Esempio n. 1
0
    def run(self, processor, completed):
        """Set up and perform the optimisation."""

        # Print out.
        if self.verbosity >= 1:
            # Individual spin block section.
            top = 2
            if self.verbosity >= 2:
                top += 2
            subsection(file=sys.stdout, text="Fitting to the spin block %s"%self.spin_ids, prespace=top)

            # Grid search printout.
            if search('^[Gg]rid', self.min_algor):
                result = 1
                for x in self.inc:
                    result = mul(result, x)
                print("Unconstrained grid search size: %s (constraints may decrease this size).\n" % result)

        # Initialise the function to minimise.
        model = Dispersion(model=self.spins[0].model, num_params=self.param_num, num_spins=count_spins(self.spins), num_frq=len(self.fields), exp_types=self.exp_types, values=self.values, errors=self.errors, missing=self.missing, frqs=self.frqs, frqs_H=self.frqs_H, cpmg_frqs=self.cpmg_frqs, spin_lock_nu1=self.spin_lock_nu1, chemical_shifts=self.chemical_shifts, offset=self.offsets, tilt_angles=self.tilt_angles, r1=self.r1, relax_times=self.relax_times, scaling_matrix=self.scaling_matrix, r1_fit=self.r1_fit)

        # Grid search.
        if search('^[Gg]rid', self.min_algor):
            results = grid(func=model.func, args=(), num_incs=self.inc, lower=self.lower, upper=self.upper, A=self.A, b=self.b, verbosity=self.verbosity)

            # Unpack the results.
            param_vector, chi2, iter_count, warning = results
            f_count = iter_count
            g_count = 0.0
            h_count = 0.0

        # Minimisation.
        else:
            results = generic_minimise(func=model.func, args=(), x0=self.param_vector, min_algor=self.min_algor, min_options=self.min_options, func_tol=self.func_tol, grad_tol=self.grad_tol, maxiter=self.max_iterations, A=self.A, b=self.b, full_output=True, print_flag=self.verbosity)

            # Unpack the results.
            if results == None:
                return
            param_vector, chi2, iter_count, f_count, g_count, h_count, warning = results

        # Optimisation printout.
        if self.verbosity:
            print("\nOptimised parameter values:")
            for i in range(len(param_vector)):
                print("%-20s %25.15f" % (self.param_names[i], param_vector[i]*self.scaling_matrix[i, i]))

        # Create the result command object to send back to the master.
        processor.return_object(Disp_result_command(processor=processor, memo_id=self.memo_id, param_vector=param_vector, chi2=chi2, iter_count=iter_count, f_count=f_count, g_count=g_count, h_count=h_count, warning=warning, missing=self.missing, back_calc=model.get_back_calc(), completed=False))
Esempio n. 2
0
    def run(self, processor, completed):
        """Set up and perform the optimisation."""

        # Print out.
        if self.verbosity >= 1:
            # Individual spin block section.
            top = 2
            if self.verbosity >= 2:
                top += 2
            subsection(file=sys.stdout, text="Fitting to the spin block %s"%self.spin_ids, prespace=top)

            # Grid search printout.
            if search('^[Gg]rid', self.min_algor):
                result = 1
                for x in self.inc:
                    result = mul(result, x)
                print("Unconstrained grid search size: %s (constraints may decrease this size).\n" % result)

        # Initialise the function to minimise.
        model = Dispersion(model=self.spins[0].model, num_params=self.param_num, num_spins=count_spins(self.spins), num_frq=len(self.fields), exp_types=self.exp_types, values=self.values, errors=self.errors, missing=self.missing, frqs=self.frqs, frqs_H=self.frqs_H, cpmg_frqs=self.cpmg_frqs, spin_lock_nu1=self.spin_lock_nu1, chemical_shifts=self.chemical_shifts, offset=self.offsets, tilt_angles=self.tilt_angles, r1=self.r1, relax_times=self.relax_times, scaling_matrix=self.scaling_matrix, r1_fit=self.r1_fit)

        # Grid search.
        if search('^[Gg]rid', self.min_algor):
            results = grid(func=model.func, args=(), num_incs=self.inc, lower=self.lower, upper=self.upper, A=self.A, b=self.b, verbosity=self.verbosity)

            # Unpack the results.
            param_vector, chi2, iter_count, warning = results
            f_count = iter_count
            g_count = 0.0
            h_count = 0.0

