Esempio n. 1
0
    def setup(self):
        """
        This method does initial setup of creating configuration and performing
        a single run of integration test.
        """
        self.config_file = data_path("config_w7.yml")
        self.abundances = data_path("abundancies_w7.dat")
        self.densities = data_path("densities_w7.dat")

        # First we check whether atom data file exists at desired path.
        self.atom_data_filename = os.path.expanduser(os.path.expandvars(
                                    pytest.config.getvalue('atomic-dataset')))
        assert os.path.exists(self.atom_data_filename), \
            "{0} atom data file does not exist".format(self.atom_data_filename)

        # The available config file doesn't have file paths of atom data file,
        # densities and abundances profile files as desired. We load the atom
        # data seperately and provide it to tardis_config later. For rest of
        # the two, we form dictionary from the config file and override those
        # parameters by putting file paths of these two files at proper places.
        config_yaml = yaml.load(open(self.config_file))
        config_yaml['model']['abundances']['filename'] = self.abundances
        config_yaml['model']['structure']['filename'] = self.densities

        # Load atom data file separately, pass it for forming tardis config.
        self.atom_data = AtomData.from_hdf5(self.atom_data_filename)

        # Check whether the atom data file in current run and the atom data
        # file used in obtaining the baseline data for slow tests are same.
        # TODO: hard coded UUID for kurucz atom data file, generalize it later.
        kurucz_data_file_uuid1 = "5ca3035ca8b311e3bb684437e69d75d7"
        assert self.atom_data.uuid1 == kurucz_data_file_uuid1

        # The config hence obtained will be having appropriate file paths.
        tardis_config = Configuration.from_config_dict(config_yaml, self.atom_data)

        # We now do a run with prepared config and get radial1d model.
        self.obtained_radial1d_model = Radial1DModel(tardis_config)
        simulation = Simulation(tardis_config)
        simulation.legacy_run_simulation(self.obtained_radial1d_model)

        # The baseline data against which assertions are to be made is ingested
        # from already available compressed binaries (.npz). These will return
        # dictionaries of numpy.ndarrays for performing assertions.
        self.slow_test_data_dir = os.path.join(os.path.expanduser(
                os.path.expandvars(pytest.config.getvalue('slow-test-data'))), "w7")

        self.expected_ndarrays = np.load(os.path.join(self.slow_test_data_dir,
                                                      "ndarrays.npz"))
        self.expected_quantities = np.load(os.path.join(self.slow_test_data_dir,
                                                        "quantities.npz"))
Esempio n. 2
0
    def setup(self):
        self.atom_data_filename = os.path.expanduser(
            os.path.expandvars(pytest.config.getvalue('atomic-dataset')))
        assert os.path.exists(
            self.atom_data_filename), ("{0} atomic datafiles"
                                       " does not seem to "
                                       "exist".format(self.atom_data_filename))
        self.config_yaml = yaml.load(
            open('tardis/io/tests/data/tardis_configv1_verysimple.yml'))
        self.config_yaml['atom_data'] = self.atom_data_filename

        tardis_config = Configuration.from_config_dict(self.config_yaml)
        self.model = Radial1DModel(tardis_config)
        self.simulation = Simulation(tardis_config)

        self.simulation.legacy_run_simulation(self.model)
    def runner(
            self, config, atomic_data_fname,
            tardis_ref_data, generate_reference):
        config.atom_data = atomic_data_fname

        self.name = (self._name +
                     "_{:s}".format(config.plasma.line_interaction_type))
        if config.spectrum.integrated.interpolate_shells > 0:
            self.name += '_interp'

        simulation = Simulation.from_config(config)
        simulation.run()

        if not generate_reference:
            return simulation.runner
        else:
            simulation.runner.hdf_properties = [
                    'j_blue_estimator',
                    'spectrum',
                    'spectrum_integrated'
                    ]
            simulation.runner.to_hdf(
                    tardis_ref_data,
                    '',
                    self.name)
            pytest.skip(
                    'Reference data was generated during this run.')
Esempio n. 4
0
    def runner(
            self, config, atomic_data_fname,
            tardis_ref_data, generate_reference):
        config.atom_data = atomic_data_fname

