Esempio n. 1
0
def train_GAN(conf_data):
    """Training Process for GAN.
    
    Parameters
    ----------
    conf_data: dict
        Dictionary containing all parameters and objects.       

    Returns
    -------
    conf_data: dict
        Dictionary containing all parameters and objects.       

    """
    seq = conf_data['GAN_model']['seq']
    if seq == 1:
        pre_epoch_num = conf_data['generator']['pre_epoch_num']
        GENERATED_NUM = 10000
        EVAL_FILE = 'eval.data'
        POSITIVE_FILE = 'real.data'
        NEGATIVE_FILE = 'gene.data'
    temp = 1  #TODO Determines how many times is the discriminator updated. Take this as a value input
    epochs = int(conf_data['GAN_model']['epochs'])
    if seq == 0:
        dataloader = conf_data['data_learn']
    mini_batch_size = int(conf_data['GAN_model']['mini_batch_size'])
    data_label = int(conf_data['GAN_model']['data_label'])
    cuda = conf_data['cuda']
    g_latent_dim = int(conf_data['generator']['latent_dim'])
    classes = int(conf_data['GAN_model']['classes'])

    w_loss = int(conf_data['GAN_model']['w_loss'])

    clip_value = float(conf_data['GAN_model']['clip_value'])
    n_critic = int(conf_data['GAN_model']['n_critic'])

    lambda_gp = int(conf_data['GAN_model']['lambda_gp'])

    log_file = open(conf_data['performance_log'] + "/log.txt", "w+")
    #Covert these to parameters of the config data
    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
    conf_data['Tensor'] = Tensor
    LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
    conf_data['LongTensor'] = LongTensor
    FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
    conf_data['FloatTensor'] = FloatTensor

    conf_data['epochs'] = epochs

    #print ("Just before training")
    if seq == 1:  #TODO: Change back to 1
        target_lstm = TargetLSTM(conf_data['GAN_model']['vocab_size'],
                                 conf_data['generator']['embedding_dim'],
                                 conf_data['generator']['hidden_dim'],
                                 conf_data['cuda'])
        if cuda == True:
            target_lstm = target_lstm.cuda()
        conf_data['target_lstm'] = target_lstm
        gen_data_iter = GenDataIter('real.data', mini_batch_size)
        generator = conf_data['generator_model']
        discriminator = conf_data['discriminator_model']
        g_loss_func = conf_data['generator_loss']
        d_loss_func = conf_data['discriminator_loss']
        optimizer_D = conf_data['discriminator_optimizer']
        optimizer_G = conf_data['generator_optimizer']
        #print('Pretrain with MLE ...')
        for epoch in range(pre_epoch_num):  #TODO: Change the range
            loss = train_epoch(generator, gen_data_iter, g_loss_func,
                               optimizer_G, conf_data, 'g')
            print('Epoch [%d] Model Loss: %f' % (epoch, loss))
            generate_samples(generator, mini_batch_size, GENERATED_NUM,
                             EVAL_FILE, conf_data)
            eval_iter = GenDataIter(EVAL_FILE, mini_batch_size)
            loss = eval_epoch(target_lstm, eval_iter, g_loss_func, conf_data)
            print('Epoch [%d] True Loss: %f' % (epoch, loss))

        dis_criterion = d_loss_func
        dis_optimizer = optimizer_D
        #TODO: Understand why the below two code line were there ?
        # if conf_data['cuda']:
        #     dis_criterion = dis_criterion.cuda()

