Esempio n. 1
0
    def _generate_timestep_pairs_from_sims(self, sim1, sim2):
        assert sim1 != sim2, "Can't link simulation to itself"

        logger.info("Match timesteps of %r to %r", sim1, sim2)

        ts1s = sim1.timesteps
        ts2s = sim2.timesteps

        pairs = []
        for ts1 in ts1s:
            ts2 = self._get_best_timestep_matching(ts2s, ts1)
            pairing_is_mutual = (self._get_best_timestep_matching(ts1s,
                                                                  ts2) == ts1)
            if pairing_is_mutual:
                logger.info("Pairing timesteps: %r and %r", ts1, ts2)
                pairs += [(ts1, ts2)]
            else:
                logger.warning("No pairing found for timestep %r", ts1)

        return pairs
Esempio n. 2
0
    def create_db_objects_from_catalog(self, cat, finder_offset_to_halos_1,
                                       finder_offset_to_halos_2, same_d_id):
        items = []
        missing_db_object = 0
        for i, possibilities in enumerate(cat):
            h1 = finder_offset_to_halos_1.get(i, None)
            for cat_i, weight in possibilities:
                h2 = finder_offset_to_halos_2.get(cat_i, None)

                if h1 is not None and h2 is not None:
                    items.append(
                        core.halo_data.HaloLink(h1, h2, same_d_id, weight))
                else:
                    missing_db_object += 1

        if missing_db_object > 0:
            logger.warning(
                "%d link(s) could not be identified because the halo objects do not exist in the DB",
                missing_db_object)
        return items
Esempio n. 3
0
    def need_crosslink_ts(self, ts1, ts2, object_typecode=0):
        num_sources = ts1.halos.count()
        num_targets = ts2.halos.count()
        if num_targets == 0:
            logger.warning("Will not link: no halos in target timestep %r",
                           ts2)
            return False
        if num_sources == 0:
            logger.warning("Will not link: no halos in source timestep %r",
                           ts1)
            return False

        halo_source = sqlalchemy.orm.aliased(core.halo.SimulationObjectBase,
                                             name="halo_source")
        halo_target = sqlalchemy.orm.aliased(core.halo.SimulationObjectBase,
                                             name="halo_target")
        same_d_id = self._get_linkname_dictionaryitem().id
        exists = self.session.query(core.halo_data.HaloLink).join(halo_source, core.halo_data.HaloLink.halo_from). \
                    join(halo_target, core.halo_data.HaloLink.halo_to). \
                    filter(halo_source.timestep_id == ts1.id, halo_target.timestep_id == ts2.id,
                           halo_source.object_typecode == object_typecode,
                           halo_target.object_typecode == object_typecode,
                        core.halo_data.HaloLink.relation_id == same_d_id).count() > 0
        self.session.commit()

        if exists:
            logger.warning(
                "Will not link: links already exist between %r and %r", ts1,
                ts2)
            return False
        return True
Esempio n. 4
0
def scan_for_BHs(files, session):
    for timestep in parallel_tasks.distributed(files):
        logger.info("Processing %s", timestep)

        try:
            timestep_particle_data = timestep.load()
        except:
            logger.warning("File not found - continuing")
            continue

        if len(timestep_particle_data.star) < 1:
            logger.warning("No stars - continuing")
            continue

        timestep_particle_data.physical_units()

        logger.info(
            "Gathering existing BH halo information from database for step %r",
            timestep)

        bhobjs = timestep.bhs.all()
        existing_bh_nums = [x.halo_number for x in bhobjs]

        logger.info("...found %d existing BHs", len(existing_bh_nums))

        logger.info("Gathering BH info from simulation for step %r", timestep)
        bh_iord_this_timestep = timestep_particle_data.star['iord'][np.where(
            timestep_particle_data.star['tform'] < 0)[0]]
        bh_mass_this_timestep = timestep_particle_data.star['mass'][np.where(
            timestep_particle_data.star['tform'] < 0)[0]]

        logger.info("Found %d black holes for %r", len(bh_iord_this_timestep),
                    timestep)

        logger.info(
            "Updating BH trackdata and BH objects using on-disk information from %r",
            timestep)

        add_missing_trackdata_and_BH_objects(timestep, bh_iord_this_timestep,
                                             existing_bh_nums, session)
        session.expire_all()

        logger.info("Calculating halo associations for BHs in timestep %r",
                    timestep)
        bh_cen_halos, bh_halos = bh_halo_assign(timestep_particle_data)