        self.name = (self._name +
                     "_{:s}".format(config.plasma.line_interaction_type))
        if config.spectrum.integrated.interpolate_shells > 0:
            self.name += '_interp'

        simulation = Simulation.from_config(config)
        simulation.run()

        if not generate_reference:
            return simulation.runner
        else:
            simulation.runner.hdf_properties = [
                    'j_blue_estimator',
                    'spectrum',
                    'spectrum_integrated'
                    ]
            simulation.runner.to_hdf(
                    tardis_ref_data,
                    '',
                    self.name)
            pytest.skip(
                    'Reference data was generated during this run.')
Esempio n. 5
0
    def setup(self):
        self.atom_data_filename = os.path.expanduser(os.path.expandvars(
            pytest.config.getvalue('atomic-dataset')))
        assert os.path.exists(self.atom_data_filename), ("{0} atomic datafiles"
                                                         " does not seem to "
                                                         "exist".format(
            self.atom_data_filename))
        self.config_yaml = yaml_load_config_file(
            'tardis/io/tests/data/tardis_configv1_verysimple.yml')
        self.config_yaml['atom_data'] = self.atom_data_filename

        tardis_config = Configuration.from_config_dict(self.config_yaml)
        self.simulation = Simulation.from_config(tardis_config)
        self.simulation.run()
Esempio n. 6
0
    def runner(self, atomic_data_fname, tardis_ref_data, generate_reference):
        config = Configuration.from_yaml(
            'tardis/io/tests/data/tardis_configv1_verysimple.yml')
        config['atom_data'] = atomic_data_fname

        simulation = Simulation.from_config(config)
        simulation.run()

        if not generate_reference:
            return simulation.runner
        else:
            simulation.runner.hdf_properties = [
                'j_blue_estimator', 'spectrum', 'spectrum_virtual'
            ]
            simulation.runner.to_hdf(tardis_ref_data, '', self.name)
            pytest.skip('Reference data was generated during this run.')
Esempio n. 7
0
    def runner(self, atomic_data_fname, tardis_ref_data, generate_reference):
        config = Configuration.from_yaml(
            "tardis/io/tests/data/tardis_configv1_verysimple.yml")
        config["atom_data"] = atomic_data_fname

        simulation = Simulation.from_config(config)
        simulation.run()

        if not generate_reference:
            return simulation.runner
        else:
            simulation.runner.hdf_properties = [
                "j_blue_estimator",
                "spectrum",
                "spectrum_virtual",
            ]
            simulation.runner.to_hdf(tardis_ref_data, "", self.name)
            pytest.skip("Reference data was generated during this run.")
    def runner(self, config, atomic_data_fname, tardis_ref_data,
               generate_reference):
        config.atom_data = atomic_data_fname

        self.name = self._name + f"_{config.plasma.line_interaction_type:s}"
        if config.spectrum.integrated.interpolate_shells > 0:
            self.name += "_interp"

        simulation = Simulation.from_config(config)
        simulation.run()

        if not generate_reference:
            return simulation.runner
        else:
            simulation.runner.hdf_properties = [
                "j_blue_estimator",
                "spectrum",
                "spectrum_integrated",
            ]
            simulation.runner.to_hdf(tardis_ref_data, "", self.name)
            pytest.skip("Reference data was generated during this run.")
Esempio n. 9
0
    def runner(
            self, atomic_data_fname,
            tardis_ref_data, generate_reference):
        config = Configuration.from_yaml(
                'tardis/io/tests/data/tardis_configv1_verysimple.yml')
        config['atom_data'] = atomic_data_fname

        simulation = Simulation.from_config(config)
        simulation.run()

