Esempio n. 1
0
def energy_level_plot(qdt, fig_width=9.0, fig_height=6.0):
    pl = Plotter(fig_width=fig_width, fig_height=fig_height)
    EjdivEc = linspace(0.1, 300, 3000)
    Ej = EjdivEc * qdt.Ec
    E0, E1, E2 = qdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    line(EjdivEc, (E0 + Ej) / h / 1e9,
         plotter=pl,
         linestyle="dashed",
         linewidth=1.0)
    line(EjdivEc, (E1 + Ej) / h / 1e9,
         plotter=pl,
         linestyle="dashed",
         linewidth=1.0)
    line(EjdivEc, (E2 + Ej) / h / 1e9,
         plotter=pl,
         linestyle="dashed",
         linewidth=1.0)

    E0p, E1p, E2p = qdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej,
                                                                 n_energy=3)
    line(EjdivEc, (E0p + Ej) / h / 1e9, plotter=pl, color="red", linewidth=1.0)
    line(EjdivEc, (E1p + Ej) / h / 1e9,
         plotter=pl,
         color="green",
         linewidth=1.0)
    line(EjdivEc, (E2p + Ej) / h / 1e9,
         plotter=pl,
         color="purple",
         linewidth=1.0)
    pl.xlabel = "$E_j/E_c$"
    pl.ylabel = "Frequency (GHz)"
    return pl
Esempio n. 2
0
def anton_lamb_shift_plot(fig_width=9.0, fig_height=6.0):
    """reproduces coupling/lamb shift plot in Anton's paper"""
    pl=Plotter(fig_width=fig_width, fig_height=fig_height)
    EjdivEc=linspace(0.1, 300, 10000)
    Ej=EjdivEc*antonqdt.Ec
    #E0, E1, E2=antonqdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    fq=antonqdt._get_fq(Ej)
    #anharm=(E2-E1)-(E1-E0)
    #E0p, E1p, E2p=antonqdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)
    #anharmp=(E2p-E1p)-(E1p-E0p)
    #fq= (E1-E0)/h#qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
    coup=antonqdt._get_coupling(fq)
    ls=antonqdt._get_Lamb_shift(fq)
    line(fq/antonqdt.f0, 2.0*coup/(2.0*antonqdt.max_coupling), plotter=pl, linewidth=0.5, color="red", label=r"$\Gamma$, $N=10$")
    line(fq/antonqdt.f0, ls/(2.0*antonqdt.max_coupling), plotter=pl, color="green", linewidth=0.5, label=r"$\Delta$, $N=10$")

    #antonqdt.Np=3
    Ej=EjdivEc*antonqdt3.Ec
    fq=antonqdt3._get_fq(Ej)
    coup=antonqdt3._get_coupling(fq)
    ls=antonqdt3._get_Lamb_shift(fq)
    line(fq/antonqdt3.f0, 2.0*coup/(2.0*antonqdt3.max_coupling), plotter=pl, linewidth=0.5, color="blue", label=r"$\Gamma$, $N=3$")
    line(fq/antonqdt3.f0, ls/(2.0*antonqdt3.max_coupling), plotter=pl, color="black", linewidth=0.5, label=r"$\Delta$, $N=3$")
    pl.set_ylim(-0.4, 1.0)
    pl.set_xlim(0.2, 1.8)
    pl.xlabel=r"$f_{10}/f_{IDT}$"
    pl.ylabel=r"$\Delta/\Gamma_{10}^{MAX}$"
    pl.legend(loc='upper right')
    return pl
Esempio n. 3
0
    def magabs_colormesh2(self,
                          offset=-0.08,
                          flux_factor=0.52,
                          Ejmax=h * 44.0e9,
                          f0=5.35e9,
                          alpha=0.7,
                          pl=None):
        fq_vec = array([
            sqrt(f * (f + alpha * calc_freq_shift(f, qdt.ft, qdt.Np, f0,
                                                  qdt.epsinf, qdt.W, qdt.Dvv)))
            for f in self.frequency
        ])

        pl = Plotter(fig_width=9.0,
                     fig_height=6.0,
                     name="magabs_{}".format(self.name))
        pl, pf = colormesh(fq_vec,
                           self.yoko,
                           (self.MagdB.transpose() - self.MagdB[:, 0]),
                           plotter=pl)
        pf.set_clim(-0.3, 0.1)
        #pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
        pl.set_ylim(min(self.yoko), max(self.yoko))