        #print('Pretrain Dsicriminator ...')
        dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                    mini_batch_size)
        for epoch in range(5):  #TODO: change back 5
            generate_samples(generator, mini_batch_size, GENERATED_NUM,
                             NEGATIVE_FILE, conf_data)
            dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                        mini_batch_size)
            for _ in range(3):  #TODO: change back 3
                loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                                   dis_optimizer, conf_data, 'd')
                print('Epoch [%d], loss: %f' % (epoch, loss))
        conf_data['generator_model'] = generator
        conf_data['discriminator_model'] = discriminator
        torch.save(conf_data['generator_model'].state_dict(),
                   conf_data['save_model_path'] + '/Seq/' + 'pre_generator.pt')
        torch.save(
            conf_data['discriminator_model'].state_dict(),
            conf_data['save_model_path'] + '/Seq/' + 'pre_discriminator.pt')

        conf_data['rollout'] = Rollout(generator, 0.8)

    for epoch in range(epochs):
        conf_data['epoch'] = epoch
        if seq == 0:
            to_iter = dataloader
        elif seq == 1:  #TODO: Change this back to 1
            to_iter = [1]

        for i, iterator in enumerate(to_iter):
            optimizer_D = conf_data['discriminator_optimizer']
            optimizer_G = conf_data['generator_optimizer']

            generator = conf_data['generator_model']
            discriminator = conf_data['discriminator_model']

            g_loss_func = conf_data['generator_loss']
            d_loss_func = conf_data['discriminator_loss']

            # if aux = 1:

            #print ("Reached here --------------> ")
            conf_data['iterator'] = i
            if seq == 0:

                if data_label == 1:
                    imgs, labels = iterator
                else:
                    imgs = iterator
                # Adversarial ground truths
                valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0),
                                 requires_grad=False)
                conf_data['valid'] = valid
                fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0),
                                requires_grad=False)
                conf_data['fake'] = fake
                # Configure input
                real_imgs = Variable(imgs.type(Tensor))

                if data_label == 1:
                    labels = Variable(labels.type(LongTensor))
                # Sample noise as generator input
                z = Variable(
                    Tensor(
                        np.random.normal(0, 1, (imgs.shape[0], g_latent_dim))))
                if classes > 0:
                    gen_labels = Variable(
                        LongTensor(np.random.randint(0, classes,
                                                     imgs.shape[0])))
                    conf_data['gen_labels'] = gen_labels
            # elif seq == 1: #If yes seqGAN
            #     # samples = generator.sample(mini_batch_size,conf_data['generator']['sequece_length'])
            #     # zeros = torch.zeros((mini_batch_size,1)).type(LongTensor)
            #     # imgs = Variable(torch.cat([zeros,samples.data]),dim=1)[:,:-1].contiguous() #TODO: change imgs to inps all, to make more sense of the code
            #     # targets = Variable(sample.data).contiguous().view((-1,))
            #     # rewards = rollout.get_reward(sample,16,discriminator)
            #     # rewards = Variable(Tensor(rewards))
            #     # prob = generator.forward(inputs)
            #     # loss = gen_gan_loss(prob)
            #     pass
            #     #optimizer_G

            # ---------------------
            #  Train Discriminator
            # ---------------------
            optimizer_D.zero_grad()
            if seq == 1:  #TODO change this back to 1
                dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                            mini_batch_size)
            for i in range(
                    temp
            ):  # TODO: Make this a parameter -> for x updates --> I am read the stored models here as well. Should I reamove this ???
                optimizer_D = conf_data['discriminator_optimizer']
                optimizer_G = conf_data['generator_optimizer']

                generator = conf_data['generator_model']
                discriminator = conf_data['discriminator_model']

                g_loss_func = conf_data['generator_loss']
                d_loss_func = conf_data['discriminator_loss']
                if classes <= 0:
                    #print ("Reached here 2 --------------> ")
                    if seq == 0:
                        gen_imgs = generator(z)
                        # Measure discriminator's ability to classify real from generated samples
                        #Real images
                        real_validity = discriminator(real_imgs)
                        #Fake images
                        fake_validity = discriminator(gen_imgs.detach())
                    if seq == 1:
                        generate_samples(generator, mini_batch_size,
                                         GENERATED_NUM, NEGATIVE_FILE,
                                         conf_data)
                        dis_data_iter = DisDataIter(POSITIVE_FILE,
                                                    NEGATIVE_FILE,
                                                    mini_batch_size)
                        loss = train_epoch(discriminator, dis_data_iter,
                                           d_loss_func, optimizer_D, conf_data,
                                           'd')
                        conf_data['d_loss'] = loss
                        #exit()