        if not generate_reference:
            return simulation.runner
        else:
            simulation.runner.hdf_properties = [
                    'j_blue_estimator',
                    'spectrum',
                    'spectrum_virtual'
                    ]
            simulation.runner.to_hdf(
                    tardis_ref_data,
                    '',
                    self.name)
            pytest.skip(
                    'Reference data was generated during this run.')
Esempio n. 10
0
class TestSimpleRun():
    """
    Very simple run
    """
    @classmethod
    @pytest.fixture(scope="class", autouse=True)
    def setup(self):
        self.atom_data_filename = os.path.expanduser(
            os.path.expandvars(pytest.config.getvalue('atomic-dataset')))
        assert os.path.exists(
            self.atom_data_filename), ("{0} atomic datafiles"
                                       " does not seem to "
                                       "exist".format(self.atom_data_filename))
        self.config_yaml = yaml.load(
            open('tardis/io/tests/data/tardis_configv1_verysimple.yml'))
        self.config_yaml['atom_data'] = self.atom_data_filename

        tardis_config = Configuration.from_config_dict(self.config_yaml)
        self.model = Radial1DModel(tardis_config)
        self.simulation = Simulation(tardis_config)

        self.simulation.legacy_run_simulation(self.model)

    def test_j_blue_estimators(self):
        j_blue_estimator = np.load(
            data_path('simple_test_j_blue_estimator.npy'))

        np.testing.assert_allclose(self.model.runner.j_blue_estimator,
                                   j_blue_estimator)

    def test_spectrum(self):
        luminosity_density = np.load(
            data_path('simple_test_luminosity_density_lambda.npy'))

        luminosity_density = luminosity_density * u.Unit('erg / (Angstrom s)')

        np.testing.assert_allclose(
            self.model.spectrum.luminosity_density_lambda, luminosity_density)

    def test_virtual_spectrum(self):
        virtual_luminosity_density = np.load(
            data_path('simple_test_virtual_luminosity_density_lambda.npy'))

        virtual_luminosity_density = virtual_luminosity_density * u.Unit(
            'erg / (Angstrom s)')

        np.testing.assert_allclose(
            self.model.spectrum_virtual.luminosity_density_lambda,
            virtual_luminosity_density)

    def test_plasma_properties(self):

        pass

    def test_runner_properties(self):
        """Tests whether a number of runner attributes exist and also verifies
        their types

        Currently, runner attributes needed to call the model routine to_hdf5
        are checked.

        """

        virt_type = np.ndarray

        props_required_by_modeltohdf5 = dict([
            ("virt_packet_last_interaction_type", virt_type),
            ("virt_packet_last_line_interaction_in_id", virt_type),
            ("virt_packet_last_line_interaction_out_id", virt_type),
            ("virt_packet_last_interaction_in_nu", virt_type),
            ("virt_packet_nus", virt_type),
            ("virt_packet_energies", virt_type),
        ])

        required_props = props_required_by_modeltohdf5.copy()

        for prop, prop_type in required_props.items():

            assert type(getattr(self.model.runner, prop)) == prop_type, (
                "wrong type of attribute '{}': expected {}, found {}".format(
                    prop, prop_type, type(getattr(self.model.runner, prop))))

    def test_legacy_model_properties(self):
        """Tests whether a number of model attributes exist and also verifies
        their types

        Currently, model attributes needed to run the gui and to call the model
        routine to_hdf5 are checked.

        Notes
        -----
        The list of properties may be incomplete

        """

        props_required_by_gui = dict([
            ("converged", bool),
            ("iterations_executed", int),
            ("iterations_max_requested", int),
            ("current_no_of_packets", int),
            ("no_of_packets", int),
            ("no_of_virtual_packets", int),
        ])
        props_required_by_tohdf5 = dict([
            ("runner", MontecarloRunner),
            ("plasma_array", LegacyPlasmaArray),
            ("last_line_interaction_in_id", np.ndarray),
            ("last_line_interaction_out_id", np.ndarray),
            ("last_line_interaction_shell_id", np.ndarray),
            ("last_line_interaction_in_id", np.ndarray),
            ("last_line_interaction_angstrom", u.quantity.Quantity),
        ])

        required_props = props_required_by_gui.copy()
        required_props.update(props_required_by_tohdf5)

        for prop, prop_type in required_props.items():

            assert type(getattr(self.model, prop)) == prop_type, (
                "wrong type of attribute '{}': expected {}, found {}".format(
                    prop, prop_type, type(getattr(self.model, prop))))
Esempio n. 11
0
class TestSimpleRun():
    """
    Very simple run
    """