        pl.ylabel = "Yoko (V)"
        pl.xlabel = "Frequency (GHz)"
        return pl
Esempio n. 4
0
def line_cs(self, ind=210):
    print self.frequency[ind]/1e9
    pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_cs_{}".format(self.name))
    pl, pf=line(self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0])[:, ind], plotter=pl, linewidth=1.0)
    pl.xlabel="Yoko (V)"
    pl.ylabel="Magnitude (dB)"
    return pl
 def line_cs2(self, ind=210, f0=5.35e9, alpha=0.45):
     fq_vec=array([sqrt(f*(f-2*qdt.call_func("Lamb_shift", f=f, f0=f0, couple_mult=alpha))) for f in self.frequency])
     print self.frequency[ind]/1e9, fq_vec[ind]/1e9
     pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_cs_{}".format(self.name))
     pl, pf=line(self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0])[:, ind], plotter=pl, linewidth=1.0)
     pl.xlabel="Yoko (V)"
     pl.ylabel="Magnitude (dB)"
     return pl
def line_cs2(self, ind=210, f0=5.35e9, alpha=0.45):
    fq_vec=array([sqrt(f*(f-2*qdt.call_func("Lamb_shift", f=f, f0=f0, couple_mult=alpha))) for f in self.frequency])
    print self.frequency[ind]/1e9, fq_vec[ind]/1e9
    pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_cs_{}".format(self.name))
    pl, pf=line(self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0])[:, ind], plotter=pl, linewidth=1.0)
    pl.xlabel="Yoko (V)"
    pl.ylabel="Magnitude (dB)"
    return pl
Esempio n. 7
0
    def anharm_plot2():
        """reproduces anharm plot in Anton's paper"""
        set_tag(qdt, "EjdivEc", log=False)
        set_tag(qdt, "Ej", log=False)
        pl = Plotter(fig_width=9.0, fig_height=6.0)
        #qdt.epsinf=qdt.epsinf/3.72
        #qdt.Np=10
        #qdt.Ec=qdt.fq*0.1*h
        print qdt.max_coupling, qdt.coupling_approx
        #flux_o_flux0=qdt.call_func("flux_over_flux0", voltage=yoko)
        #Ej=qdt.call_func("Ej", flux_over_flux0=flux_o_flux0)
        #EjdivEc=Ej/qdt.Ec
        anharm = qdt.call_func("anharm", EjdivEc=EjdivEc)
        anharmp = qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)
        fq = qdt.call_func("fq", Ej=EjdivEc * qdt.Ec)
        ls_fq = qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
        ls_fq2 = qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
        #pl, pf=line(fq, anharm/h, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")

        pl, pf = line(EjdivEc,
                      anharmp / h / 1e9,
                      linewidth=1.0,
                      color="black",
                      label=r"$\Delta_{2,1}-\Delta_{1,0}$",
                      plotter=pl)
        line(EjdivEc,
             anharm / h / 1e9,
             linewidth=1.0,
             color="purple",
             label=r"anharm",
             plotter=pl)

        line(EjdivEc, (ls_fq - fq) / 1e9,
             plotter=pl,
             color="blue",
             linewidth=1.0,
             label=r"$\Delta_{1,0}$")
        E0, E1, E2 = qdt.call_func("transmon_energy_levels",
                                   EjdivEc=EjdivEc,
                                   n_energy=3)
        fq2 = (E2 - E1) / h
        line(EjdivEc, (ls_fq2 - fq2) / 1e9,
             plotter=pl,
             color="red",
             linewidth=1.0,
             label=r"$\Delta_{2,1}$")
        pl.set_ylim(-2, 1.5)
        #pl.set_xlim(0.0, 70)
        pl.xlabel = r"$E_j/E_c$"
        pl.ylabel = r"$\Delta (GHz)$"
        #pl.legend(loc='lower right')
        #fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
        #line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)

        #line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
        #line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
        return pl
Esempio n. 8
0
def anton_anharm_plot(fig_width=9, fig_height=6):
    """reproduces anharm plot in Anton's paper"""

    pl = Plotter(fig_width=fig_width, fig_height=fig_height)