                else:
                    if seq == 0:
                        gen_imgs = generator(z, gen_labels)
                        real_validity = discriminator(real_imgs, labels)
                        fake_validity = discriminator(gen_imgs.detach(),
                                                      labels)

                if seq == 0:
                    conf_data['gen_imgs'] = gen_imgs
                if seq == 0:
                    if w_loss == 0:
                        real_loss = d_loss_func.loss(real_validity, valid)
                        fake_loss = d_loss_func.loss(fake_validity, fake)
                        d_loss = (real_loss + fake_loss) / 2
                    elif w_loss == 1:
                        d_loss = -d_loss_func.loss(real_validity,
                                                   valid) + d_loss_func.loss(
                                                       fake_validity, fake)
                        if lambda_gp > 0:
                            conf_data['real_data_sample'] = real_imgs.data
                            conf_data['fake_data_sample'] = gen_imgs.data
                            conf_data = compute_gradient_penalty(conf_data)
                            gradient_penalty = conf_data['gradient_penalty']
                            d_loss = d_loss + lambda_gp * gradient_penalty
                    conf_data['d_loss'] = d_loss
                    d_loss.backward()
                    optimizer_D.step()

                if clip_value > 0:
                    # Clip weights of discriminator
                    for p in discriminator.parameters():
                        p.data.clamp_(-clip_value, clip_value)

            # -----------------
            #  Train Generator
            # -----------------
            conf_data['generator_model'] = generator
            conf_data['discriminator_model'] = discriminator

            #Next 4 lines were recently added maybe have to remove this.
            conf_data['optimizer_G'] = optimizer_G
            conf_data['optimizer_D'] = optimizer_D
            conf_data['generator_loss'] = g_loss_func
            conf_data['discriminator_loss'] = d_loss_func
            if seq == 0:
                conf_data['noise'] = z

            if n_critic <= 0:
                conf_data = training_fucntion_generator(conf_data)
            elif n_critic > 0:
                # Train the generator every n_critic iterations
                if i % n_critic == 0:
                    conf_data = training_fucntion_generator(conf_data)
            #exit()

        # print ("------------------ Here (train_GAN.py)")

            if seq == 0:
                batches_done = epoch * len(dataloader) + i
                if batches_done % int(conf_data['sample_interval']) == 0:
                    if classes <= 0:
                        # print ("Here")
                        # print (type(gen_imgs.data[:25]))
                        # print (gen_imgs.data[:25].shape)
                        save_image(gen_imgs.data[:25],
                                   conf_data['result_path'] +
                                   '/%d.png' % batches_done,
                                   nrow=5,
                                   normalize=True)
                    elif classes > 0:
                        sample_image(10, batches_done, conf_data)
        if seq == 0:
            log_file.write("[Epoch %d/%d] [D loss: %f] [G loss: %f] \n" %
                           (epoch, epochs, conf_data['d_loss'].item(),
                            conf_data['g_loss'].item()))
        elif seq == 1:
            # print ("Done")
            log_file.write(
                "[Epoch %d/%d] [D loss: %f] [G loss: %f] \n" %
                (epoch, epochs, conf_data['d_loss'], conf_data['g_loss']))
    conf_data['generator_model'] = generator
    conf_data['discriminator_model'] = discriminator
    conf_data['log_file'] = log_file
    return conf_data
Esempio n. 2
0
def main():
    random.seed(SEED)
    np.random.seed(SEED)

    # Define Networks
    generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim,
                                  d_filter_sizes, d_num_filters, d_dropout)
    target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    if opt.cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        target_lstm = target_lstm.cuda()
    # Generate toy data using target lstm
    print('Generating data ...')
    generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM, POSITIVE_FILE)