        # Minimisation.
        else:
            results = generic_minimise(func=model.func, args=(), x0=self.param_vector, min_algor=self.min_algor, min_options=self.min_options, func_tol=self.func_tol, grad_tol=self.grad_tol, maxiter=self.max_iterations, A=self.A, b=self.b, full_output=True, print_flag=self.verbosity)

            # Unpack the results.
            if results == None:
                return
            param_vector, chi2, iter_count, f_count, g_count, h_count, warning = results

        # Optimisation printout.
        if self.verbosity:
            print("\nOptimised parameter values:")
            for i in range(len(param_vector)):
                print("%-20s %25.15f" % (self.param_names[i], param_vector[i]*self.scaling_matrix[i, i]))

        # Create the result command object to send back to the master.
        processor.return_object(Disp_result_command(processor=processor, memo_id=self.memo_id, param_vector=param_vector, chi2=chi2, iter_count=iter_count, f_count=f_count, g_count=g_count, h_count=h_count, warning=warning, missing=self.missing, back_calc=model.get_back_calc(), completed=False))
Esempio n. 3
0
def back_calc_r2eff(spins=None, spin_ids=None, cpmg_frqs=None, spin_lock_offset=None, spin_lock_nu1=None, relax_times_new=None, store_chi2=False):
    """Back-calculation of R2eff/R1rho values for the given spin.

    @keyword spins:             The list of specific spin data container for cluster.
    @type spins:                List of SpinContainer instances
    @keyword spin_ids:          The list of spin ID strings for the spin containers in cluster.
    @type spin_ids:             list of str
    @keyword cpmg_frqs:         The CPMG frequencies to use instead of the user loaded values - to enable interpolation.
    @type cpmg_frqs:            list of lists of numpy rank-1 float arrays
    @keyword spin_lock_offset:  The spin-lock offsets to use instead of the user loaded values - to enable interpolation.
    @type spin_lock_offset:     list of lists of numpy rank-1 float arrays
    @keyword spin_lock_nu1:     The spin-lock field strengths to use instead of the user loaded values - to enable interpolation.
    @type spin_lock_nu1:        list of lists of numpy rank-1 float arrays
    @keyword relax_times_new:   The interpolated experiment specific fixed time period for relaxation (in seconds).  The dimensions are {Ei, Mi, Oi, Di, Ti}.
    @type relax_times_new:      rank-4 list of floats
    @keyword store_chi2:        A flag which if True will cause the spin specific chi-squared value to be stored in the spin container.
    @type store_chi2:           bool
    @return:                    The back-calculated R2eff/R1rho value for the given spin.
    @rtype:                     numpy rank-1 float array
    """

    # Create the initial parameter vector.
    param_vector = assemble_param_vector(spins=spins)

    # Number of spectrometer fields.
    fields = [None]
    field_count = 1
    if hasattr(cdp, 'spectrometer_frq_count'):
        fields = cdp.spectrometer_frq_list
        field_count = cdp.spectrometer_frq_count

    # Initialise the data structures for the target function.
    values, errors, missing, frqs, frqs_H, exp_types, relax_times = return_r2eff_arrays(spins=spins, spin_ids=spin_ids, fields=fields, field_count=field_count)

    # The offset and R1 data.
    r1_setup()
    offsets, spin_lock_fields_inter, chemical_shifts, tilt_angles, Delta_omega, w_eff = return_offset_data(spins=spins, spin_ids=spin_ids, field_count=field_count, spin_lock_offset=spin_lock_offset, fields=spin_lock_nu1)
    r1 = return_r1_data(spins=spins, spin_ids=spin_ids, field_count=field_count)
    r1_fit = is_r1_optimised(spins[0].model)

    # The relaxation times.
    if relax_times_new != None:
        relax_times = relax_times_new

    # The dispersion data.
    recalc_tau = True
    if cpmg_frqs == None and spin_lock_nu1 == None and spin_lock_offset == None:
        cpmg_frqs = return_cpmg_frqs(ref_flag=False)
        spin_lock_nu1 = return_spin_lock_nu1(ref_flag=False)