    #print qdt.f0*h/qdt.Ec, qdt.epsinf/3.72
    #qdt.Np=10
    #qdt.Ec=qdt.f0*0.1*h

    EjdivEc = linspace(0.1, 300, 3000)
    Ej = EjdivEc * antonqdt.Ec

    print antonqdt.C, antonqdt.C, antonqdt.Ec, antonqdt._get_Ec(antonqdt.C)

    print antonqdt.max_coupling, antonqdt.epsinf, antonqdt.f0 * h / antonqdt.Ec
    E0, E1, E2 = antonqdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    anharm = (E2 - E1) - (E1 - E0)

    E0p, E1p, E2p = antonqdt._get_lamb_shifted_transmon_energy_levels(
        Ej=Ej, n_energy=3)

    anharmp = (E2p - E1p) - (E1p - E0p)

    fq = (E1 - E0) / h  #qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
    ls_fq = (E1p - E0p) / h  #qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    fq2 = (E2 - E1) / h
    ls_fq2 = (E2p -
              E1p) / h  #qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)

    line(fq / antonqdt.f0,
         (anharmp / h - anharm / h) / (2.0 * antonqdt.max_coupling),
         plotter=pl,
         linewidth=0.5,
         color="black",
         label=r"$\Delta_{2,1}-\Delta_{1,0}$")
    line(fq / antonqdt.f0, (ls_fq - fq) / (2.0 * antonqdt.max_coupling),
         plotter=pl,
         color="blue",
         linewidth=0.5,
         label=r"$\Delta_{1,0}$")
    line(fq / antonqdt.f0, (ls_fq2 - fq2) / (2.0 * antonqdt.max_coupling),
         plotter=pl,
         color="red",
         linewidth=0.5,
         label=r"$\Delta_{2,1}$")
    pl.set_ylim(-1.0, 0.6)
    pl.set_xlim(0.7, 1.3)
    pl.xlabel = r"$f_{10}/f_{IDT}$"
    pl.ylabel = r"$\Delta/\Gamma_{10}^{MAX}$"
    pl.legend(loc='lower left')
    #fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    #line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)

    #line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
    #line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
    return pl
    def magabs_colormesh(self):
        pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
        pl, pf=colormesh(self.frequency/1e9, self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0]), plotter=pl)
        pf.set_clim(-0.3, 0.1)
        pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
        pl.set_ylim(min(self.yoko), max(self.yoko))

        pl.ylabel="Yoko (V)"
        pl.xlabel="Frequency (GHz)"
        return pl
    def ifft_plot(self):
        pl=Plotter(fig_width=6, fig_height=4)

        line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,self.on_res_ind])), label="On resonance")
        line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,0])), label="Off resonance", color="red")
        pl.legend()
        pl.set_xlim(0, 100)
        pl.xlabel="Time (#)"
        pl.ylabel="Absolute Magnitude"
        return pl
def magabs_colormesh(self):
    pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
    pl, pf=colormesh(self.frequency/1e9, self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0]), plotter=pl)
    pf.set_clim(-0.3, 0.1)
    pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
    pl.set_ylim(min(self.yoko), max(self.yoko))

    pl.ylabel="Yoko (V)"
    pl.xlabel="Frequency (GHz)"
    return pl
    def magabs_colormesh3(self, f0=5.35e9, alpha=0.45, pl=None):
        fq_vec=array([sqrt(f*(f-2*qdt.call_func("Lamb_shift", f=f, f0=f0, couple_mult=alpha))) for f in self.frequency])
        pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
        pl, pf=colormesh(self.yoko, self.frequency/1e9, absolute((self.Magcom.transpose()-self.Magcom[:, 0]).transpose()), plotter=pl)
        #pf.set_clim(-0.3, 0.1)
        #pl.set_ylim(min(fq_vec/1e9), max(fq_vec/1e9))
        #pl.set_xlim(min(self.yoko), max(self.yoko))

        pl.ylabel="Yoko (V)"
        pl.xlabel="Frequency (GHz)"
        return pl
def magabs_colormesh3(self, f0=5.35e9, alpha=0.45, pl=None):
    fq_vec=array([sqrt(f*(f-2*qdt.call_func("Lamb_shift", f=f, f0=f0, couple_mult=alpha))) for f in self.frequency])
    pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
    pl, pf=colormesh(self.yoko, self.frequency/1e9, absolute((self.Magcom.transpose()-self.Magcom[:, 0]).transpose()), plotter=pl)
    #pf.set_clim(-0.3, 0.1)
    #pl.set_ylim(min(fq_vec/1e9), max(fq_vec/1e9))
    #pl.set_xlim(min(self.yoko), max(self.yoko))