    # Load data from file
    gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)

    # Pretrain Generator using MLE
    gen_criterion = nn.NLLLoss(size_average=False)
    gen_optimizer = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    print('Pretrain with MLE ...')
    for epoch in range(PRE_EPOCH_NUM):
        loss = train_epoch(generator, gen_data_iter, gen_criterion,
                           gen_optimizer)
        print('Epoch [%d] Model Loss: %f' % (epoch, loss))
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
        eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
        loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
        print('Epoch [%d] True Loss: %f' % (epoch, loss))

    # Pretrain Discriminator
    dis_criterion = nn.NLLLoss(size_average=False)
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    print('Pretrain Dsicriminator ...')
    for epoch in range(5):
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
        dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
        for _ in range(3):
            loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                               dis_optimizer)
            print('Epoch [%d], loss: %f' % (epoch, loss))
    # Adversarial Training
    rollout = Rollout(generator, 0.8)
    print('#####################################################')
    print('Start Adeversatial Training...\n')
    gen_gan_loss = GANLoss()
    gen_gan_optm = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_gan_loss = gen_gan_loss.cuda()
    gen_criterion = nn.NLLLoss(size_average=False)
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    dis_criterion = nn.NLLLoss(size_average=False)
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    for total_batch in range(TOTAL_BATCH):
        # Train the generator for one step
        for it in range(1):
            samples = generator.sample(BATCH_SIZE, g_sequence_len)
            # construct the input to the generator, add zeros before samples and delete the last column
            zeros = torch.zeros((BATCH_SIZE, 1)).type(torch.LongTensor)
            if samples.is_cuda:
                zeros = zeros.cuda()
            inputs = Variable(
                torch.cat([zeros, samples.data], dim=1)[:, :-1].contiguous())
            targets = Variable(samples.data).contiguous().view((-1, ))
            # calculate the reward
            rewards = rollout.get_reward(samples, 16, discriminator)
            rewards = Variable(torch.Tensor(rewards))
            if opt.cuda:
                rewards = torch.exp(rewards.cuda()).contiguous().view((-1, ))
            prob = generator.forward(inputs)
            loss = gen_gan_loss(prob, targets, rewards)
            gen_gan_optm.zero_grad()
            loss.backward()
            gen_gan_optm.step()

        if total_batch % 1 == 0 or total_batch == TOTAL_BATCH - 1:
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
            eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
            loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
            print('Batch [%d] True Loss: %f' % (total_batch, loss))
        rollout.update_params()

        for _ in range(4):
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM,
                             NEGATIVE_FILE)
            dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                        BATCH_SIZE)
            for _ in range(2):
                loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                                   dis_optimizer)
Esempio n. 3
0
        torch.cuda.manual_seed(args.seed)
    if not args.hpc:
        args.data_path = 'data_test/'
    POSITIVE_FILE = args.data_path + POSITIVE_FILE
    NEGATIVE_FILE = args.data_path + NEGATIVE_FILE
    EPOCH_FILE = args.data_path + EPOCH_FILE
    if os.path.exists(EPOCH_FILE):
        os.remove(EPOCH_FILE)

    # Set models, criteria, optimizers
    generator = Generator(args.vocab_size, g_embed_dim, g_hidden_dim,
                          args.cuda)
    discriminator = Discriminator(d_num_class, args.vocab_size, d_embed_dim,
                                  d_filter_sizes, d_num_filters,
                                  d_dropout_prob)
    target_lstm = TargetLSTM(args.vocab_size, g_embed_dim, g_hidden_dim,
                             args.cuda)
    nll_loss = nn.NLLLoss()
    pg_loss = PGLoss()
    if args.cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        target_lstm = target_lstm.cuda()
        nll_loss = nll_loss.cuda()
        pg_loss = pg_loss.cuda()
        cudnn.benchmark = True
    gen_optimizer = optim.Adam(params=generator.parameters(), lr=args.gen_lr)
    dis_optimizer = optim.SGD(params=discriminator.parameters(),
                              lr=args.dis_lr)