    # Reset the cpmg_frqs if interpolating R1rho models.
    elif cpmg_frqs == None and spin_lock_offset != None:
        cpmg_frqs = None
        spin_lock_nu1 = spin_lock_fields_inter

        recalc_tau = False
        values = []
        errors = []
        missing = []
        for exp_type, ei in loop_exp(return_indices=True):
            values.append([])
            errors.append([])
            missing.append([])
            for si in range(len(spins)):
                values[ei].append([])
                errors[ei].append([])
                missing[ei].append([])
                for frq, mi in loop_frq(return_indices=True):
                    values[ei][si].append([])
                    errors[ei][si].append([])
                    missing[ei][si].append([])
                    for oi, offset in enumerate(offsets[ei][si][mi]):
                        num = len(spin_lock_nu1[ei][mi][oi])

                        values[ei][si][mi].append(zeros(num, float64))
                        errors[ei][si][mi].append(ones(num, float64))
                        missing[ei][si][mi].append(zeros(num, int32))

    # Reconstruct the structures for interpolation.
    else:
        recalc_tau = False
        values = []
        errors = []
        missing = []
        for exp_type, ei in loop_exp(return_indices=True):
            values.append([])
            errors.append([])
            missing.append([])
            for si in range(len(spins)):
                values[ei].append([])
                errors[ei].append([])
                missing[ei].append([])
                for frq, mi in loop_frq(return_indices=True):
                    values[ei][si].append([])
                    errors[ei][si].append([])
                    missing[ei][si].append([])
                    for offset, oi in loop_offset(exp_type=exp_type, frq=frq, return_indices=True):
                        if exp_type in EXP_TYPE_LIST_CPMG:
                            num = len(cpmg_frqs[ei][mi][oi])
                        else:
                            num = len(spin_lock_nu1[ei][mi][oi])
                        values[ei][si][mi].append(zeros(num, float64))
                        errors[ei][si][mi].append(ones(num, float64))
                        missing[ei][si][mi].append(zeros(num, int32))

    # Initialise the relaxation dispersion fit functions.
    model = Dispersion(model=spins[0].model, num_params=param_num(spins=spins), num_spins=len(spins), num_frq=field_count, exp_types=exp_types, values=values, errors=errors, missing=missing, frqs=frqs, frqs_H=frqs_H, cpmg_frqs=cpmg_frqs, spin_lock_nu1=spin_lock_nu1, chemical_shifts=chemical_shifts, offset=offsets, tilt_angles=tilt_angles, r1=r1, relax_times=relax_times, recalc_tau=recalc_tau, r1_fit=r1_fit)

    # Make a single function call.  This will cause back calculation and the data will be stored in the class instance.
    chi2 = model.func(param_vector)

    # Store the chi-squared value.
    if store_chi2:
        for spin in spins:
            spin.chi2 = chi2

    # Return the structure.
    return model.get_back_calc()
Esempio n. 4
0
def back_calc_r2eff(spins=None, spin_ids=None, cpmg_frqs=None, spin_lock_offset=None, spin_lock_nu1=None, relax_times_new=None, store_chi2=False):
    """Back-calculation of R2eff/R1rho values for the given spin.

    @keyword spins:             The list of specific spin data container for cluster.
    @type spins:                List of SpinContainer instances
    @keyword spin_ids:          The list of spin ID strings for the spin containers in cluster.
    @type spin_ids:             list of str
    @keyword cpmg_frqs:         The CPMG frequencies to use instead of the user loaded values - to enable interpolation.
    @type cpmg_frqs:            list of lists of numpy rank-1 float arrays
    @keyword spin_lock_offset:  The spin-lock offsets to use instead of the user loaded values - to enable interpolation.
    @type spin_lock_offset:     list of lists of numpy rank-1 float arrays
    @keyword spin_lock_nu1:     The spin-lock field strengths to use instead of the user loaded values - to enable interpolation.
    @type spin_lock_nu1:        list of lists of numpy rank-1 float arrays
    @keyword relax_times_new:   The interpolated experiment specific fixed time period for relaxation (in seconds).  The dimensions are {Ei, Mi, Oi, Di, Ti}.
    @type relax_times_new:      rank-4 list of floats
    @keyword store_chi2:        A flag which if True will cause the spin specific chi-squared value to be stored in the spin container.
    @type store_chi2:           bool
    @return:                    The back-calculated R2eff/R1rho value for the given spin.
    @rtype:                     numpy rank-1 float array
    """