    pl.ylabel="Yoko (V)"
    pl.xlabel="Frequency (GHz)"
    return pl
Esempio n. 14
0
def magabs_colormesh2(self, offset=-0.08, flux_factor=0.52, Ejmax=h*44.0e9, f0=5.35e9, alpha=0.7, pl=None):
    fq_vec=array([sqrt(f*(f+alpha*calc_freq_shift(f, qdt.ft, qdt.Np, f0, qdt.epsinf, qdt.W, qdt.Dvv))) for f in self.frequency])

    pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
    pl, pf=colormesh(fq_vec, self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0]), plotter=pl)
    pf.set_clim(-0.3, 0.1)
    #pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
    pl.set_ylim(min(self.yoko), max(self.yoko))

    pl.ylabel="Yoko (V)"
    pl.xlabel="Frequency (GHz)"
    return pl
Esempio n. 15
0
def anharm_plot(qdt, fig_width=9.0, fig_height=6.0, ymin=-1.5, ymax=1.0):
    """Lamb shifted anharmonicity plot"""
    pl=Plotter(fig_width=fig_width, fig_height=fig_height)
    EjdivEc=linspace(0.1, 300, 3000)
    Ej=EjdivEc*qdt.Ec
    E0, E1, E2=qdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    anharm=(E2-E1)-(E1-E0)

    E0p, E1p, E2p=qdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)

    anharmp=(E2p-E1p)-(E1p-E0p)

    fq= (E1-E0)/h
    ls_fq=(E1p-E0p)/h
    fq2=(E2-E1)/h
    ls_fq2=(E2p-E1p)/h

    line(EjdivEc, anharm/h/1e9, plotter=pl, linewidth=0.5, color="purple", label=r"anharm")
    line(EjdivEc, anharmp/h/1e9, plotter=pl, linewidth=0.5, color="black", label=r"ls anharm")
    line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=0.5, label=r"$\Delta_{1,0}$")
    line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=0.5, label=r"$\Delta_{2,1}$")
    pl.set_ylim(ymin, ymax)
    #pl.set_xlim(0.7, 1.3)
    pl.xlabel=r"$E_J/E_C$"
    pl.ylabel=r"$\Delta$ (GHz)"
    pl.legend(loc='lower left')
    #pl.set_ylim(-2, 1.5)
    #pl.set_xlim(0.0, 70)

    #anharm=qdt.call_func("anharm", EjdivEc=EjdivEc)
    #anharmp=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)
    #fq=qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
    #ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    #ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
    #pl, pf=line(fq, anharm/h, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")

    #pl, pf=line(EjdivEc, anharmp/h/1e9, linewidth=1.0, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$", plotter=pl)
    #line(EjdivEc, anharm/h/1e9, linewidth=1.0, color="purple", label=r"anharm", plotter=pl)

    #line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=1.0, label=r"$\Delta_{1,0}$")
    #E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
    #fq2=(E2-E1)/h
    #line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=1.0, label=r"$\Delta_{2,1}$")
    #pl.xlabel=r"$E_j/E_c$"
    #pl.ylabel=r"$\Delta (GHz)$"
    #pl.legend(loc='lower right')
    #fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    #line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)

    #line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
    #line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
    return pl
def ifft_plot(self):
    pl=Plotter(fig_width=6, fig_height=4)