    # Container of experiment data
    gen_pretrain_train_loss = []
def main():
    random.seed(SEED)
    np.random.seed(SEED)
    calc_bleu([1, 10, 12])
    exit()
    # Build up dataset
    s_train, s_test = load_from_big_file('../data/train_data_obama.txt')
    # idx_to_word: List of id to word
    # word_to_idx: Dictionary mapping word to id
    idx_to_word, word_to_idx = fetch_vocab(s_train, s_train, s_test)
    # TODO: 1. Prepare data for attention model
    # input_seq, target_seq = prepare_data(DATA_GERMAN, DATA_ENGLISH, word_to_idx)

    global VOCAB_SIZE
    VOCAB_SIZE = len(idx_to_word)

    save_vocab(CHECKPOINT_PATH + 'metadata.data', idx_to_word, word_to_idx,
               VOCAB_SIZE, g_emb_dim, g_hidden_dim, g_sequence_len)

    print('VOCAB SIZE:', VOCAB_SIZE)
    # Define Networks
    generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, g_sequence_len,
                          BATCH_SIZE, opt.cuda)
    discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim,
                                  d_filter_sizes, d_num_filters, d_dropout)
    target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    if opt.cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        target_lstm = target_lstm.cuda()
    # Generate toy data using target lstm
    print('Generating data ...')
    generate_real_data('../data/train_data_obama.txt', BATCH_SIZE,
                       GENERATED_NUM, idx_to_word, word_to_idx, POSITIVE_FILE,
                       TEST_FILE)
    # Create Test data iterator for testing
    test_iter = GenDataIter(TEST_FILE, BATCH_SIZE)
    # generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM, POSITIVE_FILE, idx_to_word)

    # Load data from file
    gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)

    # Pretrain Generator using MLE
    # gen_criterion = nn.NLLLoss(size_average=False)
    gen_criterion = nn.CrossEntropyLoss()
    gen_optimizer = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    print('Pretrain with MLE ...')
    for epoch in range(PRE_EPOCH_NUM):
        loss = train_epoch(generator, gen_data_iter, gen_criterion,
                           gen_optimizer)
        print('Epoch [%d] Model Loss: %f' % (epoch, loss))
        print('Training Output')
        test_predict(generator, test_iter, idx_to_word, train_mode=True)

        sys.stdout.flush()
        # TODO: 2. Flags to ensure dimension of model input is handled
        # generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
        """
        eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
        print('Iterator Done')
        loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
        print('Epoch [%d] True Loss: %f' % (epoch, loss))
        """
    print('OUTPUT AFTER PRE-TRAINING')
    test_predict(generator, test_iter, idx_to_word, train_mode=True)

    # Pretrain Discriminator
    dis_criterion = nn.NLLLoss(size_average=False)
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    print('Pretrain Discriminator ...')
    for epoch in range(3):
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
        dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
        for _ in range(3):
            loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                               dis_optimizer)
            print('Epoch [%d], loss: %f' % (epoch, loss))
            sys.stdout.flush()
    # Adversarial Training
    rollout = Rollout(generator, 0.8)
    print('#####################################################')
    print('Start Adversarial Training...\n')
    gen_gan_loss = GANLoss()

