Esempio n. 1
0
def plot_trima(ax, data):
    """This function plots
################### TRIMA - Triangular Moving Average ##########################
"""
    trima_indicator30 = talib.TRIMA(data['Adj_Close'], timeperiod=30)
    trima_indicator200 = talib.TRIMA(data['Adj_Close'], timeperiod=200)

    ax.plot(data["Date"],
            trima_indicator30,
            label="Triangular Moving Average 30 days period",
            color="slateblue")
    ax.plot(data["Date"],
            trima_indicator200,
            label="Triangular Moving Average 200 days period",
            color="crimson")
Esempio n. 2
0
def test_trima():
    '''test TA.TRIMA'''

    ma = TA.TRIMA(ohlc, 30)
    talib_ma = talib.TRIMA(ohlc['close'])

    assert round(talib_ma[-1], 65) == round(ma.values[-1], 5)
Esempio n. 3
0
 def compTRIMA(self):
     ta = talib.TRIMA(self.close,timeperiod=self.lookback)
     self.removeNullID(ta)
     self.rawFeatures['TRIMA'] = ta 
     
     FEATURE_SIZE_DICT['TRIMA'] =1
     return
Esempio n. 4
0
def extract_features(data):
    high = data['High']
    low = data['Low']
    close = data['Close']
    volume = data['Volume']
    open_ = data['Open']
    
    data['ADX'] = ta.ADX(high, low, close, timeperiod=19)
    data['CCI'] = ta.CCI(high, low, close, timeperiod=19)  
    data['CMO'] = ta.CMO(close, timeperiod=14)
    data['MACD'], X, Y = ta.MACD(close, fastperiod=10, slowperiod=30, signalperiod=9)
    data['MFI'] = ta.MFI(high, low, close, volume, timeperiod=19)
    data['MOM'] = ta.MOM(close, timeperiod=9)
    data['ROCR'] = ta.ROCR(close, timeperiod=12) 
    data['RSI'] = ta.RSI(close, timeperiod=19)  
    data['STOCHSLOWK'], data['STOCHSLOWD'] = ta.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
    data['TRIX'] = ta.TRIX(close, timeperiod=30)
    data['WILLR'] = ta.WILLR(high, low, close, timeperiod=14)
    data['OBV'] = ta.OBV(close, volume)
    data['TSF'] = ta.TSF(close, timeperiod=14)
    data['NATR'] = ta.NATR(high, low, close)#, timeperiod=14)
    data['ULTOSC'] = ta.ULTOSC(high, low, close)
    data['AROONOSC'] = ta.AROONOSC(high, low, timeperiod=14)
    data['BOP'] = ta.BOP(open_, high, low, close)
    data['LINEARREG'] = ta.LINEARREG(close)
    data['AP0'] = ta.APO(close, fastperiod=9, slowperiod=23, matype=1)
    data['TEMA'] = ta.TRIMA(close, 29)
    
    return data
Esempio n. 5
0
def trima(client, symbol, timeframe="6m", col="close", periods=None):
    """This will return a dataframe of triangular moving average
     for the given symbol across the given timeframe

    Args:
        client (pyEX.Client); Client
        symbol (string); Ticker
        timeframe (string); timeframe to use, for pyEX.chart
        col (string); column to use to calculate
        periods (int); periods

    Returns:
        DataFrame: result
    """
    if periods is None:
        periods = [30]
    periods = tolist(periods)

    df = client.chartDF(symbol, timeframe)

    build = {col: df[col].values}
    for per in periods:
        build["trima-{}".format(per)] = t.TRIMA(df[col].values.astype(float),
                                                per)
    return pd.DataFrame(build)
Esempio n. 6
0
    def preprocessIndicators(self, forecastLen):
        close_columns = [
            col for col in list(self.data.columns.values) if 'Close' in col
        ]
        open_columns = [
            col for col in list(self.data.columns.values) if 'Open' in col
        ]
        high_columns = [
            col for col in list(self.data.columns.values) if 'High' in col
        ]
        low_columns = [
            col for col in list(self.data.columns.values) if 'Low' in col
        ]

        #features dependent only on the closing price
        sma_lengths = [16, 64, 256]
        for currency in close_columns:
            #no length dependence #add HT_TRENDLINE - Hilbert transform whatever the f**k that is
            self.data[currency + '_HT_TRENDLINE_'] = talib.HT_TRENDLINE(
                self.data[currency])

            for length in sma_lengths:
                #add SMA column
                self.data[currency + '_SMA_' + str(length)] = talib.SMA(
                    self.data[currency], timeperiod=length)
                #add WMA - weighted moving average
                self.data[currency + '_WMA_' + str(length)] = talib.WMA(
                    self.data[currency], timeperiod=length)
                #add TRIMA - triangilar moving average
                self.data[currency + '_TRIMA_' + str(length)] = talib.TRIMA(
                    self.data[currency], timeperiod=length)
                #add TEMA -  triple exponential moving average
                self.data[currency + '_TEMA_' + str(length)] = talib.TEMA(
                    self.data[currency], timeperiod=length)
                #add DEMA - double exp ma
                self.data[currency + '_DEMA_' + str(length)] = talib.DEMA(
                    self.data[currency], timeperiod=length)
                #add bollinger bands
                upperband, middleband, lowerband = talib.BBANDS(
                    self.data[currency],
                    timeperiod=length,
                    nbdevup=2,
                    nbdevdn=2,
                    matype=0)
                self.data[currency + '_BOLLINGER_UPPER_' +
                          str(length)] = upperband
                self.data[currency + '_BOLLINGER_MIDDLE_' +
                          str(length)] = middleband
                self.data[currency + '_BOLLINGER_LOWER_' +
                          str(length)] = lowerband

            #we also want to add a 'forecast column', which has the column value for a specific row 'forecastLen' units in the future.
            self.data[currency + '_FORECAST_' +
                      str(forecastLen)] = self.data[currency].shift(
                          -forecastLen)
            self.data[currency + '_pipDiff_' + str(forecastLen)] = list(
                map(self.classify, self.data[currency],
                    self.data[currency + '_FORECAST_' + str(forecastLen)]))

        return self.data
Esempio n. 7
0
 def test_tma(self):
     """
     Test Triangular Moving Average.
     """
     periods = 200
     tma = qufilab.tma(self.close, periods)
     tma_talib = talib.TRIMA(self.close, periods)
     np.testing.assert_allclose(tma, tma_talib, rtol=self.tolerance)
Esempio n. 8
0
def overlap_process(event):
    print(event.widget.get())
    overlap = event.widget.get()

    upperband, middleband, lowerband = ta.BBANDS(close,
                                                 timeperiod=5,
                                                 nbdevup=2,
                                                 nbdevdn=2,
                                                 matype=0)

    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(overlap, fontproperties="SimHei")

    if overlap == '布林线':
        pass
    elif overlap == '双指数移动平均线':
        real = ta.DEMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '指数移动平均线 ':
        real = ta.EMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '希尔伯特变换——瞬时趋势线':
        real = ta.HT_TRENDLINE(close)
        axes[1].plot(real, 'r-')
    elif overlap == '考夫曼自适应移动平均线':
        real = ta.KAMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '移动平均线':
        real = ta.MA(close, timeperiod=30, matype=0)
        axes[1].plot(real, 'r-')
    elif overlap == 'MESA自适应移动平均':
        mama, fama = ta.MAMA(close, fastlimit=0, slowlimit=0)
        axes[1].plot(mama, 'r-')
        axes[1].plot(fama, 'g-')
    elif overlap == '变周期移动平均线':
        real = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
        axes[1].plot(real, 'r-')
    elif overlap == '简单移动平均线':
        real = ta.SMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '三指数移动平均线(T3)':
        real = ta.T3(close, timeperiod=5, vfactor=0)
        axes[1].plot(real, 'r-')
    elif overlap == '三指数移动平均线':
        real = ta.TEMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '三角形加权法 ':
        real = ta.TRIMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '加权移动平均数':
        real = ta.WMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    plt.show()
Esempio n. 9
0
def test_trima():
    '''test TA.TRIMA'''

    ma = TA.TRIMA(ohlc, 30)
    talib_ma = talib.TRIMA(ohlc['close'])