    line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,self.on_res_ind])), label="On resonance")
    line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,0])), label="Off resonance", color="red")
    pl.legend()
    pl.set_xlim(0, 100)
    pl.xlabel="Time (#)"
    pl.ylabel="Absolute Magnitude"
    return pl
#ifft_plot(s4a1_mp).show()
        #d.savefig("/Users/thomasaref/Dropbox/Current stuff/Linneaus180416/", "trans_ifft.pdf")
        #d.show()
Esempio n. 17
0
def anton_lamb_shift_plot(fig_width=9.0, fig_height=6.0):
    """reproduces coupling/lamb shift plot in Anton's paper"""
    pl = Plotter(fig_width=fig_width, fig_height=fig_height)
    EjdivEc = linspace(0.1, 300, 10000)
    Ej = EjdivEc * antonqdt.Ec
    #E0, E1, E2=antonqdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    fq = antonqdt._get_fq(Ej)
    #anharm=(E2-E1)-(E1-E0)
    #E0p, E1p, E2p=antonqdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)
    #anharmp=(E2p-E1p)-(E1p-E0p)
    #fq= (E1-E0)/h#qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
    coup = antonqdt._get_coupling(fq)
    ls = antonqdt._get_Lamb_shift(fq)
    line(fq / antonqdt.f0,
         2.0 * coup / (2.0 * antonqdt.max_coupling),
         plotter=pl,
         linewidth=0.5,
         color="red",
         label=r"$\Gamma$, $N=10$")
    line(fq / antonqdt.f0,
         ls / (2.0 * antonqdt.max_coupling),
         plotter=pl,
         color="green",
         linewidth=0.5,
         label=r"$\Delta$, $N=10$")

    #antonqdt.Np=3
    Ej = EjdivEc * antonqdt3.Ec
    fq = antonqdt3._get_fq(Ej)
    coup = antonqdt3._get_coupling(fq)
    ls = antonqdt3._get_Lamb_shift(fq)
    line(fq / antonqdt3.f0,
         2.0 * coup / (2.0 * antonqdt3.max_coupling),
         plotter=pl,
         linewidth=0.5,
         color="blue",
         label=r"$\Gamma$, $N=3$")
    line(fq / antonqdt3.f0,
         ls / (2.0 * antonqdt3.max_coupling),
         plotter=pl,
         color="black",
         linewidth=0.5,
         label=r"$\Delta$, $N=3$")
    pl.set_ylim(-0.4, 1.0)
    pl.set_xlim(0.2, 1.8)
    pl.xlabel = r"$f_{10}/f_{IDT}$"
    pl.ylabel = r"$\Delta/\Gamma_{10}^{MAX}$"
    pl.legend(loc='upper right')
    return pl
Esempio n. 18
0
    def ifft_plot(self):
        pl = Plotter(fig_width=6, fig_height=4)

        line("ifft_{}".format(self.name),
             absolute(fft.ifft(self.Magcom[:, self.on_res_ind])),
             label="On resonance")
        line("ifft_{}".format(self.name),
             absolute(fft.ifft(self.Magcom[:, 0])),
             label="Off resonance",
             color="red")
        pl.legend()
        pl.set_xlim(0, 100)
        pl.xlabel = "Time (#)"
        pl.ylabel = "Absolute Magnitude"
        return pl
Esempio n. 19
0
def energy_level_plot(qdt, fig_width=9.0, fig_height=6.0):
    pl=Plotter(fig_width=fig_width, fig_height=fig_height)
    EjdivEc=linspace(0.1, 300, 3000)
    Ej=EjdivEc*qdt.Ec
    E0, E1, E2=qdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    line(EjdivEc, (E0+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
    line(EjdivEc, (E1+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
    line(EjdivEc, (E2+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)

    E0p, E1p, E2p=qdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)
    line(EjdivEc, (E0p+Ej)/h/1e9, plotter=pl, color="red", linewidth=1.0)
    line(EjdivEc, (E1p+Ej)/h/1e9, plotter=pl, color="green", linewidth=1.0)
    line(EjdivEc, (E2p+Ej)/h/1e9, plotter=pl, color="purple", linewidth=1.0)
    pl.xlabel="$E_j/E_c$"
    pl.ylabel="Frequency (GHz)"
    return pl
Esempio n. 20
0
    def energy_level_plot():
        pl=Plotter(fig_width=9.0, fig_height=6.0)