    gen_gan_optm = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_gan_loss = gen_gan_loss.cuda()
    gen_criterion = nn.NLLLoss(size_average=False)
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    dis_criterion = nn.NLLLoss(size_average=False)
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    real_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)
    for total_batch in range(TOTAL_BATCH):
        ## Train the generator for one step
        for it in range(1):
            if real_iter.idx >= real_iter.data_num:
                real_iter.reset()
            inputs = real_iter.next()[0]
            inputs = inputs.cuda()
            samples = generator.sample(BATCH_SIZE, g_sequence_len, inputs)
            samples = samples.cpu()
            rewards = rollout.get_reward(samples, 16, discriminator)
            rewards = Variable(torch.Tensor(rewards))
            if opt.cuda:
                rewards = torch.exp(rewards.cuda()).contiguous().view((-1, ))
            prob = generator.forward(inputs)
            mini_batch = prob.shape[0]
            prob = torch.reshape(
                prob,
                (prob.shape[0] * prob.shape[1], -1))  #prob.view(-1, g_emb_dim)
            targets = copy.deepcopy(inputs).contiguous().view((-1, ))
            loss = gen_gan_loss(prob, targets, rewards)
            gen_gan_optm.zero_grad()
            loss.backward()
            gen_gan_optm.step()
            """
            samples = generator.sample(BATCH_SIZE, g_sequence_len)
            # construct the input to the genrator, add zeros before samples and delete the last column
            zeros = torch.zeros((BATCH_SIZE, 1)).type(torch.LongTensor)
            if samples.is_cuda:
                zeros = zeros.cuda()
            inputs = Variable(torch.cat([zeros, samples.data], dim = 1)[:, :-1].contiguous())
            targets = Variable(samples.data).contiguous().view((-1,))
            print('', inputs.shape, targets.shape)
            print(inputs, targets)
            # calculate the reward
            rewards = rollout.get_reward(samples, 16, discriminator)
            rewards = Variable(torch.Tensor(rewards))
            if opt.cuda:
                rewards = torch.exp(rewards.cuda()).contiguous().view((-1,))
            prob = generator.forward(inputs)
            mini_batch = prob.shape[0]
            prob = torch.reshape(prob, (prob.shape[0] * prob.shape[1], -1)) #prob.view(-1, g_emb_dim)
            loss = gen_gan_loss(prob, targets, rewards)
            gen_gan_optm.zero_grad()
            loss.backward()
            gen_gan_optm.step()
            """
        print('Batch [%d] True Loss: %f' % (total_batch, loss))

        if total_batch % 1 == 0 or total_batch == TOTAL_BATCH - 1:
            # generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
            # eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
            # loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
            if len(prob.shape) > 2:
                prob = torch.reshape(prob, (prob.shape[0] * prob.shape[1], -1))
            predictions = torch.max(prob, dim=1)[1]
            predictions = predictions.view(mini_batch, -1)
            for each_sen in list(predictions):
                print('Train Output:',
                      generate_sentence_from_id(idx_to_word, each_sen))

            test_predict(generator, test_iter, idx_to_word, train_mode=True)
            torch.save(generator.state_dict(),
                       CHECKPOINT_PATH + 'generator.model')
            torch.save(discriminator.state_dict(),
                       CHECKPOINT_PATH + 'discriminator.model')
        rollout.update_params()

        for _ in range(4):
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM,
                             NEGATIVE_FILE)
            dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                        BATCH_SIZE)
            for _ in range(2):
                loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                                   dis_optimizer)
Esempio n. 5
0
        C = prob.size(1)
        one_hot = torch.zeros((N, C))
        if prob.is_cuda:
            one_hot = one_hot.cuda()
        one_hot.scatter_(1, target.data.view((-1, 1)), 1)
        one_hot = one_hot.type(torch.ByteTensor)
        one_hot = Variable(one_hot)
        if prob.is_cuda:
            one_hot = one_hot.cuda()
        loss = torch.masked_select(prob, one_hot)
        loss = loss * reward
        loss = -torch.sum(loss)
        return loss


target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
if opt.cuda:
    target_lstm = target_lstm.cuda()
# Generate toy data using target lstm
print('Generating data ...')
generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM, POSITIVE_FILE)
# Load data from file
gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)
original_generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)


def main(generator_, discriminator, model_index):
    #random.seed(SEED)
    #np.random.seed(SEED)

    perf_dict = {}
Esempio n. 6
0
def main():
    random.seed(SEED)
    np.random.seed(SEED)

    # Define Networks
    generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim,
                                  d_filter_sizes, d_num_filters, d_dropout)
    target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim,
                             opt.cuda)  #和Generator函数只有sample方法不一样;
    if opt.cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        target_lstm = target_lstm.cuda()
    # Generate toy data using target lstm 也就是新建一个data,假装他就是真实数据
    print('Generating data ...')
    generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM,
                     POSITIVE_FILE)  #没经过啥子训练,直接随机一个lstm产出9984*20的矩阵