        # re-order our information so that links refer to BHs in descending order of mass
        bh_order_by_mass = np.argsort(bh_mass_this_timestep)[::-1]
        bh_iord_this_timestep = bh_iord_this_timestep[bh_order_by_mass]
        if bh_halos is not None:
            bh_halos = bh_halos[bh_order_by_mass]
        if bh_cen_halos is not None:
            bh_cen_halos = bh_cen_halos[bh_order_by_mass]

        logger.info("Freeing the timestep particle data")
        with check_deleted(timestep_particle_data):
            del (timestep_particle_data)

        if bh_halos is not None:
            assign_bh_to_halos(bh_halos, bh_iord_this_timestep, timestep, "BH")
        if bh_cen_halos is not None:
            assign_bh_to_halos(bh_cen_halos, bh_iord_this_timestep, timestep,
                               "BH_central", "host_halo")
Esempio n. 5
0
def generate_halolinks(session, fname, pairs):
    for ts1, ts2 in parallel_tasks.distributed(pairs):
        bh_log = None
        if BlackHolesLog.can_load(ts2.filename):
            bh_log = BlackHolesLog(ts2.filename)
        elif ShortenedOrbitLog.can_load(ts2.filename):
            bh_log = ShortenedOrbitLog(ts2.filename)
        if bh_log is None:
            logger.error("Warning! No orbit file found!")
        links = []
        mergers_links = []
        bh_map = {}
        logger.info("Gathering BH tracking information for steps %r and %r",
                    ts1, ts2)
        with parallel_tasks.ExclusiveLock("bh"):
            dict_obj = db.core.get_or_create_dictionary_item(
                session, "tracker")
            dict_obj_next = db.core.get_or_create_dictionary_item(
                session, "BH_merger_next")
            dict_obj_prev = db.core.get_or_create_dictionary_item(
                session, "BH_merger_prev")

        track_links_n, idf_n, idt_n = db.tracking.get_tracker_links(
            session, dict_obj_next)
        bh_objects_1, nums1, id1 = get_bh_objs_numbers_and_dbids(ts1)
        bh_objects_2, nums2, id2 = get_bh_objs_numbers_and_dbids(ts2)
        tracker_links, idf, idt = db.tracking.get_tracker_links(
            session, dict_obj)

        idf_n = np.array(idf_n)
        idt_n = np.array(idt_n)

        if len(nums1) == 0 or len(nums2) == 0:
            logger.info("No BHs found in either step %r or %r... moving on",
                        ts1, ts2)
            continue

        logger.info("Generating BH tracker links between steps %r and %r", ts1,
                    ts2)
        o1 = np.where(np.in1d(nums1, nums2))[0]
        o2 = np.where(np.in1d(nums2, nums1))[0]
        if len(o1) == 0 or len(o2) == 0:
            continue
        with session.no_autoflush:
            for ii, jj in zip(o1, o2):
                if nums1[ii] != nums2[jj]:
                    raise RuntimeError("BH iords are mismatched")
                exists = np.where((idf == id1[ii]) & (idt == id2[jj]))[0]
                if len(exists) == 0:
                    links.append(
                        tangos.core.halo_data.HaloLink(bh_objects_1[ii],
                                                       bh_objects_2[jj],
                                                       dict_obj, 1.0))
                    links.append(
                        tangos.core.halo_data.HaloLink(bh_objects_2[jj],
                                                       bh_objects_1[ii],
                                                       dict_obj, 1.0))
        logger.info("Generated %d tracker links between steps %r and %r",
                    len(links), ts1, ts2)

        logger.info("Generating BH Merger information for steps %r and %r",
                    ts1, ts2)
        for l in open(fname[0]):
            l_split = l.split()
            t = float(l_split[6])
            bh_dest_id = int(l_split[0])
            bh_src_id = int(l_split[1])
            ratio = float(l_split[4])