    #assert round(talib_ma[-1], 5) == round(ma.values[-1], 5)
    # assert 1509.0876041666781 == 1560.25056
    pass  # close enough
Esempio n. 10
0
File: MA.py Progetto: kinglin/CI2Sam
    def get_ma_set_diff(self, df, period, default_col):
        # print(period)
        open_price = np.array(df['open'], dtype=float)
        high_price = np.array(df['high'], dtype=float)
        low_price = np.array(df['low'], dtype=float)
        close_price = np.array(df['close'], dtype=float)
        # volume = np.array(df['Volume'], dtype=float)

        target = close_price
        if default_col == "open":
            target = open_price
        elif default_col == "high":
            target = high_price
        elif default_col == "low":
            target = low_price

        # m
        # Simple Moving Average (SMA)
        sma_m = talib.SMA(target, timeperiod=period[0])
        # Adaptive Moving Average (AMA)
        ama_m = talib.KAMA(target, timeperiod=period[0])
        # Typical Price Moving Average (TPMA)
        typical_price_m = talib.TYPPRICE(high_price, low_price, close_price)
        tpma_m = talib.SMA(typical_price_m, timeperiod=period[0])
        # Triangular Moving Average (TMA)
        tma_m = talib.TRIMA(target, timeperiod=period[0])

        # n
        # Simple Moving Average (SMA)
        sma_n = talib.SMA(target, timeperiod=period[1])
        # Adaptive Moving Average (AMA)
        ama_n = talib.KAMA(target, timeperiod=period[1])
        # Typical Price Moving Average (TPMA)
        typical_price_n = talib.TYPPRICE(high_price, low_price, close_price)
        tpma_n = talib.SMA(typical_price_n, timeperiod=period[1])
        # Triangular Moving Average (TMA)
        tma_n = talib.TRIMA(target, timeperiod=period[1])

        sma_diff = sma_n - sma_m
        ama_diff = ama_n - ama_m
        tpma_diff = tpma_n - tpma_m
        tma_diff = tma_n - tma_m

        return sma_diff, ama_diff, tpma_diff, tma_diff
Esempio n. 11
0
    def trima(self,
              averages,
              ultrafastperiod=None,
              fastperiod=None,
              slowperiod=None):
        """
		TRIMA = Triangular Moving Average (Overlap Studies)
		:param averages:
		:param ultrafastperiod:
		:param fastperiod:
		:param slowperiod:
		:return:
		"""
        if ultrafastperiod is None:
            ultrafastperiod = self.trimaultrafast
        if fastperiod is None:
            fastperiod = self.trimafast
        if slowperiod is None:
            slowperiod = self.trimaslow
        # nejdříve vyřízneme potřebnou délku.
        ultrafast = averages[-ultrafastperiod:]
        fast = averages[-fastperiod:]
        slow = averages[-slowperiod:]
        # Převedeme na desetinná čísla.
        ultrafast = [float(x) for x in ultrafast]
        fast = [float(x) for x in fast]
        slow = [float(x) for x in slow]
        # nyní ji převedeme na datové pole,
        # pro použití v talib.
        ultrafast = numpy.asarray(ultrafast)
        fast = numpy.asarray(fast)
        slow = numpy.asarray(slow)
        # Výsledky
        resultultrafast = talib.TRIMA(ultrafast, ultrafastperiod)
        resultfast = talib.TRIMA(fast, fastperiod)
        resultslow = talib.TRIMA(slow, slowperiod)
        # Z datového pole vyřízneme poslední výsledek
        # a navracíme jako desetinné číslo.
        cutultrafastresult = float(resultultrafast[-1])
        cutfastresult = float(resultfast[-1])
        cutslowresult = float(resultslow[-1])
        # Vrátí ntici desetinných čísel.
        return cutultrafastresult, cutfastresult, cutslowresult
 def test_TRIMA(self):
     self.env.add_operator('trima', {
         'operator': OperatorTRIMA,
         })
     string = 'trima(30, open)'
     gene = self.env.parse_string(string)
     ser = gene.eval(self.env, self.dates[29], self.dates[29]).iloc[0]
     o = self.env.get_data_value('open').values
     res = []
     for i, val in ser.iteritems():
         res.append(talib.TRIMA(o[:30, i], 30)[-1] == val)
     self.assertTrue(all(res))
Esempio n. 13
0
def TRIMA(close, timeperiod=30):
    ''' Triangular Moving Average

    分组: Overlap Studies 重叠研究

    简介:

    分析和应用:

    real = TRIMA(close, timeperiod=30)
    '''
    return talib.TRIMA(close, timeperiod)
Esempio n. 14
0
def add_TRIMA(self, timeperiod=20, type='line', color='secondary', **kwargs):
    """Triangular Moving Average."""

    if not self.has_close:
        raise Exception()

    utils.kwargs_check(kwargs, VALID_TA_KWARGS)
    if 'kind' in kwargs:
        type = kwargs['kind']

    name = 'TRIMA({})'.format(str(timeperiod))
    self.pri[name] = dict(type=type, color=color)
    self.ind[name] = talib.TRIMA(self.df[self.cl].values, timeperiod)
Esempio n. 15
0
def trima(close, graph=False, **kwargs):
    '''
    TRIMA - Triangular Moving Average
    '''
    result = talib.TRIMA(close, **kwargs)
    df = pd.concat([pd.DataFrame(close), pd.DataFrame(result)], axis=1)
    df.columns = ['close', 'trima']
    if graph:
        title = 'TRIMA - Triangular Moving Average'
        style = ['r-'] + ['--'] * (len(df.columns) - 1)
        fname = '16_trima.png'
        make_graph(title, df, style=style, fname=fname)
    return df
Esempio n. 16
0
    def test_trima(self):
        result = self.overlap.trima(self.close)
        self.assertIsInstance(result, Series)
        self.assertEqual(result.name, 'TRIMA_10')

        try:
            expected = tal.TRIMA(self.close, 10)
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError as ae:
            try:
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                error_analysis(result, CORRELATION, ex)
Esempio n. 17
0
 def indicatorsTrima(self, averages, period=None):
     # nejdříve vyřízneme potřebnou délku.
     averages = averages[-period:]
     # Převedeme na desetinná čísla.
     averages = [float(x) for x in averages]
     # nyní ji převedeme na datové pole,
     # pro použití v talib.
     averages = numpy.asarray(averages)
     # Výsledky
     result = talib.TRIMA(averages, period)
     # Z datového pole vyřízneme poslední výsledek
     # a navracíme jako desetinné číslo.
     cutresult = float(result[-1])
     # Vrátí ntici desetinných čísel.
     return cutresult
Esempio n. 18
0
def trima(candles: np.ndarray, period=30, sequential=False) -> Union[float, np.ndarray]:
    """
    TRIMA - Triangular Moving Average