    # Load data from file
    # 每个iter输出一个data和一个target,其中data是每个point前填个0,每个target是后面添个0
    gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)

    # Pretrain Generator using MLE
    gen_criterion = nn.NLLLoss(
        reduction='sum'
    )  #You may use CrossEntropyLoss instead, if you prefer not to add an extra LogSoftmax layer .
    gen_optimizer = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    print('Pretrain with MLE ...')
    for epoch in range(PRE_EPOCH_NUM):  #PRE_EPOCH_NUM =120
        loss = train_epoch(generator, gen_data_iter, gen_criterion,
                           gen_optimizer)  #使得generator的参数更新,使之适应gen_data_iter
        print('Epoch [%d] Model Loss: %f' % (epoch, loss))  # 9月1日
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
        eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
        loss = eval_epoch(target_lstm, eval_iter,
                          gen_criterion)  # generator有向target_lstm靠近吗?
        print('Epoch [%d] True Loss: %f' % (epoch, loss))

    # Pretrain Discriminator
    dis_criterion = nn.NLLLoss(reduction='sum')
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    print('Pretrain Discriminator ...')
    for epoch in range(5):
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
        dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
        for _ in range(3):
            loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                               dis_optimizer)
            print('Epoch [%d], loss: %f' % (epoch, loss))
    # Adversarial Training 前面的预训练的目的是什么??????
    rollout = Rollout(generator, 0.8)
    print('#####################################################')
    print('Start Adeversatial Training...\n')
    gen_gan_loss = GANLoss()
    gen_gan_optm = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_gan_loss = gen_gan_loss.cuda()
    gen_criterion = nn.NLLLoss(reduction='sum')
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    dis_criterion = nn.NLLLoss(reduction='sum')
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    for total_batch in range(TOTAL_BATCH):
        ## Train the generator for one step
        for it in range(1):
            samples = generator.sample(BATCH_SIZE, g_sequence_len)
            # construct the input to the genrator, add zeros before samples and delete the last column
            zeros = torch.zeros((BATCH_SIZE, 1)).type(torch.LongTensor)
            if samples.is_cuda:
                zeros = zeros.cuda()
            inputs = Variable(
                torch.cat([zeros, samples.data], dim=1)[:, :-1].contiguous())
            targets = Variable(samples.data).contiguous().view(
                (-1, ))  # 这里我不明白,为什么inputs:(batch_size,seq_len),而targets是一个序列
            # calculate the reward
            rewards = rollout.get_reward(
                samples, 16, discriminator)  # rewards:(batch_size,seq_len)
            rewards = Variable(torch.Tensor(rewards))
            rewards = torch.exp(rewards).contiguous().view((-1, ))
            if opt.cuda:
                rewards = rewards.cuda()
            prob = generator.forward(inputs)
            loss = gen_gan_loss(prob, targets, rewards)
            gen_gan_optm.zero_grad()
            loss.backward()
            gen_gan_optm.step()

        if total_batch % 1 == 0 or total_batch == TOTAL_BATCH - 1:  #
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
            eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
            loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
            print('Batch [%d] True Loss: %f' % (total_batch, loss))
        rollout.update_params()  #这里理解了的话,基本没问题了

        for _ in range(4):
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM,
                             NEGATIVE_FILE)
            dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                        BATCH_SIZE)
            for _ in range(2):
                loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                                   dis_optimizer)
Esempio n. 7
0
def main():
    random.seed(SEED)
    np.random.seed(SEED)
    