    # Create the initial parameter vector.
    param_vector = assemble_param_vector(spins=spins)

    # Number of spectrometer fields.
    fields = [None]
    field_count = 1
    if hasattr(cdp, 'spectrometer_frq_count'):
        fields = cdp.spectrometer_frq_list
        field_count = cdp.spectrometer_frq_count

    # Initialise the data structures for the target function.
    values, errors, missing, frqs, frqs_H, exp_types, relax_times = return_r2eff_arrays(spins=spins, spin_ids=spin_ids, fields=fields, field_count=field_count)

    # The offset and R1 data.
    r1_setup()
    offsets, spin_lock_fields_inter, chemical_shifts, tilt_angles, Delta_omega, w_eff = return_offset_data(spins=spins, spin_ids=spin_ids, field_count=field_count, spin_lock_offset=spin_lock_offset, fields=spin_lock_nu1)
    r1 = return_r1_data(spins=spins, spin_ids=spin_ids, field_count=field_count)
    r1_fit = is_r1_optimised(spins[0].model)

    # The relaxation times.
    if relax_times_new != None:
        relax_times = relax_times_new

    # The dispersion data.
    recalc_tau = True
    if cpmg_frqs == None and spin_lock_nu1 == None and spin_lock_offset == None:
        cpmg_frqs = return_cpmg_frqs(ref_flag=False)
        spin_lock_nu1 = return_spin_lock_nu1(ref_flag=False)

    # Reset the cpmg_frqs if interpolating R1rho models.
    elif cpmg_frqs == None and spin_lock_offset != None:
        cpmg_frqs = None
        spin_lock_nu1 = spin_lock_fields_inter

        recalc_tau = False
        values = []
        errors = []
        missing = []
        for exp_type, ei in loop_exp(return_indices=True):
            values.append([])
            errors.append([])
            missing.append([])
            for si in range(len(spins)):
                values[ei].append([])
                errors[ei].append([])
                missing[ei].append([])
                for frq, mi in loop_frq(return_indices=True):
                    values[ei][si].append([])
                    errors[ei][si].append([])
                    missing[ei][si].append([])
                    for oi, offset in enumerate(offsets[ei][si][mi]):
                        num = len(spin_lock_nu1[ei][mi][oi])

                        values[ei][si][mi].append(zeros(num, float64))
                        errors[ei][si][mi].append(ones(num, float64))
                        missing[ei][si][mi].append(zeros(num, int32))

    # Reconstruct the structures for interpolation.
    else:
        recalc_tau = False
        values = []
        errors = []
        missing = []
        for exp_type, ei in loop_exp(return_indices=True):
            values.append([])
            errors.append([])
            missing.append([])
            for si in range(len(spins)):
                values[ei].append([])
                errors[ei].append([])
                missing[ei].append([])
                for frq, mi in loop_frq(return_indices=True):
                    values[ei][si].append([])
                    errors[ei][si].append([])
                    missing[ei][si].append([])
                    for offset, oi in loop_offset(exp_type=exp_type, frq=frq, return_indices=True):
                        if exp_type in EXP_TYPE_LIST_CPMG:
                            num = len(cpmg_frqs[ei][mi][oi])
                        else:
                            num = len(spin_lock_nu1[ei][mi][oi])
                        values[ei][si][mi].append(zeros(num, float64))
                        errors[ei][si][mi].append(ones(num, float64))
                        missing[ei][si][mi].append(zeros(num, int32))

    # Initialise the relaxation dispersion fit functions.
    model = Dispersion(model=spins[0].model, num_params=param_num(spins=spins), num_spins=len(spins), num_frq=field_count, exp_types=exp_types, values=values, errors=errors, missing=missing, frqs=frqs, frqs_H=frqs_H, cpmg_frqs=cpmg_frqs, spin_lock_nu1=spin_lock_nu1, chemical_shifts=chemical_shifts, offset=offsets, tilt_angles=tilt_angles, r1=r1, relax_times=relax_times, recalc_tau=recalc_tau, r1_fit=r1_fit)

    # Make a single function call.  This will cause back calculation and the data will be stored in the class instance.
    chi2 = model.func(param_vector)

    # Store the chi-squared value.
    if store_chi2:
        for spin in spins:
            spin.chi2 = chi2

    # Return the structure.
    return model.get_back_calc()