    :param candles: np.ndarray
    :param period: int - default: 30
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    if not sequential and len(candles) > 240:
        candles = candles[-240:]

    res = talib.TRIMA(candles[:, 2], timeperiod=period)

    return res if sequential else res[-1]
Esempio n. 19
0
	def overlap(self):
		upper, middle, lower = talib.BBANDS(self.close,timeperiod=5,nbdevup=2,nbdevdn=2,matype=0)
		EMA = talib.EMA(self.close,self.period)
		HT_trendline = talib.HT_TRENDLINE(self.close)
		KAMA = talib.KAMA(self.close,self.period)
		MA = talib.MA(self.close,self.period,matype=0)
		mama, fama = talib.MAMA(self.close,fastlimit = 0.5,slowlimit = 0.05)
		mavp = talib.MAVP(self.close, minperiod = 5,maxperiod = 30,matype=0)
		midpoint = talib.MIDPOINT(self.close,self.period)
		midprice = talib.MIDPRICE(self.high,self.low,self.period)
		sar = talib.SAR(self.high,self.low,acceleration = 0, maximum = 0)
		sarext = talib.SAREXT(self.high,self.low,startvalue=0,offsetonreverse=0,accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
		sma = talib.SMA(self.close,self.period)
		t3 = talib.T3(self.close, self.period, vfactor = 0)
		tema = talib.TEMA(self.close,self.period)
		trima = talib.TRIMA(self.close,period)
		wma = talib.WMA(self.close, self.period)
Esempio n. 20
0
def trima(candles: np.ndarray, period: int = 30, source_type: str = "close", sequential: bool = False) -> Union[
    float, np.ndarray]:
    """
    TRIMA - Triangular Moving Average

    :param candles: np.ndarray
    :param period: int - default: 30
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)
    res = talib.TRIMA(source, timeperiod=period)

    return res if sequential else res[-1]
    def triangMA(self, df, period):
        """The Triangular Moving Average is a form of Weighted Moving
        Average wherein the weights are assigned in a triangular pattern.
        For example, the weights for a 7 period Triangular Moving Average
        would be 1, 2, 3, 4, 3, 2, 1. This gives more weight to the middle
        of the time series and less weight to the oldest and newest data.
            Args:
                close: Closing price of instrument
                period: number of time periods in the calculation
                feature_dict: Dictionary of added features
            Return:
                triangularMA
                feature_dict
        """
        col_name = 'TriangMA_' + str(period)
        current_feature['Latest'] = col_name
        feature_dict[col_name] = 'Keep'

        df[col_name] = ta.TRIMA(df.Close, period)
        return df
Esempio n. 22
0
 def handle_data(self, kl):
     self.kl = kl  #.copy()
     self.data['t'] = kl['t']
     if self.indicator == 'ma':
         #MA_Type: 0=SMA, 1=EMA, 2=WMA, 3=DEMA, 4=TEMA, 5=TRIMA, 6=KAMA, 7=MAMA, 8=T3 (Default=SMA)
         self.data[col_name] = ta.MA(kl['c'], **self.params)
     elif self.indicator == 'wma':
         self.data[col_name] = ta.WMA(kl['c'], **self.params)
     elif self.indicator == 'sma':
         self.data[col_name] = ta.SMA(kl['c'], **self.params)
     elif self.indicator == 'ema':
         self.data[col_name] = ta.EMA(kl['c'], **self.params)
     elif self.indicator == 'dema':
         self.data[col_name] = ta.DEMA(kl['c'], **self.params)
     elif self.indicator == 'trima':
         self.data[col_name] = ta.TRIMA(kl['c'], **self.params)
     elif self.indicator == 'kama':
         self.data[col_name] = ta.KAMA(kl['c'], **self.params)
     elif self.indicator == 't3':
         self.data[col_name] = ta.T3(kl['c'],
                                     **self.params)  ##, vfactor = 0)
Esempio n. 23
0
def trima(candles: np.ndarray,
          period: int = 30,
          source_type: str = "close",
          sequential: bool = False) -> Union[float, np.ndarray]:
    """
    TRIMA - Triangular Moving Average

    :param candles: np.ndarray
    :param period: int - default: 30
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    warmup_candles_num = get_config('env.data.warmup_candles_num', 240)
    if not sequential and len(candles) > warmup_candles_num:
        candles = candles[-warmup_candles_num:]

    source = get_candle_source(candles, source_type=source_type)
    res = talib.TRIMA(source, timeperiod=period)

    return res if sequential else res[-1]
Esempio n. 24
0
def get_df(filename):
    tech = pd.read_csv(filename,index_col=0)
    dclose = np.array(tech.close)
    volume = np.array(tech.volume)
    tech['RSI'] = ta.RSI(np.array(tech.close))
    tech['OBV'] = ta.OBV(np.array(tech.close),np.array(tech.volume))
    tech['NATR'] = ta.NATR(np.array(tech.high),np.array(tech.low),np.array(tech.close))
    tech['upper'],tech['middle'],tech['lower'] = ta.BBANDS(np.array(tech.close), timeperiod=10, nbdevup=2, nbdevdn=2, matype=0)
    tech['DEMA'] = ta.DEMA(dclose, timeperiod=30)
    tech['EMA'] = ta.EMA(dclose, timeperiod=30)
    tech['HT_TRENDLINE'] = ta.HT_TRENDLINE(dclose)
    tech['KAMA'] = ta.KAMA(dclose, timeperiod=30)
    tech['MA'] = ta.MA(dclose, timeperiod=30, matype=0)
#    tech['mama'], tech['fama'] = ta.MAMA(dclose, fastlimit=0, slowlimit=0)
    tech['MIDPOINT'] = ta.MIDPOINT(dclose, timeperiod=14)
    tech['SMA'] = ta.SMA(dclose, timeperiod=30)
    tech['T3'] = ta.T3(dclose, timeperiod=5, vfactor=0)
    tech['TEMA'] = ta.TEMA(dclose, timeperiod=30)
    tech['TRIMA'] = ta.TRIMA(dclose, timeperiod=30)
    tech['WMA'] = ta.WMA(dclose, timeperiod=30)
    tech['APO'] = ta.APO(dclose, fastperiod=12, slowperiod=26, matype=0)
    tech['CMO'] = ta.CMO(dclose, timeperiod=14)
    tech['macd'], tech['macdsignal'], tech['macdhist'] = ta.MACD(dclose, fastperiod=12, slowperiod=26, signalperiod=9)
    tech['MOM'] = ta.MOM(dclose, timeperiod=10)
    tech['PPO'] = ta.PPO(dclose, fastperiod=12, slowperiod=26, matype=0)
    tech['ROC'] = ta.ROC(dclose, timeperiod=10)
    tech['ROCR'] = ta.ROCR(dclose, timeperiod=10)
    tech['ROCP'] = ta.ROCP(dclose, timeperiod=10)
    tech['ROCR100'] = ta.ROCR100(dclose, timeperiod=10)
    tech['RSI'] = ta.RSI(dclose, timeperiod=14)
    tech['fastk'], tech['fastd'] = ta.STOCHRSI(dclose, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
    tech['TRIX'] = ta.TRIX(dclose, timeperiod=30)
    tech['OBV'] = ta.OBV(dclose,volume)
    tech['HT_DCPHASE'] = ta.HT_DCPHASE(dclose)
    tech['inphase'], tech['quadrature'] = ta.HT_PHASOR(dclose)
    tech['sine'], tech['leadsine'] = ta.HT_SINE(dclose)
    tech['HT_TRENDMODE'] = ta.HT_TRENDMODE(dclose)
    df = tech.fillna(method='bfill')
    return df
Esempio n. 25
0
def getOverlapFunctions(df):
    high = df['High']
    low = df['Low']
    close = df['Close']
    open = df['Open']
    volume = df['Volume']
    df['UPPERBB'],df['MIDDLEBB'],df['LOWERBB'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
    df['DEMA'] = ta.DEMA(close,timeperiod=30)
    df['EMA'] = ta.EMA(close, timeperiod=30)
    df['HT_TREND'] = ta.HT_TRENDLINE(close)
    df['KAMA'] = ta.KAMA(close, timeperiod=30)
    df['MA'] = ta.MA(close, timeperiod=30, matype=0)
    #df['MAMA'],df['FAMA'] = ta.MAMA(close, fastlimit=0, slowlimit=0)
    #df['MAVP'] = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
    df['MIDPOINT'] = ta.MIDPOINT(close, timeperiod=14)
    df['MIDPRICE'] = ta.MIDPRICE(high, low, timeperiod=14)
    df['SAR'] = ta.SAR(high, low, acceleration=0, maximum=0)
    df['SAREXT'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
    df['SMA'] = ta.SMA(close, timeperiod=30)
    df['T3'] = ta.T3(close, timeperiod=5, vfactor=0)
    df['TEMA'] = ta.TEMA(close, timeperiod=30)
    df['TRIMA'] = ta.TRIMA(close, timeperiod=30)
    df['WMA'] = ta.WMA(close, timeperiod=30)
Esempio n. 26
0
    def marketTrend(self, averages, ultraslowperiod=None):
        """
		Vypočítává trend celého trhu, jako
		trimu ultra slow.
		:param averages:
		:param ultraslowperiod:
		:return:
		"""
        if ultraslowperiod is None:
            ultraslowperiod = self.trimaultraslow
        # nejdříve vyřízneme potřebnou délku.
        ultraslow = averages[-ultraslowperiod:]
        # Převedeme na desetinná čísla.
        ultraslow = [float(x) for x in ultraslow]
        # nyní ji převedeme na datové pole,
        # pro použití v talib.
        ultraslow = numpy.asarray(ultraslow)
        # Výsledky
        resultultraslow = talib.TRIMA(ultraslow, ultraslowperiod)
        # Z datového pole vyřízneme poslední výsledek
        # a navracíme jako desetinné číslo.
        cutresultultraslow = float(resultultraslow[-1])
        # Návrat
        return cutresultultraslow
Esempio n. 27
0
def calc_features(df):
    open = df['op']
    high = df['hi']
    low = df['lo']
    close = df['cl']
    volume = df['volume']