    # Build up dataset
    s_train, s_test = load_from_big_file('../data/train_data_obama.txt')
    # idx_to_word: List of id to word
    # word_to_idx: Dictionary mapping word to id
    idx_to_word, word_to_idx = fetch_vocab(s_train, s_train, s_test)
    # TODO: 1. Prepare data for attention model
    # input_seq, target_seq = prepare_data(DATA_GERMAN, DATA_ENGLISH, word_to_idx)

    global VOCAB_SIZE
    VOCAB_SIZE = len(idx_to_word)

    print('VOCAB SIZE:' , VOCAB_SIZE)
    # Define Networks
    generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, g_sequence_len, BATCH_SIZE, opt.cuda)
    discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim, d_filter_sizes, d_num_filters, d_dropout)
    target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    if opt.cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        target_lstm = target_lstm.cuda()
    # Generate toy data using target lstm
    print('Generating data ...')
    generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM, POSITIVE_FILE, idx_to_word)
    
    # Load data from file
    gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)

    # Pretrain Generator using MLE
    gen_criterion = nn.NLLLoss(size_average=False)
    gen_optimizer = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    print('Pretrain with MLE ...')
    for epoch in range(PRE_EPOCH_NUM):
        loss = train_epoch(generator, gen_data_iter, gen_criterion, gen_optimizer)
        print('Epoch [%d] Model Loss: %f'% (epoch, loss))
        # TODO: 2. Flags to ensure dimension of model input is handled
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
        print('Gen sampled')
        eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
        print('Iterator Done')
        loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
        print('Epoch [%d] True Loss: %f' % (epoch, loss))

    # Pretrain Discriminator
    dis_criterion = nn.NLLLoss(size_average=False)
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    print('Pretrain Dsicriminator ...')
    for epoch in range(3):
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
        dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
        for _ in range(3):
            loss = train_epoch(discriminator, dis_data_iter, dis_criterion, dis_optimizer)
            print('Epoch [%d], loss: %f' % (epoch, loss))
    # Adversarial Training 
    rollout = Rollout(generator, 0.8)
    print('#####################################################')
    print('Start Adeversatial Training...\n')
    gen_gan_loss = GANLoss()
    gen_gan_optm = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_gan_loss = gen_gan_loss.cuda()
    gen_criterion = nn.NLLLoss(size_average=False)
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    dis_criterion = nn.NLLLoss(size_average=False)
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    for total_batch in range(TOTAL_BATCH):
        ## Train the generator for one step
        for it in range(1):
            samples = generator.sample(BATCH_SIZE, g_sequence_len)
            # construct the input to the genrator, add zeros before samples and delete the last column
            zeros = torch.zeros((BATCH_SIZE, 1)).type(torch.LongTensor)
            if samples.is_cuda:
                zeros = zeros.cuda()
            inputs = Variable(torch.cat([zeros, samples.data], dim = 1)[:, :-1].contiguous())
            targets = Variable(samples.data).contiguous().view((-1,))
            # calculate the reward
            rewards = rollout.get_reward(samples, 16, discriminator)
            rewards = Variable(torch.Tensor(rewards))
            if opt.cuda:
                rewards = torch.exp(rewards.cuda()).contiguous().view((-1,))
            prob = generator.forward(inputs)
            prob = torch.reshape(prob, (prob.shape[0] * prob.shape[1], -1)) #prob.view(-1, g_emb_dim)
            loss = gen_gan_loss(prob, targets, rewards)
            gen_gan_optm.zero_grad()
            loss.backward()
            gen_gan_optm.step()

        print('Batch [%d] True Loss: %f' % (total_batch, loss))

        if total_batch % 10 == 0 or total_batch == TOTAL_BATCH - 1:
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
            eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
            loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
            
            predictions = torch.max(prob, dim=1)[1]
            predictions = predictions.view(BATCH_SIZE, -1)
            # print('PRED SHAPE:' , predictions.shape)
            for each_sen in list(predictions):
                print('Sample Output:', generate_sentence_from_id(idx_to_word, each_sen, DEBUG_FILE))
            sys.stdout.flush()

            torch.save(generator.state_dict(), './experiment_3_10000/generator.model')
            torch.save(discriminator.state_dict(), './experiment_3_10000/discriminator.model')
        rollout.update_params()
        
        for _ in range(4):
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
            dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
            for _ in range(2):
                loss = train_epoch(discriminator, dis_data_iter, dis_criterion, dis_optimizer)