        set_tag(qdt, "EjdivEc", log=False)
        E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
        Ej=EjdivEc*qdt.Ec
        pl, pf=line(EjdivEc, (E0+Ej)/h/1e9, linestyle="dashed", linewidth=1.0, plotter=pl)
        line(EjdivEc, (E1+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
        line(EjdivEc, (E2+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
        E0p, E1p, E2p=qdt.call_func("lamb_shifted_transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
        line(EjdivEc, (E0p+Ej)/h/1e9, plotter=pl, color="red", linewidth=1.0)
        line(EjdivEc, (E1p+Ej)/h/1e9, plotter=pl, color="green", linewidth=1.0)
        line(EjdivEc, (E2p+Ej)/h/1e9, plotter=pl, color="purple", linewidth=1.0)
        pl.xlabel="$E_j/E_c$"
        pl.ylabel="Frequency (GHz)"
        return pl
Esempio n. 21
0
    def energy_level_plot():
        pl=Plotter(fig_width=9.0, fig_height=6.0)

        set_tag(qdt, "EjdivEc", log=False)
        E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
        Ej=EjdivEc*qdt.Ec
        pl, pf=line(EjdivEc, (E0+Ej)/h/1e9, linestyle="dashed", linewidth=1.0, plotter=pl)
        line(EjdivEc, (E1+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
        line(EjdivEc, (E2+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
        E0p, E1p, E2p=qdt.call_func("lamb_shifted_transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
        line(EjdivEc, (E0p+Ej)/h/1e9, plotter=pl, color="red", linewidth=1.0)
        line(EjdivEc, (E1p+Ej)/h/1e9, plotter=pl, color="green", linewidth=1.0)
        line(EjdivEc, (E2p+Ej)/h/1e9, plotter=pl, color="purple", linewidth=1.0)
        pl.xlabel="$E_j/E_c$"
        pl.ylabel="Frequency (GHz)"
        return pl
Esempio n. 22
0
def ifft_plot(self):
    pl = Plotter(fig_width=6, fig_height=4)

    line("ifft_{}".format(self.name),
         absolute(fft.ifft(self.Magcom[:, self.on_res_ind])),
         label="On resonance")
    line("ifft_{}".format(self.name),
         absolute(fft.ifft(self.Magcom[:, 0])),
         label="Off resonance",
         color="red")
    pl.legend()
    pl.set_xlim(0, 100)
    pl.xlabel = "Time (#)"
    pl.ylabel = "Absolute Magnitude"
    return pl


#ifft_plot(s4a1_mp).show()
#d.savefig("/Users/thomasaref/Dropbox/Current stuff/Linneaus180416/", "trans_ifft.pdf")
#d.show()
Esempio n. 23
0
def anton_anharm_plot(fig_width=9, fig_height=6):
    """reproduces anharm plot in Anton's paper"""

    pl=Plotter(fig_width=fig_width, fig_height=fig_height)

    #print qdt.f0*h/qdt.Ec, qdt.epsinf/3.72
    #qdt.Np=10
    #qdt.Ec=qdt.f0*0.1*h

    EjdivEc=linspace(0.1, 300, 3000)
    Ej=EjdivEc*antonqdt.Ec

    print antonqdt.C, antonqdt.C, antonqdt.Ec, antonqdt._get_Ec(antonqdt.C)

    print antonqdt.max_coupling, antonqdt.epsinf, antonqdt.f0*h/antonqdt.Ec
    E0, E1, E2=antonqdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    anharm=(E2-E1)-(E1-E0)

    E0p, E1p, E2p=antonqdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)

    anharmp=(E2p-E1p)-(E1p-E0p)

    fq= (E1-E0)/h#qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
    ls_fq=(E1p-E0p)/h #qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    fq2=(E2-E1)/h
    ls_fq2=(E2p-E1p)/h #qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)

    line(fq/antonqdt.f0, (anharmp/h-anharm/h)/(2.0*antonqdt.max_coupling), plotter=pl, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")
    line(fq/antonqdt.f0, (ls_fq-fq)/(2.0*antonqdt.max_coupling), plotter=pl, color="blue", linewidth=0.5, label=r"$\Delta_{1,0}$")
    line(fq/antonqdt.f0, (ls_fq2-fq2)/(2.0*antonqdt.max_coupling), plotter=pl, color="red", linewidth=0.5, label=r"$\Delta_{2,1}$")
    pl.set_ylim(-1.0, 0.6)
    pl.set_xlim(0.7, 1.3)
    pl.xlabel=r"$f_{10}/f_{IDT}$"
    pl.ylabel=r"$\Delta/\Gamma_{10}^{MAX}$"
    pl.legend(loc='lower left')
    #fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    #line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)