    orig_columns = df.columns

    hilo = (df['hi'] + df['lo']) / 2
    df['BBANDS_upperband'], df['BBANDS_middleband'], df[
        'BBANDS_lowerband'] = talib.BBANDS(close,
                                           timeperiod=5,
                                           nbdevup=2,
                                           nbdevdn=2,
                                           matype=0)
    df['BBANDS_upperband'] -= hilo
    df['BBANDS_middleband'] -= hilo
    df['BBANDS_lowerband'] -= hilo
    df['DEMA'] = talib.DEMA(close, timeperiod=30) - hilo
    df['EMA'] = talib.EMA(close, timeperiod=30) - hilo
    df['HT_TRENDLINE'] = talib.HT_TRENDLINE(close) - hilo
    df['KAMA'] = talib.KAMA(close, timeperiod=30) - hilo
    df['MA'] = talib.MA(close, timeperiod=30, matype=0) - hilo
    df['MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) - hilo
    df['SMA'] = talib.SMA(close, timeperiod=30) - hilo
    df['T3'] = talib.T3(close, timeperiod=5, vfactor=0) - hilo
    df['TEMA'] = talib.TEMA(close, timeperiod=30) - hilo
    df['TRIMA'] = talib.TRIMA(close, timeperiod=30) - hilo
    df['WMA'] = talib.WMA(close, timeperiod=30) - hilo

    df['ADX'] = talib.ADX(high, low, close, timeperiod=14)
    df['ADXR'] = talib.ADXR(high, low, close, timeperiod=14)
    df['APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0)
    df['AROON_aroondown'], df['AROON_aroonup'] = talib.AROON(high,
                                                             low,
                                                             timeperiod=14)
    df['AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14)
    df['BOP'] = talib.BOP(open, high, low, close)
    df['CCI'] = talib.CCI(high, low, close, timeperiod=14)
    df['DX'] = talib.DX(high, low, close, timeperiod=14)
    df['MACD_macd'], df['MACD_macdsignal'], df['MACD_macdhist'] = talib.MACD(
        close, fastperiod=12, slowperiod=26, signalperiod=9)
    # skip MACDEXT MACDFIX たぶん同じなので
    df['MFI'] = talib.MFI(high, low, close, volume, timeperiod=14)
    df['MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14)
    df['MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14)
    df['MOM'] = talib.MOM(close, timeperiod=10)
    df['PLUS_DI'] = talib.PLUS_DI(high, low, close, timeperiod=14)
    df['PLUS_DM'] = talib.PLUS_DM(high, low, timeperiod=14)
    df['RSI'] = talib.RSI(close, timeperiod=14)
    df['STOCH_slowk'], df['STOCH_slowd'] = talib.STOCH(high,
                                                       low,
                                                       close,
                                                       fastk_period=5,
                                                       slowk_period=3,
                                                       slowk_matype=0,
                                                       slowd_period=3,
                                                       slowd_matype=0)
    df['STOCHF_fastk'], df['STOCHF_fastd'] = talib.STOCHF(high,
                                                          low,
                                                          close,
                                                          fastk_period=5,
                                                          fastd_period=3,
                                                          fastd_matype=0)
    df['STOCHRSI_fastk'], df['STOCHRSI_fastd'] = talib.STOCHRSI(close,
                                                                timeperiod=14,
                                                                fastk_period=5,
                                                                fastd_period=3,
                                                                fastd_matype=0)
    df['TRIX'] = talib.TRIX(close, timeperiod=30)
    df['ULTOSC'] = talib.ULTOSC(high,
                                low,
                                close,
                                timeperiod1=7,
                                timeperiod2=14,
                                timeperiod3=28)
    df['WILLR'] = talib.WILLR(high, low, close, timeperiod=14)

    df['AD'] = talib.AD(high, low, close, volume)
    df['ADOSC'] = talib.ADOSC(high,
                              low,
                              close,
                              volume,
                              fastperiod=3,
                              slowperiod=10)
    df['OBV'] = talib.OBV(close, volume)

    df['ATR'] = talib.ATR(high, low, close, timeperiod=14)
    df['NATR'] = talib.NATR(high, low, close, timeperiod=14)
    df['TRANGE'] = talib.TRANGE(high, low, close)

    df['HT_DCPERIOD'] = talib.HT_DCPERIOD(close)
    df['HT_DCPHASE'] = talib.HT_DCPHASE(close)
    df['HT_PHASOR_inphase'], df['HT_PHASOR_quadrature'] = talib.HT_PHASOR(
        close)
    df['HT_SINE_sine'], df['HT_SINE_leadsine'] = talib.HT_SINE(close)
    df['HT_TRENDMODE'] = talib.HT_TRENDMODE(close)

    df['BETA'] = talib.BETA(high, low, timeperiod=5)
    df['CORREL'] = talib.CORREL(high, low, timeperiod=30)
    df['LINEARREG'] = talib.LINEARREG(close, timeperiod=14) - close
    df['LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(close, timeperiod=14)
    df['LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT(
        close, timeperiod=14) - close
    df['LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(close, timeperiod=14)
    df['STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1)

    return df
Esempio n. 28
0
def Set_indicators(data, period):
    """
    :param data: dataframe containing ohlcv prices and indexed with date
    :param period: period used to calculate indicators
    :return: dataframe of Technical indicators of specefic timeframe

    """

    df = pd.DataFrame(index=data.index)
    df["mom" + str(period)] = talib.MOM(data[USED_CLOSE_PRICE],
                                        timeperiod=period)
    #change it later
    df["slowk" + str(period)], df["slowd" + str(period)] = talib.STOCH(
        data["High"],
        data["Low"],
        data[USED_CLOSE_PRICE],
        fastk_period=period,
        slowk_period=period,
        slowk_matype=0,
        slowd_period=period,
        slowd_matype=0)