            # ratios in merger file are ambiguous (since major progenitor may be "source" rather than "destination")
            # re-establish using the log file:
            try:
                ratio = bh_log.determine_merger_ratio(bh_src_id, bh_dest_id)
            except (ValueError, AttributeError) as e:
                logger.debug(
                    "Could not calculate merger ratio for %d->%d from the BH log; assuming the .BHmergers-asserted value is accurate",
                    bh_src_id, bh_dest_id)

            if t > ts1.time_gyr and t <= ts2.time_gyr:
                bh_map[bh_src_id] = (bh_dest_id, ratio)

        resolve_multiple_mergers(bh_map)
        logger.info("Gathering BH merger links for steps %r and %r", ts1, ts2)
        with session.no_autoflush:
            for src, (dest, ratio) in bh_map.items():
                if src not in nums1 or dest not in nums2:
                    logger.warning(
                        "Can't link BH %r -> %r; missing BH objects in database",
                        src, dest)
                    continue
                bh_src_before = bh_objects_1[nums1.index(src)]
                bh_dest_after = bh_objects_2[nums2.index(dest)]

                if ((idf_n == bh_src_before.id) &
                    (idt_n == bh_dest_after.id)).sum() == 0:
                    mergers_links.append(
                        tangos.core.halo_data.HaloLink(bh_src_before,
                                                       bh_dest_after,
                                                       dict_obj_next, 1.0))
                    mergers_links.append(
                        tangos.core.halo_data.HaloLink(bh_dest_after,
                                                       bh_src_before,
                                                       dict_obj_prev, ratio))

        logger.info("Generated %d BH merger links for steps %r and %r",
                    len(mergers_links), ts1, ts2)

        with parallel_tasks.ExclusiveLock("bh"):
            logger.info("Committing total %d BH links for steps %r and %r",
                        len(mergers_links) + len(links), ts1, ts2)
            session.add_all(links)
            session.add_all(mergers_links)
            session.commit()
            logger.info("Finished committing BH links for steps %r and %r",
                        ts1, ts2)
Esempio n. 6
0
def assign_bh_to_halos(bh_halo_assignment,
                       bh_iord,
                       timestep,
                       linkname,
                       hostname=None):
    session = Session.object_session(timestep)
    linkname_dict_id = tangos.core.dictionary.get_or_create_dictionary_item(
        session, linkname)
    if hostname is not None:
        host_dict_id = tangos.core.dictionary.get_or_create_dictionary_item(
            session, hostname)
    else:
        host_dict_id = None

    logger.info("Gathering %s links for step %r", linkname, timestep)

    links, link_id_from, link_id_to = db.tracking.get_tracker_links(
        session, linkname_dict_id)
    halos = timestep.halos.filter_by(object_typecode=0).all()

    halo_nums = [h.halo_number for h in halos]
    halo_catind = [h.finder_offset for h in halos]
    halo_ids = np.array([h.id for h in halos])

    logger.info("Gathering bh halo information for %r", timestep)
    with parallel_tasks.lock.SharedLock("bh"):
        bh_database_object, existing_bh_nums, bhobj_ids = get_bh_objs_numbers_and_dbids(
            timestep)

    bh_links = []

    with session.no_autoflush:
        for bhi, haloi in zip(bh_iord, bh_halo_assignment):
            haloi = int(haloi)
            bhi = int(bhi)
            if haloi not in halo_catind:
                logger.warning(
                    "Skipping BH in halo %d as no corresponding halo found in the database",
                    haloi)
                continue
            if bhi not in existing_bh_nums:
                logger.warning("Can't find the database object for BH %d", bhi)
                print(bhi)
                print(existing_bh_nums)
                continue

            bh_index_in_list = existing_bh_nums.index(bhi)
            halo_index_in_list = halo_catind.index(haloi)
            bh_obj = bh_database_object[bh_index_in_list]
            halo_obj = halos[halo_index_in_list]

            num_existing_links = (
                (link_id_from == halo_ids[halo_index_in_list]) &
                (link_id_to == bhobj_ids[bh_index_in_list])).sum()
            if num_existing_links == 0:
                bh_links.append(
                    tangos.core.halo_data.HaloLink(halo_obj, bh_obj,
                                                   linkname_dict_id))
                if host_dict_id is not None:
                    bh_links.append(
                        tangos.core.halo_data.HaloLink(bh_obj, halo_obj,
                                                       host_dict_id))

    logger.info("Committing %d %s links for step %r...", len(bh_links),
                linkname, timestep)
    with parallel_tasks.ExclusiveLock("bh"):
        session.add_all(bh_links)
        session.commit()
    logger.info("...done")