Triangular Moving Average df["TRIMA" + str(period)] = talib.TRIMA(data[USED_CLOSE_PRICE], timeperiod=period) #WMA - Weighted Moving Average df["TRIMA" + str(period)] = talib.WMA(data[USED_CLOSE_PRICE], timeperiod=period) ########## #ADX - Average Directional Movement Index df["ADX" + str(period)] = talib.ADX(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #ADXR - Average Directional Movement Index Rating df["ADXR" + str(period)] = talib.ADXR(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #AROON - Aroon df["aroondown" + str(period)], df["aroonup" + str(period)] = talib.AROON( data["High"], data["Low"], timeperiod=period) #AROONOSC - Aroon Oscillator df["aroondown" + str(period)] = talib.AROONOSC(data["High"], data["Low"], timeperiod=period) #CMO - Chande Momentum Oscillator df["CMO" + str(period)] = talib.CMO(data[USED_CLOSE_PRICE], timeperiod=period) #DX - Directional Movement Index df["DX" + str(period)] = talib.DX(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #MINUS_DI - Minus Directional Indicator df["MINUS_DI" + str(period)] = talib.MINUS_DI(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #MINUS_DM - Minus Directional Movement df["MINUS_DM" + str(period)] = talib.MINUS_DM(data["High"], data["Low"], timeperiod=period) #PLUS_DI - Plus Directional Indicator df["PLUS_DI" + str(period)] = talib.PLUS_DI(data["High"], data["Low"], data[USED_CLOSE_PRICE], timeperiod=period) #PLUS_DM - Plus Directional Movement df["PLUS_DM" + str(period)] = talib.PLUS_DM(data["High"], data["Low"], timeperiod=period) #ROC - Rate of change : ((price/prevPrice)-1)*100 df["roc" + str(period)] = talib.ROC(data[USED_CLOSE_PRICE], timeperiod=period) #ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice df["ROCP" + str(period)] = talib.ROCP(data[USED_CLOSE_PRICE], timeperiod=period) #ROCR - Rate of change ratio: (price/prevPrice) df["ROCR" + str(period)] = talib.ROCR(data[USED_CLOSE_PRICE], timeperiod=period) #ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100 df["ROCR100-" + str(period)] = talib.ROCR100(data[USED_CLOSE_PRICE], timeperiod=period) #RSI - Relative Strength Index df["RSI-" + str(period)] = talib.RSI(data[USED_CLOSE_PRICE], timeperiod=period) #TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA df["TRIX" + str(period)] = talib.TRIX(data[USED_CLOSE_PRICE], timeperiod=period) #MFI - Money Flow Index df["MFI" + str(period)] = talib.MFI(data["High"], data["Low"], data[USED_CLOSE_PRICE], data["Volume"], timeperiod=period) #ADOSC - Chaikin A/D Oscillator set periods later please df["ADOSC" + str(period)] = talib.ADOSC(data["High"], data["Low"], data[USED_CLOSE_PRICE], data["Volume"], fastperiod=np.round(period / 3), slowperiod=period) return df
def main(): ohlcv = api_ohlcv('20191017') open, high, low, close, volume, timestamp = [], [], [], [], [], [] for i in ohlcv: open.append(int(i[0])) high.append(int(i[1])) low.append(int(i[2])) close.append(int(i[3])) volume.append(float(i[4])) time_str = str(i[5]) timestamp.append( datetime.fromtimestamp(int( time_str[:10])).strftime('%Y/%m/%d %H:%M:%M')) date_time_index = pd.to_datetime( timestamp) # convert to DateTimeIndex type df = pd.DataFrame( { 'open': open, 'high': high, 'low': low, 'close': close, 'volume': volume }, index=date_time_index) # df.index += pd.offsets.Hour(9) # adjustment for JST if required print(df.shape) print(df.columns) # pct_change f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan y = df.rename(columns={ 'close': 'y' }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0) X = df.copy() y_ = pd.DataFrame(y.map(f), columns=['y']) y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0) df_ = pd.concat([X, y_], axis=1) # check the shape print( '----------------------------------------------------------------------------------------' ) print('X shape: (%i,%i)' % X.shape) print('y shape: (%i,%i)' % y_.shape) print( '----------------------------------------------------------------------------------------' ) print(y_.groupby('y').size()) print('y=1 up, y=0 stay, y=-1 down') print( '----------------------------------------------------------------------------------------' ) # feature calculation open = pd.Series(df['open']) high = pd.Series(df['high']) low = pd.Series(df['low']) close = pd.Series(df['close']) volume = pd.Series(df['volume']) # pct_change for new column X['diff'] = y # Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) # Momentum momentum = talib.MOM(close, timeperiod=5) momentum = momentum.fillna(momentum.mean()) # RSI rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) # ADX adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) # ADX change adx_change = adx.pct_change(1).shift(-1) adx_change = adx_change.fillna(adx_change.mean()) # AD ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad'] X_.join(y_).head(10) # default parameter models X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train.shape)) print('X_test shape: {}'.format(X_test.shape)) print('y_train shape: {}'.format(y_train.shape)) print('y_test shape: {}'.format(y_test.shape)) pipe_knn = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic = Pipeline([('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39))]) pipe_rf = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb] for (i, pipe) in enumerate(pipe_lines): pipe.fit(X_train, y_train.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train.values.ravel(), pipe.predict(X_train)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test.values.ravel(), pipe.predict(X_test)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train.values.ravel(), pipe.predict(X_train), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test.values.ravel(), pipe.predict(X_test), average='micro'))) for (i, pipe) in enumerate(pipe_lines): predict = pipe.predict(X_test) cm = confusion_matrix(y_test.values.ravel(), predict, labels=[-1, 0, 1]) print('{} Confusion Matrix'.format(pipe_names[i])) print(cm) ## Overlap Studies Functions # DEMA - Double Exponential Moving Average dema = talib.DEMA(close, timeperiod=3) dema = dema.fillna(dema.mean()) print('DEMA - Double Exponential Moving Average shape: {}'.format( dema.shape)) # EMA - Exponential Moving Average ema = talib.EMA(close, timeperiod=3) ema = ema.fillna(ema.mean()) print('EMA - Exponential Moving Average shape: {}'.format(ema.shape)) # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline hilbert = talib.HT_TRENDLINE(close) hilbert = hilbert.fillna(hilbert.mean()) print( 'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'. format(hilbert.shape)) # KAMA - Kaufman Adaptive Moving Average kama = talib.KAMA(close, timeperiod=3) kama = kama.fillna(kama.mean()) print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format( kama.shape)) # MA - Moving average ma = talib.MA(close, timeperiod=3, matype=0) ma = ma.fillna(ma.mean()) print('MA - Moving average shape: {}'.format(kama.shape)) # MIDPOINT - MidPoint over period midpoint = talib.MIDPOINT(close, timeperiod=7) midpoint = midpoint.fillna(midpoint.mean()) print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape)) # MIDPRICE - Midpoint Price over period midprice = talib.MIDPRICE(high, low, timeperiod=7) midprice = midprice.fillna(midprice.mean()) print('MIDPRICE - Midpoint Price over period shape: {}'.format( midprice.shape)) # SAR - Parabolic SAR sar = talib.SAR(high, low, acceleration=0, maximum=0) sar = sar.fillna(sar.mean()) print('SAR - Parabolic SAR shape: {}'.format(sar.shape)) # SAREXT - Parabolic SAR - Extended sarext = talib.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) sarext = sarext.fillna(sarext.mean()) print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape)) # SMA - Simple Moving Average sma = talib.SMA(close, timeperiod=3) sma = sma.fillna(sma.mean()) print('SMA - Simple Moving Average shape: {}'.format(sma.shape)) # T3 - Triple Exponential Moving Average (T3) t3 = talib.T3(close, timeperiod=5, vfactor=0) t3 = t3.fillna(t3.mean()) print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape)) # TEMA - Triple Exponential Moving Average tema = talib.TEMA(close, timeperiod=3) tema = tema.fillna(tema.mean()) print('TEMA - Triple Exponential Moving Average shape: {}'.format( tema.shape)) # TRIMA - Triangular Moving Average trima = talib.TRIMA(close, timeperiod=3) trima = trima.fillna(trima.mean()) print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape)) # WMA - Weighted Moving Average wma = talib.WMA(close, timeperiod=3) wma = wma.fillna(wma.mean()) print('WMA - Weighted Moving Average shape: {}'.format(wma.shape)) ## Momentum Indicator Functions # ADX - Average Directional Movement Index adx = talib.ADX(high, low, close, timeperiod=14) adx = adx.fillna(adx.mean()) print('ADX - Average Directional Movement Index shape: {}'.format( adx.shape)) # ADXR - Average Directional Movement Index Rating adxr = talib.ADXR(high, low, close, timeperiod=7) adxr = adxr.fillna(adxr.mean()) print('ADXR - Average Directional Movement Index Rating shape: {}'.format( adxr.shape)) # APO - Absolute Price Oscillator apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) apo = apo.fillna(apo.mean()) print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape)) # AROONOSC - Aroon Oscillator aroon = talib.AROONOSC(high, low, timeperiod=14) aroon = aroon.fillna(aroon.mean()) print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape)) # BOP - Balance Of Power bop = talib.BOP(open, high, low, close) bop = bop.fillna(bop.mean()) print('BOP - Balance Of Power shape: {}'.format(apo.shape)) # CCI - Commodity Channel Index cci = talib.CCI(high, low, close, timeperiod=7) cci = cci.fillna(cci.mean()) print('CCI - Commodity Channel Index shape: {}'.format(cci.shape)) # CMO - Chande Momentum Oscillator cmo = talib.CMO(close, timeperiod=7) cmo = cmo.fillna(cmo.mean()) print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape)) # DX - Directional Movement Index dx = talib.DX(high, low, close, timeperiod=7) dx = dx.fillna(dx.mean()) print('DX - Directional Movement Index shape: {}'.format(dx.shape)) # MFI - Money Flow Index mfi = talib.MFI(high, low, close, volume, timeperiod=7) mfi = mfi.fillna(mfi.mean()) print('MFI - Money Flow Index shape: {}'.format(mfi.shape)) # MINUS_DI - Minus Directional Indicator minusdi = talib.MINUS_DI(high, low, close, timeperiod=14) minusdi = minusdi.fillna(minusdi.mean()) print('MINUS_DI - Minus Directional Indicator shape: {}'.format( minusdi.shape)) # MINUS_DM - Minus Directional Movement minusdm = talib.MINUS_DM(high, low, timeperiod=14) minusdm = minusdm.fillna(minusdm.mean()) print('MINUS_DM - Minus Directional Movement shape: {}'.format( minusdm.shape)) # MOM - Momentum mom = talib.MOM(close, timeperiod=5) mom = mom.fillna(mom.mean()) print('MOM - Momentum shape: {}'.format(mom.shape)) # PLUS_DI - Plus Directional Indicator plusdi = talib.PLUS_DI(high, low, close, timeperiod=14) plusdi = plusdi.fillna(plusdi.mean()) print('PLUS_DI - Plus Directional Indicator shape: {}'.format( plusdi.shape)) # PLUS_DM - Plus Directional Movement plusdm = talib.PLUS_DM(high, low, timeperiod=14) plusdm = plusdm.fillna(plusdm.mean()) print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape)) # PPO - Percentage Price Oscillator ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0) ppo = ppo.fillna(ppo.mean()) print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape)) # ROC - Rate of change:((price/prevPrice)-1)*100 roc = talib.ROC(close, timeperiod=10) roc = roc.fillna(roc.mean()) print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format( roc.shape)) # RSI - Relative Strength Index rsi = talib.RSI(close, timeperiod=14) rsi = rsi.fillna(rsi.mean()) print('RSI - Relative Strength Index shape: {}'.format(rsi.shape)) # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA trix = talib.TRIX(close, timeperiod=30) trix = trix.fillna(trix.mean()) print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'. format(trix.shape)) # ULTOSC - Ultimate Oscillator ultosc = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) ultosc = ultosc.fillna(ultosc.mean()) print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape)) # WILLR - Williams'%R willr = talib.WILLR(high, low, close, timeperiod=7) willr = willr.fillna(willr.mean()) print("WILLR - Williams'%R shape: {}".format(willr.shape)) ## Volume Indicator Functions # AD - Chaikin A/D Line ad = talib.AD(high, low, close, volume) ad = ad.fillna(ad.mean()) print('AD - Chaikin A/D Line shape: {}'.format(ad.shape)) # ADOSC - Chaikin A/D Oscillator adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) adosc = adosc.fillna(adosc.mean()) print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape)) # OBV - On Balance Volume obv = talib.OBV(close, volume) obv = obv.fillna(obv.mean()) print('OBV - On Balance Volume shape: {}'.format(obv.shape)) ## Volatility Indicator Functions # ATR - Average True Range atr = talib.ATR(high, low, close, timeperiod=7) atr = atr.fillna(atr.mean()) print('ATR - Average True Range shape: {}'.format(atr.shape)) # NATR - Normalized Average True Range natr = talib.NATR(high, low, close, timeperiod=7) natr = natr.fillna(natr.mean()) print('NATR - Normalized Average True Range shape: {}'.format(natr.shape)) # TRANGE - True Range trange = talib.TRANGE(high, low, close) trange = trange.fillna(trange.mean()) print('TRANGE - True Range shape: {}'.format(natr.shape)) ## Price Transform Functions # AVGPRICE - Average Price avg = talib.AVGPRICE(open, high, low, close) avg = avg.fillna(avg.mean()) print('AVGPRICE - Average Price shape: {}'.format(natr.shape)) # MEDPRICE - Median Price medprice = talib.MEDPRICE(high, low) medprice = medprice.fillna(medprice.mean()) print('MEDPRICE - Median Price shape: {}'.format(medprice.shape)) # TYPPRICE - Typical Price typ = talib.TYPPRICE(high, low, close) typ = typ.fillna(typ.mean()) print('TYPPRICE - Typical Price shape: {}'.format(typ.shape)) # WCLPRICE - Weighted Close Price wcl = talib.WCLPRICE(high, low, close) wcl = wcl.fillna(wcl.mean()) print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape)) ## Cycle Indicator Functions # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period dcperiod = talib.HT_DCPERIOD(close) dcperiod = dcperiod.fillna(dcperiod.mean()) print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'. format(dcperiod.shape)) # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase dcphase = talib.HT_DCPHASE(close) dcphase = dcphase.fillna(dcphase.mean()) print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'. format(dcperiod.shape)) ## Statistic Functions # BETA - Beta beta = talib.BETA(high, low, timeperiod=3) beta = beta.fillna(beta.mean()) print('BETA - Beta shape: {}'.format(beta.shape)) # CORREL - Pearson's Correlation Coefficient(r) correl = talib.CORREL(high, low, timeperiod=30) correl = correl.fillna(correl.mean()) print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format( beta.shape)) # LINEARREG - Linear Regression linreg = talib.LINEARREG(close, timeperiod=7) linreg = linreg.fillna(linreg.mean()) print("LINEARREG - Linear Regression shape: {}".format(linreg.shape)) # STDDEV - Standard Deviation stddev = talib.STDDEV(close, timeperiod=5, nbdev=1) stddev = stddev.fillna(stddev.mean()) print("STDDEV - Standard Deviation shape: {}".format(stddev.shape)) # TSF - Time Series Forecast tsf = talib.TSF(close, timeperiod=7) tsf = tsf.fillna(tsf.mean()) print("TSF - Time Series Forecast shape: {}".format(tsf.shape)) # VAR - Variance var = talib.VAR(close, timeperiod=5, nbdev=1) var = var.fillna(var.mean()) print("VAR - Variance shape: {}".format(var.shape)) ## Feature DataFrame X_full = pd.concat([ X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma, t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi, minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc, willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl, dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var ], axis=1).drop(['open', 'high', 'low', 'close'], axis=1) X_full.columns = [ 'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint', 'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma', 'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi', 'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix', 'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange', 'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta', 'correl', 'linreg', 'stddev', 'tsf', 'var' ] X_full.join(y_).head(10) # full feature models X_train_full, X_test_full, y_train_full, y_test_full = train_test_split( X_full, y_, test_size=0.33, random_state=42) print('X_train shape: {}'.format(X_train_full.shape)) print('X_test shape: {}'.format(X_test_full.shape)) print('y_train shape: {}'.format(y_train_full.shape)) print('y_test shape: {}'.format(y_test_full.shape)) pipe_knn_full = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) pipe_logistic_full = Pipeline([ ('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39)) ]) pipe_rf_full = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) pipe_gb_full = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting'] pipe_lines_full = [ pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full ] for (i, pipe) in enumerate(pipe_lines_full): pipe.fit(X_train_full, y_train_full.values.ravel()) print(pipe) print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train_full.values.ravel(), pipe.predict(X_train_full)))) print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test_full.values.ravel(), pipe.predict(X_test_full)))) print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train_full.values.ravel(), pipe.predict(X_train_full), average='micro'))) print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test_full.values.ravel(), pipe.predict(X_test_full), average='micro'))) # Univariate Statistics select = SelectPercentile(percentile=25) select.fit(X_train_full, y_train_full.values.ravel()) X_train_selected = select.transform(X_train_full) X_test_selected = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Univariate Statistics-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Cllassifier with Univariate Statistics print( '---------------------------With Univariate Statistics--------------------------------------' ) pipe_gb_percentile = Pipeline([ ('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39)) ]) pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_percentile.predict(X_train_selected), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_percentile.predict(X_test_selected), average='micro'))) # Model-based Selection select = SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42), threshold="1.25*mean") select.fit(X_train_full, y_train_full.values.ravel()) X_train_model = select.transform(X_train_full) X_test_model = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Model-based Selection--------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Model-based Selection print( '----------------------------With Model-based Selection--------------------------------------' ) pipe_gb_model = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_model.fit(X_train_model, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_model.predict(X_train_model), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_model.predict(X_test_model), average='micro'))) # Recursive Feature Elimination select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=15) select.fit(X_train_full, y_train_full.values.ravel()) X_train_rfe = select.transform(X_train_full) X_test_rfe = select.transform(X_test_full) # GradientBoost Classifier print( '--------------------------Without Recursive Feature Elimination-------------------------------------' ) pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb.fit(X_train_full, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) # GradientBoost Classifier with Recursive Feature Elimination print( '----------------------------With Recursive Feature Elimination--------------------------------------' ) pipe_gb_rfe = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel()) print('Train Accuracy: {:.3f}'.format( accuracy_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe)))) print('Test Accuracy: {:.3f}'.format( accuracy_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe)))) print('Train F1 Score: {:.3f}'.format( f1_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe), average='micro'))) print('Test F1 Score: {:.3f}'.format( f1_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe), average='micro'))) cv = cross_val_score(pipe_gb, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=39)) print('Cross validation with StratifiedKFold scores: {}'.format(cv)) print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean())) # GridSearch n_features = len(df.columns) param_grid = { 'learning_rate': [0.01, 0.1, 1, 10], 'n_estimators': [1, 10, 100, 200, 300], 'max_depth': [1, 2, 3, 4, 5] } stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39) X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) grid_search = GridSearchCV(GradientBoostingClassifier(), param_grid, cv=stratifiedcv) grid_search.fit(X_train, y_train.values.ravel()) print('GridSearch Train Accuracy: {:.3f}'.format( accuracy_score(y_train.values.ravel(), grid_search.predict(X_train)))) print('GridSearch Test Accuracy: {:.3f}'.format( accuracy_score(y_test.values.ravel(), grid_search.predict(X_test)))) print('GridSearch Train F1 Score: {:.3f}'.format( f1_score(y_train.values.ravel(), grid_search.predict(X_train), average='micro'))) print('GridSearch Test F1 Score: {:.3f}'.format( f1_score(y_test.values.ravel(), grid_search.predict(X_test), average='micro'))) # GridSearch results print("Best params:\n{}".format(grid_search.best_params_)) print("Best cross-validation score: {:.2f}".format( grid_search.best_score_)) results = pd.DataFrame(grid_search.cv_results_) corr_params = results.drop(results.columns[[ 0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20 ]], axis=1) corr_params.head() # GridSearch in nested cv_gb = cross_val_score(grid_search, X_, y_.values.ravel(), cv=StratifiedKFold(n_splits=3, shuffle=True, random_state=39)) print('Grid Search with nested cross validation scores: {}'.format(cv_gb)) print('Grid Search with nested cross validation mean: {}'.format( cv_gb.mean()))
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)