    #WILLR
    df["willr" + str(period)] = talib.WILLR(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #MACDFIX - Moving Average Convergence/Divergence Fix 12/26
    df["macd" + str(period)], df["macdsignal" +
                                 str(period)], df["macdhist" +
                                                  str(period)] = talib.MACDFIX(
                                                      data[USED_CLOSE_PRICE],
                                                      signalperiod=period)

    #CCI
    df["cci" + str(period)] = talib.CCI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #Bollinger Bands
    df["upperband" +
       str(period)], df["middleband" +
                        str(period)], df["lowerband" +
                                         str(period)] = talib.BBANDS(
                                             data[USED_CLOSE_PRICE],
                                             timeperiod=period,
                                             nbdevup=2,
                                             nbdevdn=2,
                                             matype=0)

    #HIGH SMA
    df["smaHigh" + str(period)] = talib.SMA(data["High"], timeperiod=period)

    # SMA Adj Prices
    df["sma" + str(period)] = talib.SMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    df["smaHighLow" + str(period)] = talib.SMA(talib.MEDPRICE(
        data["High"], data["Low"]),
                                               timeperiod=period)

    #DEMA - Double Exponential Moving Average
    df["DEMA" + str(period)] = talib.DEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #EMA - Exponential Moving Average
    df["EMA" + str(period)] = talib.EMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    df["HT_TRENDLINE" + str(period)] = talib.HT_TRENDLINE(
        data[USED_CLOSE_PRICE])

    #KAMA - Kaufman Adaptive Moving Average
    df["KAMA" + str(period)] = talib.KAMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #T3 - Triple Exponential Moving Average (T3)
    df["T3-" + str(period)] = talib.T3(data[USED_CLOSE_PRICE],
                                       timeperiod=period,
                                       vfactor=0)

    #TEMA - Triple Exponential Moving Average
    df["TEMA" + str(period)] = talib.TEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #TRIMA - Triangular Moving Average
    df["TRIMA" + str(period)] = talib.TRIMA(data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #WMA - Weighted Moving Average
    df["TRIMA" + str(period)] = talib.WMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    ##########

    #ADX - Average Directional Movement Index
    df["ADX" + str(period)] = talib.ADX(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ADXR - Average Directional Movement Index Rating
    df["ADXR" + str(period)] = talib.ADXR(data["High"],
                                          data["Low"],
                                          data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #AROON - Aroon
    df["aroondown" + str(period)], df["aroonup" + str(period)] = talib.AROON(
        data["High"], data["Low"], timeperiod=period)

    #AROONOSC - Aroon Oscillator
    df["aroondown" + str(period)] = talib.AROONOSC(data["High"],
                                                   data["Low"],
                                                   timeperiod=period)

    #CMO - Chande Momentum Oscillator
    df["CMO" + str(period)] = talib.CMO(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #DX - Directional Movement Index
    df["DX" + str(period)] = talib.DX(data["High"],
                                      data["Low"],
                                      data[USED_CLOSE_PRICE],
                                      timeperiod=period)

    #MINUS_DI - Minus Directional Indicator
    df["MINUS_DI" + str(period)] = talib.MINUS_DI(data["High"],
                                                  data["Low"],
                                                  data[USED_CLOSE_PRICE],
                                                  timeperiod=period)

    #MINUS_DM - Minus Directional Movement
    df["MINUS_DM" + str(period)] = talib.MINUS_DM(data["High"],
                                                  data["Low"],
                                                  timeperiod=period)

    #PLUS_DI - Plus Directional Indicator
    df["PLUS_DI" + str(period)] = talib.PLUS_DI(data["High"],
                                                data["Low"],
                                                data[USED_CLOSE_PRICE],
                                                timeperiod=period)

    #PLUS_DM - Plus Directional Movement
    df["PLUS_DM" + str(period)] = talib.PLUS_DM(data["High"],
                                                data["Low"],
                                                timeperiod=period)

    #ROC - Rate of change : ((price/prevPrice)-1)*100
    df["roc" + str(period)] = talib.ROC(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
    df["ROCP" + str(period)] = talib.ROCP(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR - Rate of change ratio: (price/prevPrice)
    df["ROCR" + str(period)] = talib.ROCR(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    df["ROCR100-" + str(period)] = talib.ROCR100(data[USED_CLOSE_PRICE],
                                                 timeperiod=period)

    #RSI - Relative Strength Index
    df["RSI-" + str(period)] = talib.RSI(data[USED_CLOSE_PRICE],
                                         timeperiod=period)

    #TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    df["TRIX" + str(period)] = talib.TRIX(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #MFI - Money Flow Index
    df["MFI" + str(period)] = talib.MFI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        data["Volume"],
                                        timeperiod=period)

    #ADOSC - Chaikin A/D Oscillator set periods later please
    df["ADOSC" + str(period)] = talib.ADOSC(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            data["Volume"],
                                            fastperiod=np.round(period / 3),
                                            slowperiod=period)

    return df
Esempio n. 29
0
def main():
    ohlcv = api_ohlcv('20191017')
    open, high, low, close, volume, timestamp = [], [], [], [], [], []

    for i in ohlcv:
        open.append(int(i[0]))
        high.append(int(i[1]))
        low.append(int(i[2]))
        close.append(int(i[3]))
        volume.append(float(i[4]))
        time_str = str(i[5])
        timestamp.append(
            datetime.fromtimestamp(int(
                time_str[:10])).strftime('%Y/%m/%d %H:%M:%M'))

    date_time_index = pd.to_datetime(
        timestamp)  # convert to DateTimeIndex type
    df = pd.DataFrame(
        {
            'open': open,
            'high': high,
            'low': low,
            'close': close,
            'volume': volume
        },
        index=date_time_index)
    # df.index += pd.offsets.Hour(9) # adjustment for JST if required
    print(df.shape)
    print(df.columns)

    # pct_change
    f = lambda x: 1 if x > 0.0001 else -1 if x < -0.0001 else 0 if -0.0001 <= x <= 0.0001 else np.nan
    y = df.rename(columns={
        'close': 'y'
    }).loc[:, 'y'].pct_change(1).shift(-1).fillna(0)
    X = df.copy()
    y_ = pd.DataFrame(y.map(f), columns=['y'])
    y = df.rename(columns={'close': 'y'}).loc[:, 'y'].pct_change(1).fillna(0)
    df_ = pd.concat([X, y_], axis=1)

    # check the shape
    print(
        '----------------------------------------------------------------------------------------'
    )
    print('X shape: (%i,%i)' % X.shape)
    print('y shape: (%i,%i)' % y_.shape)
    print(
        '----------------------------------------------------------------------------------------'
    )
    print(y_.groupby('y').size())
    print('y=1 up, y=0 stay, y=-1 down')
    print(
        '----------------------------------------------------------------------------------------'
    )

    # feature calculation
    open = pd.Series(df['open'])
    high = pd.Series(df['high'])
    low = pd.Series(df['low'])
    close = pd.Series(df['close'])
    volume = pd.Series(df['volume'])

    # pct_change for new column
    X['diff'] = y

    # Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())

    # Momentum
    momentum = talib.MOM(close, timeperiod=5)
    momentum = momentum.fillna(momentum.mean())

    # RSI
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())

    # ADX
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())

    # ADX change
    adx_change = adx.pct_change(1).shift(-1)
    adx_change = adx_change.fillna(adx_change.mean())

    # AD
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())

    X_ = pd.concat([X, ema, momentum, rsi, adx_change, ad],
                   axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_.columns = ['volume', 'diff', 'ema', 'momentum', 'rsi', 'adx', 'ad']
    X_.join(y_).head(10)