    #line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
    #line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
    return pl
Esempio n. 24
0
def energy_level_plot(qbt):
    """confirmation plot of transmon energy levels"""
    pl=Plotter(fig_width=9.0, fig_height=6.0)
    EjdivEc=linspace(0.1, 300, 3000)
    Ej=EjdivEc*qbt.Ec
    E0, E1, E2=qbt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    line(EjdivEc, (E0+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0, color="blue")
    line(EjdivEc, (E1+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0, color="red")
    line(EjdivEc, (E2+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0, color="green")

    Ec=qbt.Ec
    E0 =  sqrt(8.0*Ej*Ec)*0.5 - Ec/4.0
    E1 =  sqrt(8.0*Ej*Ec)*1.5 - (Ec/12.0)*(6.0+6.0+3.0)
    E2 =  sqrt(8.0*Ej*Ec)*2.5 - (Ec/12.0)*(6.0*2**2+6.0*2+3.0)

    line(EjdivEc, E0/h/1e9, plotter=pl, linewidth=0.5, color="blue")
    line(EjdivEc, E1/h/1e9, plotter=pl, linewidth=0.5, color="red")
    line(EjdivEc, E2/h/1e9, plotter=pl, linewidth=0.5, color="green")

    pl.xlabel="$E_j/E_c$"
    pl.ylabel="Frequency (GHz)"
    return pl
Esempio n. 25
0
    def magabs_colormesh(self,
                         offset=-0.08,
                         flux_factor=0.52,
                         Ejmax=h * 44.0e9,
                         f0=5.35e9,
                         alpha=0.7,
                         pl=None):
        fq_vec = array([
            sqrt(f * (f + alpha * calc_freq_shift(f, qdt.ft, qdt.Np, f0,
                                                  qdt.epsinf, qdt.W, qdt.Dvv)))
            for f in self.frequency
        ])
        freq, frq2 = flux_parabola(self.yoko, offset, 0.16, Ejmax, qdt.Ec)

        pl = Plotter(fig_width=9.0,
                     fig_height=6.0,
                     name="magabs_{}".format(self.name))
        pl, pf = colormesh(freq,
                           fq_vec, (self.MagdB.transpose() -
                                    self.MagdB[:, 0]).transpose(),
                           plotter=pl)
        pf.set_clim(-0.3, 0.1)
        line([min(freq), max(freq)], [min(freq), max(freq)], plotter=pl)
        flux_o_flux0 = flux_over_flux0(self.yoko, offset, flux_factor)
        qEj = Ej(Ejmax, flux_o_flux0)
        EjdivEc = qEj / qdt.Ec
        ls_fq = qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
        ls_fq2 = qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)

        frq2 = qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc) / h
        line(ls_fq, ls_fq2, plotter=pl)

        #pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
        #pl.set_ylim(min(self.yoko), max(self.yoko))

        pl.ylabel = "Yoko (V)"
        pl.xlabel = "Frequency (GHz)"
        return pl
Esempio n. 26
0
def magabs_colormesh(self, offset=-0.08, flux_factor=0.52, Ejmax=h*44.0e9, f0=5.35e9, alpha=0.7, pl=None):
    fq_vec=array([sqrt(f*(f+alpha*calc_freq_shift(f, qdt.ft, qdt.Np, f0, qdt.epsinf, qdt.W, qdt.Dvv))) for f in self.frequency])
    freq, frq2=flux_parabola(self.yoko, offset, 0.16, Ejmax, qdt.Ec)

    pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
    pl, pf=colormesh(freq, fq_vec, (self.MagdB.transpose()-self.MagdB[:, 0]).transpose(), plotter=pl)
    pf.set_clim(-0.3, 0.1)
    line([min(freq), max(freq)], [min(freq), max(freq)], plotter=pl)
    flux_o_flux0=flux_over_flux0(self.yoko, offset, flux_factor)
    qEj=Ej(Ejmax, flux_o_flux0)
    EjdivEc=qEj/qdt.Ec
    ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)

    frq2=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)/h
    line(ls_fq, ls_fq2, plotter=pl)