    @classmethod
    @pytest.fixture(scope="class", autouse=True)
    def setup(self):
        self.atom_data_filename = os.path.expanduser(os.path.expandvars(
            pytest.config.getvalue('atomic-dataset')))
        assert os.path.exists(self.atom_data_filename), ("{0} atomic datafiles"
                                                         " does not seem to "
                                                         "exist".format(
            self.atom_data_filename))
        self.config_yaml = yaml.load(open(
            'tardis/io/tests/data/tardis_configv1_verysimple.yml'))
        self.config_yaml['atom_data'] = self.atom_data_filename

        tardis_config = Configuration.from_config_dict(self.config_yaml)
        self.model = Radial1DModel(tardis_config)
        self.simulation = Simulation(tardis_config)

        self.simulation.legacy_run_simulation(self.model)

    def test_spectrum(self):
        luminosity_density = np.load(
            data_path('simple_test_luminosity_density_lambda.npy'))

        luminosity_density = luminosity_density * u.Unit(
            'erg / (Angstrom s)')

        np.testing.assert_allclose(
            self.model.spectrum.luminosity_density_lambda,luminosity_density)

    def test_virtual_spectrum(self):
        virtual_luminosity_density = np.load(
            data_path('simple_test_virtual_luminosity_density_lambda.npy'))

        virtual_luminosity_density = virtual_luminosity_density * u.Unit(
            'erg / (Angstrom s)')

        np.testing.assert_allclose(
            self.model.spectrum_virtual.luminosity_density_lambda,
            virtual_luminosity_density)

    def test_plasma_properties(self):

        pass

    def test_runner_properties(self):
        """Tests whether a number of runner attributes exist and also verifies
        their types

        Currently, runner attributes needed to call the model routine to_hdf5
        are checked.

        """

        if self.model.runner.virt_logging > 0:
            virt_type = np.ndarray
        else:
            virt_type = type(None)


        props_required_by_modeltohdf5 = dict([
                ("virt_packet_last_interaction_type", virt_type),
                ("virt_packet_last_line_interaction_in_id", virt_type),
                ("virt_packet_last_line_interaction_out_id", virt_type),
                ("virt_packet_last_interaction_in_nu", virt_type),
                ("virt_packet_nus", virt_type),
                ("virt_packet_energies", virt_type),
                ])

        required_props = props_required_by_modeltohdf5.copy()

        for prop, prop_type in required_props.items():

            assert type(getattr(self.model.runner, prop)) == prop_type, ("wrong type of attribute '{}': expected {}, found {}".format(prop, prop_type, type(getattr(self.model.runner, prop))))


    def test_legacy_model_properties(self):
        """Tests whether a number of model attributes exist and also verifies
        their types

        Currently, model attributes needed to run the gui and to call the model
        routine to_hdf5 are checked.

        Notes
        -----
        The list of properties may be incomplete

        """

        props_required_by_gui = dict([
                ("converged", bool),
                ("iterations_executed", int),
                ("iterations_max_requested", int),
                ("current_no_of_packets", int),
                ("no_of_packets", int),
                ("no_of_virtual_packets", int),
                ])
        props_required_by_tohdf5 = dict([
                ("runner", MontecarloRunner),
                ("plasma_array", LegacyPlasmaArray),
                ("last_line_interaction_in_id", np.ndarray),
                ("last_line_interaction_out_id", np.ndarray),
                ("last_line_interaction_shell_id", np.ndarray),
                ("last_line_interaction_in_id", np.ndarray),
                ("last_line_interaction_angstrom", u.quantity.Quantity),
                ])

        required_props = props_required_by_gui.copy()
        required_props.update(props_required_by_tohdf5)

        for prop, prop_type in required_props.items():

            assert type(getattr(self.model, prop)) == prop_type, ("wrong type of attribute '{}': expected {}, found {}".format(prop, prop_type, type(getattr(self.model, prop))))