    # default parameter models
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)
    print('X_train shape: {}'.format(X_train.shape))
    print('X_test shape: {}'.format(X_test.shape))
    print('y_train shape: {}'.format(y_train.shape))
    print('y_test shape: {}'.format(y_test.shape))

    pipe_knn = Pipeline([('scl', StandardScaler()),
                         ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic = Pipeline([('scl', StandardScaler()),
                              ('est',
                               LogisticRegression(solver='lbfgs',
                                                  multi_class='multinomial',
                                                  random_state=39))])
    pipe_rf = Pipeline([('scl', StandardScaler()),
                        ('est', RandomForestClassifier(random_state=39))])
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb]

    for (i, pipe) in enumerate(pipe_lines):
        pipe.fit(X_train, y_train.values.ravel())
        print(pipe)
        print('%s: %.3f' %
              (pipe_names[i] + ' Train Accuracy',
               accuracy_score(y_train.values.ravel(), pipe.predict(X_train))))
        print('%s: %.3f' %
              (pipe_names[i] + ' Test Accuracy',
               accuracy_score(y_test.values.ravel(), pipe.predict(X_test))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train.values.ravel(),
                                     pipe.predict(X_train),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test.values.ravel(),
                                     pipe.predict(X_test),
                                     average='micro')))

    for (i, pipe) in enumerate(pipe_lines):
        predict = pipe.predict(X_test)
        cm = confusion_matrix(y_test.values.ravel(),
                              predict,
                              labels=[-1, 0, 1])
        print('{} Confusion Matrix'.format(pipe_names[i]))
        print(cm)

    ## Overlap Studies Functions
    # DEMA - Double Exponential Moving Average
    dema = talib.DEMA(close, timeperiod=3)
    dema = dema.fillna(dema.mean())
    print('DEMA - Double Exponential Moving Average shape: {}'.format(
        dema.shape))

    # EMA - Exponential Moving Average
    ema = talib.EMA(close, timeperiod=3)
    ema = ema.fillna(ema.mean())
    print('EMA - Exponential Moving Average shape: {}'.format(ema.shape))

    # HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    hilbert = talib.HT_TRENDLINE(close)
    hilbert = hilbert.fillna(hilbert.mean())
    print(
        'HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline shape: {}'.
        format(hilbert.shape))

    # KAMA - Kaufman Adaptive Moving Average
    kama = talib.KAMA(close, timeperiod=3)
    kama = kama.fillna(kama.mean())
    print('KAMA - Kaufman Adaptive Moving Average shape: {}'.format(
        kama.shape))

    # MA - Moving average
    ma = talib.MA(close, timeperiod=3, matype=0)
    ma = ma.fillna(ma.mean())
    print('MA - Moving average shape: {}'.format(kama.shape))

    # MIDPOINT - MidPoint over period
    midpoint = talib.MIDPOINT(close, timeperiod=7)
    midpoint = midpoint.fillna(midpoint.mean())
    print('MIDPOINT - MidPoint over period shape: {}'.format(midpoint.shape))

    # MIDPRICE - Midpoint Price over period
    midprice = talib.MIDPRICE(high, low, timeperiod=7)
    midprice = midprice.fillna(midprice.mean())
    print('MIDPRICE - Midpoint Price over period shape: {}'.format(
        midprice.shape))

    # SAR - Parabolic SAR
    sar = talib.SAR(high, low, acceleration=0, maximum=0)
    sar = sar.fillna(sar.mean())
    print('SAR - Parabolic SAR shape: {}'.format(sar.shape))

    # SAREXT - Parabolic SAR - Extended
    sarext = talib.SAREXT(high,
                          low,
                          startvalue=0,
                          offsetonreverse=0,
                          accelerationinitlong=0,
                          accelerationlong=0,
                          accelerationmaxlong=0,
                          accelerationinitshort=0,
                          accelerationshort=0,
                          accelerationmaxshort=0)
    sarext = sarext.fillna(sarext.mean())
    print('SAREXT - Parabolic SAR - Extended shape: {}'.format(sarext.shape))

    # SMA - Simple Moving Average
    sma = talib.SMA(close, timeperiod=3)
    sma = sma.fillna(sma.mean())
    print('SMA - Simple Moving Average shape: {}'.format(sma.shape))

    # T3 - Triple Exponential Moving Average (T3)
    t3 = talib.T3(close, timeperiod=5, vfactor=0)
    t3 = t3.fillna(t3.mean())
    print('T3 - Triple Exponential Moving Average shape: {}'.format(t3.shape))

    # TEMA - Triple Exponential Moving Average
    tema = talib.TEMA(close, timeperiod=3)
    tema = tema.fillna(tema.mean())
    print('TEMA - Triple Exponential Moving Average shape: {}'.format(
        tema.shape))

    # TRIMA - Triangular Moving Average
    trima = talib.TRIMA(close, timeperiod=3)
    trima = trima.fillna(trima.mean())
    print('TRIMA - Triangular Moving Average shape: {}'.format(trima.shape))

    # WMA - Weighted Moving Average
    wma = talib.WMA(close, timeperiod=3)
    wma = wma.fillna(wma.mean())
    print('WMA - Weighted Moving Average shape: {}'.format(wma.shape))

    ## Momentum Indicator Functions
    # ADX - Average Directional Movement Index
    adx = talib.ADX(high, low, close, timeperiod=14)
    adx = adx.fillna(adx.mean())
    print('ADX - Average Directional Movement Index shape: {}'.format(
        adx.shape))

    # ADXR - Average Directional Movement Index Rating
    adxr = talib.ADXR(high, low, close, timeperiod=7)
    adxr = adxr.fillna(adxr.mean())
    print('ADXR - Average Directional Movement Index Rating shape: {}'.format(
        adxr.shape))

    # APO - Absolute Price Oscillator
    apo = talib.APO(close, fastperiod=12, slowperiod=26, matype=0)
    apo = apo.fillna(apo.mean())
    print('APO - Absolute Price Oscillator shape: {}'.format(apo.shape))

    # AROONOSC - Aroon Oscillator
    aroon = talib.AROONOSC(high, low, timeperiod=14)
    aroon = aroon.fillna(aroon.mean())
    print('AROONOSC - Aroon Oscillator shape: {}'.format(apo.shape))

    # BOP - Balance Of Power
    bop = talib.BOP(open, high, low, close)
    bop = bop.fillna(bop.mean())
    print('BOP - Balance Of Power shape: {}'.format(apo.shape))

    # CCI - Commodity Channel Index
    cci = talib.CCI(high, low, close, timeperiod=7)
    cci = cci.fillna(cci.mean())
    print('CCI - Commodity Channel Index shape: {}'.format(cci.shape))

    # CMO - Chande Momentum Oscillator
    cmo = talib.CMO(close, timeperiod=7)
    cmo = cmo.fillna(cmo.mean())
    print('CMO - Chande Momentum Oscillator shape: {}'.format(cmo.shape))

    # DX - Directional Movement Index
    dx = talib.DX(high, low, close, timeperiod=7)
    dx = dx.fillna(dx.mean())
    print('DX - Directional Movement Index shape: {}'.format(dx.shape))

    # MFI - Money Flow Index
    mfi = talib.MFI(high, low, close, volume, timeperiod=7)
    mfi = mfi.fillna(mfi.mean())
    print('MFI - Money Flow Index shape: {}'.format(mfi.shape))

    # MINUS_DI - Minus Directional Indicator
    minusdi = talib.MINUS_DI(high, low, close, timeperiod=14)
    minusdi = minusdi.fillna(minusdi.mean())
    print('MINUS_DI - Minus Directional Indicator shape: {}'.format(
        minusdi.shape))