    #pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
    #pl.set_ylim(min(self.yoko), max(self.yoko))

    pl.ylabel="Yoko (V)"
    pl.xlabel="Frequency (GHz)"
    return pl
Esempio n. 27
0
    def anharm_plot2():
        """reproduces anharm plot in Anton's paper"""
        set_tag(qdt, "EjdivEc", log=False)
        set_tag(qdt, "Ej", log=False)
        pl=Plotter(fig_width=9.0, fig_height=6.0)
        #qdt.epsinf=qdt.epsinf/3.72
        #qdt.Np=10
        #qdt.Ec=qdt.fq*0.1*h
        print qdt.max_coupling, qdt.coupling_approx
        #flux_o_flux0=qdt.call_func("flux_over_flux0", voltage=yoko)
        #Ej=qdt.call_func("Ej", flux_over_flux0=flux_o_flux0)
        #EjdivEc=Ej/qdt.Ec
        anharm=qdt.call_func("anharm", EjdivEc=EjdivEc)
        anharmp=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)
        fq=qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
        ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
        ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
        #pl, pf=line(fq, anharm/h, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")

        pl, pf=line(EjdivEc, anharmp/h/1e9, linewidth=1.0, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$", plotter=pl)
        line(EjdivEc, anharm/h/1e9, linewidth=1.0, color="purple", label=r"anharm", plotter=pl)

        line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=1.0, label=r"$\Delta_{1,0}$")
        E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
        fq2=(E2-E1)/h
        line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=1.0, label=r"$\Delta_{2,1}$")
        pl.set_ylim(-2, 1.5)
        #pl.set_xlim(0.0, 70)
        pl.xlabel=r"$E_j/E_c$"
        pl.ylabel=r"$\Delta (GHz)$"
        #pl.legend(loc='lower right')
        #fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
        #line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)

        #line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
        #line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
        return pl
Esempio n. 28
0
def anharm_plot(qdt, fig_width=9.0, fig_height=6.0, ymin=-1.5, ymax=1.0):
    """Lamb shifted anharmonicity plot"""
    pl = Plotter(fig_width=fig_width, fig_height=fig_height)
    EjdivEc = linspace(0.1, 300, 3000)
    Ej = EjdivEc * qdt.Ec
    E0, E1, E2 = qdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
    anharm = (E2 - E1) - (E1 - E0)

    E0p, E1p, E2p = qdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej,
                                                                 n_energy=3)

    anharmp = (E2p - E1p) - (E1p - E0p)

    fq = (E1 - E0) / h
    ls_fq = (E1p - E0p) / h
    fq2 = (E2 - E1) / h
    ls_fq2 = (E2p - E1p) / h

    line(EjdivEc,
         anharm / h / 1e9,
         plotter=pl,
         linewidth=0.5,
         color="purple",
         label=r"anharm")
    line(EjdivEc,
         anharmp / h / 1e9,
         plotter=pl,
         linewidth=0.5,
         color="black",
         label=r"ls anharm")
    line(EjdivEc, (ls_fq - fq) / 1e9,
         plotter=pl,
         color="blue",
         linewidth=0.5,
         label=r"$\Delta_{1,0}$")
    line(EjdivEc, (ls_fq2 - fq2) / 1e9,
         plotter=pl,
         color="red",
         linewidth=0.5,
         label=r"$\Delta_{2,1}$")
    pl.set_ylim(ymin, ymax)
    #pl.set_xlim(0.7, 1.3)
    pl.xlabel = r"$E_J/E_C$"
    pl.ylabel = r"$\Delta$ (GHz)"
    pl.legend(loc='lower left')
    #pl.set_ylim(-2, 1.5)
    #pl.set_xlim(0.0, 70)

    #anharm=qdt.call_func("anharm", EjdivEc=EjdivEc)
    #anharmp=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)
    #fq=qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
    #ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    #ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
    #pl, pf=line(fq, anharm/h, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")

    #pl, pf=line(EjdivEc, anharmp/h/1e9, linewidth=1.0, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$", plotter=pl)
    #line(EjdivEc, anharm/h/1e9, linewidth=1.0, color="purple", label=r"anharm", plotter=pl)

    #line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=1.0, label=r"$\Delta_{1,0}$")
    #E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
    #fq2=(E2-E1)/h
    #line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=1.0, label=r"$\Delta_{2,1}$")
    #pl.xlabel=r"$E_j/E_c$"
    #pl.ylabel=r"$\Delta (GHz)$"
    #pl.legend(loc='lower right')
    #fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
    #line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)

    #line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
    #line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
    return pl