    # MINUS_DM - Minus Directional Movement
    minusdm = talib.MINUS_DM(high, low, timeperiod=14)
    minusdm = minusdm.fillna(minusdm.mean())
    print('MINUS_DM - Minus Directional Movement shape: {}'.format(
        minusdm.shape))

    # MOM - Momentum
    mom = talib.MOM(close, timeperiod=5)
    mom = mom.fillna(mom.mean())
    print('MOM - Momentum shape: {}'.format(mom.shape))

    # PLUS_DI - Plus Directional Indicator
    plusdi = talib.PLUS_DI(high, low, close, timeperiod=14)
    plusdi = plusdi.fillna(plusdi.mean())
    print('PLUS_DI - Plus Directional Indicator shape: {}'.format(
        plusdi.shape))

    # PLUS_DM - Plus Directional Movement
    plusdm = talib.PLUS_DM(high, low, timeperiod=14)
    plusdm = plusdm.fillna(plusdm.mean())
    print('PLUS_DM - Plus Directional Movement shape: {}'.format(plusdi.shape))

    # PPO - Percentage Price Oscillator
    ppo = talib.PPO(close, fastperiod=12, slowperiod=26, matype=0)
    ppo = ppo.fillna(ppo.mean())
    print('PPO - Percentage Price Oscillator shape: {}'.format(ppo.shape))

    # ROC - Rate of change:((price/prevPrice)-1)*100
    roc = talib.ROC(close, timeperiod=10)
    roc = roc.fillna(roc.mean())
    print('ROC - Rate of change : ((price/prevPrice)-1)*100 shape: {}'.format(
        roc.shape))

    # RSI - Relative Strength Index
    rsi = talib.RSI(close, timeperiod=14)
    rsi = rsi.fillna(rsi.mean())
    print('RSI - Relative Strength Index shape: {}'.format(rsi.shape))

    # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    trix = talib.TRIX(close, timeperiod=30)
    trix = trix.fillna(trix.mean())
    print('TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA shape: {}'.
          format(trix.shape))

    # ULTOSC - Ultimate Oscillator
    ultosc = talib.ULTOSC(high,
                          low,
                          close,
                          timeperiod1=7,
                          timeperiod2=14,
                          timeperiod3=28)
    ultosc = ultosc.fillna(ultosc.mean())
    print('ULTOSC - Ultimate Oscillator shape: {}'.format(ultosc.shape))

    # WILLR - Williams'%R
    willr = talib.WILLR(high, low, close, timeperiod=7)
    willr = willr.fillna(willr.mean())
    print("WILLR - Williams'%R shape: {}".format(willr.shape))

    ## Volume Indicator Functions
    # AD - Chaikin A/D Line
    ad = talib.AD(high, low, close, volume)
    ad = ad.fillna(ad.mean())
    print('AD - Chaikin A/D Line shape: {}'.format(ad.shape))

    # ADOSC - Chaikin A/D Oscillator
    adosc = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10)
    adosc = adosc.fillna(adosc.mean())
    print('ADOSC - Chaikin A/D Oscillator shape: {}'.format(adosc.shape))

    # OBV - On Balance Volume
    obv = talib.OBV(close, volume)
    obv = obv.fillna(obv.mean())
    print('OBV - On Balance Volume shape: {}'.format(obv.shape))

    ## Volatility Indicator Functions
    # ATR - Average True Range
    atr = talib.ATR(high, low, close, timeperiod=7)
    atr = atr.fillna(atr.mean())
    print('ATR - Average True Range shape: {}'.format(atr.shape))

    # NATR - Normalized Average True Range
    natr = talib.NATR(high, low, close, timeperiod=7)
    natr = natr.fillna(natr.mean())
    print('NATR - Normalized Average True Range shape: {}'.format(natr.shape))

    # TRANGE - True Range
    trange = talib.TRANGE(high, low, close)
    trange = trange.fillna(trange.mean())
    print('TRANGE - True Range shape: {}'.format(natr.shape))

    ## Price Transform Functions
    # AVGPRICE - Average Price
    avg = talib.AVGPRICE(open, high, low, close)
    avg = avg.fillna(avg.mean())
    print('AVGPRICE - Average Price shape: {}'.format(natr.shape))

    # MEDPRICE - Median Price
    medprice = talib.MEDPRICE(high, low)
    medprice = medprice.fillna(medprice.mean())
    print('MEDPRICE - Median Price shape: {}'.format(medprice.shape))

    # TYPPRICE - Typical Price
    typ = talib.TYPPRICE(high, low, close)
    typ = typ.fillna(typ.mean())
    print('TYPPRICE - Typical Price shape: {}'.format(typ.shape))

    # WCLPRICE - Weighted Close Price
    wcl = talib.WCLPRICE(high, low, close)
    wcl = wcl.fillna(wcl.mean())
    print('WCLPRICE - Weighted Close Price shape: {}'.format(wcl.shape))

    ## Cycle Indicator Functions
    # HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period
    dcperiod = talib.HT_DCPERIOD(close)
    dcperiod = dcperiod.fillna(dcperiod.mean())
    print('HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period shape: {}'.
          format(dcperiod.shape))

    # HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase
    dcphase = talib.HT_DCPHASE(close)
    dcphase = dcphase.fillna(dcphase.mean())
    print('HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase shape: {}'.
          format(dcperiod.shape))

    ## Statistic Functions
    # BETA - Beta
    beta = talib.BETA(high, low, timeperiod=3)
    beta = beta.fillna(beta.mean())
    print('BETA - Beta shape: {}'.format(beta.shape))

    # CORREL - Pearson's Correlation Coefficient(r)
    correl = talib.CORREL(high, low, timeperiod=30)
    correl = correl.fillna(correl.mean())
    print("CORREL - Pearson's Correlation Coefficient(r) shape: {}".format(
        beta.shape))

    # LINEARREG - Linear Regression
    linreg = talib.LINEARREG(close, timeperiod=7)
    linreg = linreg.fillna(linreg.mean())
    print("LINEARREG - Linear Regression shape: {}".format(linreg.shape))

    # STDDEV - Standard Deviation
    stddev = talib.STDDEV(close, timeperiod=5, nbdev=1)
    stddev = stddev.fillna(stddev.mean())
    print("STDDEV - Standard Deviation shape: {}".format(stddev.shape))

    # TSF - Time Series Forecast
    tsf = talib.TSF(close, timeperiod=7)
    tsf = tsf.fillna(tsf.mean())
    print("TSF - Time Series Forecast shape: {}".format(tsf.shape))

    # VAR - Variance
    var = talib.VAR(close, timeperiod=5, nbdev=1)
    var = var.fillna(var.mean())
    print("VAR - Variance shape: {}".format(var.shape))

    ## Feature DataFrame
    X_full = pd.concat([
        X, dema, ema, hilbert, kama, ma, midpoint, midprice, sar, sarext, sma,
        t3, tema, trima, wma, adx, adxr, apo, aroon, bop, cci, cmo, mfi,
        minusdi, minusdm, mom, plusdi, plusdm, ppo, roc, rsi, trix, ultosc,
        willr, ad, adosc, obv, atr, natr, trange, avg, medprice, typ, wcl,
        dcperiod, dcphase, beta, correl, linreg, stddev, tsf, var
    ],
                       axis=1).drop(['open', 'high', 'low', 'close'], axis=1)
    X_full.columns = [
        'volume', 'diff', 'dema', 'ema', 'hilbert', 'kama', 'ma', 'midpoint',
        'midprice', 'sar', 'sarext', 'sma', 't3', 'tema', 'trima', 'wma',
        'adx', 'adxr', 'apo', 'aroon', 'bop', 'cci', 'cmo', 'mfi', 'minusdi',
        'minusdm', 'mom', 'plusdi', 'plusdm', 'ppo', 'roc', 'rsi', 'trix',
        'ultosc', 'willr', 'ad', 'adosc', 'obv', 'atr', 'natr', 'trange',
        'avg', 'medprice', 'typ', 'wcl', 'dcperiod', 'dcphase', 'beta',
        'correl', 'linreg', 'stddev', 'tsf', 'var'
    ]
    X_full.join(y_).head(10)

    # full feature models
    X_train_full, X_test_full, y_train_full, y_test_full = train_test_split(
        X_full, y_, test_size=0.33, random_state=42)
    print('X_train shape: {}'.format(X_train_full.shape))
    print('X_test shape: {}'.format(X_test_full.shape))
    print('y_train shape: {}'.format(y_train_full.shape))
    print('y_test shape: {}'.format(y_test_full.shape))

    pipe_knn_full = Pipeline([('scl', StandardScaler()),
                              ('est', KNeighborsClassifier(n_neighbors=3))])
    pipe_logistic_full = Pipeline([
        ('scl', StandardScaler()),
        ('est',
         LogisticRegression(solver='lbfgs',
                            multi_class='multinomial',
                            random_state=39))
    ])
    pipe_rf_full = Pipeline([('scl', StandardScaler()),
                             ('est', RandomForestClassifier(random_state=39))])
    pipe_gb_full = Pipeline([('scl', StandardScaler()),
                             ('est',
                              GradientBoostingClassifier(random_state=39))])

    pipe_names = ['KNN', 'Logistic', 'RandomForest', 'GradientBoosting']
    pipe_lines_full = [
        pipe_knn_full, pipe_logistic_full, pipe_rf_full, pipe_gb_full
    ]

    for (i, pipe) in enumerate(pipe_lines_full):
        pipe.fit(X_train_full, y_train_full.values.ravel())
        print(pipe)
        print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy',
                            accuracy_score(y_train_full.values.ravel(),
                                           pipe.predict(X_train_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy',
                            accuracy_score(y_test_full.values.ravel(),
                                           pipe.predict(X_test_full))))
        print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score',
                            f1_score(y_train_full.values.ravel(),
                                     pipe.predict(X_train_full),
                                     average='micro')))
        print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score',
                            f1_score(y_test_full.values.ravel(),
                                     pipe.predict(X_test_full),
                                     average='micro')))

    # Univariate Statistics
    select = SelectPercentile(percentile=25)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_selected = select.transform(X_train_full)
    X_test_selected = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Univariate Statistics-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Cllassifier with Univariate Statistics
    print(
        '---------------------------With Univariate Statistics--------------------------------------'
    )
    pipe_gb_percentile = Pipeline([
        ('scl', StandardScaler()),
        ('est', GradientBoostingClassifier(random_state=39))
    ])
    pipe_gb_percentile.fit(X_train_selected, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_percentile.predict(X_train_selected))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_percentile.predict(X_test_selected))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_percentile.predict(X_train_selected),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_percentile.predict(X_test_selected),
                 average='micro')))

    # Model-based Selection
    select = SelectFromModel(RandomForestClassifier(n_estimators=100,
                                                    random_state=42),
                             threshold="1.25*mean")
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_model = select.transform(X_train_full)
    X_test_model = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Model-based Selection--------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Model-based Selection
    print(
        '----------------------------With Model-based Selection--------------------------------------'
    )
    pipe_gb_model = Pipeline([('scl', StandardScaler()),
                              ('est',
                               GradientBoostingClassifier(random_state=39))])
    pipe_gb_model.fit(X_train_model, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_model.predict(X_train_model))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_model.predict(X_test_model))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_model.predict(X_train_model),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_model.predict(X_test_model),
                 average='micro')))

    # Recursive Feature Elimination
    select = RFE(RandomForestClassifier(n_estimators=100, random_state=42),
                 n_features_to_select=15)
    select.fit(X_train_full, y_train_full.values.ravel())
    X_train_rfe = select.transform(X_train_full)
    X_test_rfe = select.transform(X_test_full)
    # GradientBoost Classifier
    print(
        '--------------------------Without Recursive Feature Elimination-------------------------------------'
    )
    pipe_gb = Pipeline([('scl', StandardScaler()),
                        ('est', GradientBoostingClassifier(random_state=39))])
    pipe_gb.fit(X_train_full, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb.predict(X_train_full))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb.predict(X_test_full))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb.predict(X_train_full),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb.predict(X_test_full),
                 average='micro')))
    # GradientBoost Classifier with Recursive Feature Elimination
    print(
        '----------------------------With Recursive Feature Elimination--------------------------------------'
    )
    pipe_gb_rfe = Pipeline([('scl', StandardScaler()),
                            ('est',
                             GradientBoostingClassifier(random_state=39))])
    pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel())
    print('Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train_full.values.ravel(),
                       pipe_gb_rfe.predict(X_train_rfe))))
    print('Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test_full.values.ravel(),
                       pipe_gb_rfe.predict(X_test_rfe))))
    print('Train F1 Score: {:.3f}'.format(
        f1_score(y_train_full.values.ravel(),
                 pipe_gb_rfe.predict(X_train_rfe),
                 average='micro')))
    print('Test F1 Score: {:.3f}'.format(
        f1_score(y_test_full.values.ravel(),
                 pipe_gb_rfe.predict(X_test_rfe),
                 average='micro')))

    cv = cross_val_score(pipe_gb,
                         X_,
                         y_.values.ravel(),
                         cv=StratifiedKFold(n_splits=10,
                                            shuffle=True,
                                            random_state=39))
    print('Cross validation with StratifiedKFold scores: {}'.format(cv))
    print('Cross Validation with StatifiedKFold mean: {}'.format(cv.mean()))

    # GridSearch
    n_features = len(df.columns)
    param_grid = {
        'learning_rate': [0.01, 0.1, 1, 10],
        'n_estimators': [1, 10, 100, 200, 300],
        'max_depth': [1, 2, 3, 4, 5]
    }
    stratifiedcv = StratifiedKFold(n_splits=10, shuffle=True, random_state=39)
    X_train, X_test, y_train, y_test = train_test_split(X_,
                                                        y_,
                                                        test_size=0.33,
                                                        random_state=42)

    grid_search = GridSearchCV(GradientBoostingClassifier(),
                               param_grid,
                               cv=stratifiedcv)
    grid_search.fit(X_train, y_train.values.ravel())
    print('GridSearch Train Accuracy: {:.3f}'.format(
        accuracy_score(y_train.values.ravel(), grid_search.predict(X_train))))
    print('GridSearch Test Accuracy: {:.3f}'.format(
        accuracy_score(y_test.values.ravel(), grid_search.predict(X_test))))
    print('GridSearch Train F1 Score: {:.3f}'.format(
        f1_score(y_train.values.ravel(),
                 grid_search.predict(X_train),
                 average='micro')))
    print('GridSearch Test F1 Score: {:.3f}'.format(
        f1_score(y_test.values.ravel(),
                 grid_search.predict(X_test),
                 average='micro')))

    # GridSearch results
    print("Best params:\n{}".format(grid_search.best_params_))
    print("Best cross-validation score: {:.2f}".format(
        grid_search.best_score_))
    results = pd.DataFrame(grid_search.cv_results_)
    corr_params = results.drop(results.columns[[
        0, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20
    ]],
                               axis=1)
    corr_params.head()

    # GridSearch in nested
    cv_gb = cross_val_score(grid_search,
                            X_,
                            y_.values.ravel(),
                            cv=StratifiedKFold(n_splits=3,
                                               shuffle=True,
                                               random_state=39))
    print('Grid Search with nested cross validation scores: {}'.format(cv_gb))
    print('Grid Search with nested cross validation mean: {}'.format(
        cv_gb.mean()))
Esempio n. 30
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)