Esempio n. 1
0
    def test_default_cols(self):
        """hanningsmooth: Default datacolumn=all and MMS output"""

        self.createMMS(self.msfile, column="all")
        self.outputms = "hannall.ms"

        hanningsmooth(vis=self.testmms, outputvis=self.outputms)
        self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms), "Output should be an MMS")

        # Should have all scratch columns in output
        cd = th.getColDesc(self.outputms, "DATA")
        self.assertGreater(len(cd), 0, "DATA column does not exist")
        cc = th.getColDesc(self.outputms, "CORRECTED_DATA")
        self.assertGreater(len(cc), 0, "CORRECTED_DATA does not exist")

        # Now repeat the above steps but create an output MS by setting keepmms=False
        os.system("rm -rf " + self.outputms)
        hanningsmooth(vis=self.testmms, outputvis=self.outputms, keepmms=False)
        self.assertFalse(ParallelDataHelper.isParallelMS(self.outputms), "Output should be a normal MS")

        # Should have all scratch columns in output
        cd = th.getColDesc(self.outputms, "DATA")
        self.assertGreater(len(cd), 0, "DATA column does not exist")
        cc = th.getColDesc(self.outputms, "CORRECTED_DATA")
        self.assertGreater(len(cc), 0, "CORRECTED_DATA does not exist")
Esempio n. 2
0
    def test_default_cols(self):
        '''hanningsmooth: Default datacolumn=all and MMS output'''

        self.createMMS(self.msfile, column='all')
        self.outputms = 'hannall.ms'

        hanningsmooth(vis=self.testmms, outputvis=self.outputms)
        self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms),
                        'Output should be an MMS')

        # Should have all scratch columns in output
        cd = th.getColDesc(self.outputms, 'DATA')
        self.assertGreater(len(cd), 0, 'DATA column does not exist')
        cc = th.getColDesc(self.outputms, 'CORRECTED_DATA')
        self.assertGreater(len(cc), 0, 'CORRECTED_DATA does not exist')

        # Now repeat the above steps but create an output MS by setting keepmms=False
        os.system('rm -rf ' + self.outputms)
        hanningsmooth(vis=self.testmms, outputvis=self.outputms, keepmms=False)
        self.assertFalse(ParallelDataHelper.isParallelMS(self.outputms),
                         'Output should be a normal MS')

        # Should have all scratch columns in output
        cd = th.getColDesc(self.outputms, 'DATA')
        self.assertGreater(len(cd), 0, 'DATA column does not exist')
        cc = th.getColDesc(self.outputms, 'CORRECTED_DATA')
        self.assertGreater(len(cc), 0, 'CORRECTED_DATA does not exist')
Esempio n. 3
0
 def test2(self):
     '''hanningsmooth - Test 2: Check that output MS is created'''
     self.outputms = 'hann2.ms'
     hanningsmooth(vis=self.msfile,
                   outputvis=self.outputms,
                   datacolumn='corrected')
     # Smoothed data should be saved in DATA column of outupt MS
     self.assertTrue(os.path.exists(self.outputms))
Esempio n. 4
0
 def test1(self):
     """hanningsmooth - Test 1: Wrong input MS should raise an exception"""
     msfile = 'badmsfile'
     self.outputms = 'none.ms'
     try:
         hanningsmooth(vis=msfile)
     except exceptions.RuntimeError, instance:
         print 'Expected error: %s' % instance
Esempio n. 5
0
 def test1(self):
     """hanningsmooth - Test 1: Wrong input MS should raise an exception"""
     msfile = "badmsfile"
     self.outputms = "none.ms"
     try:
         hanningsmooth(vis=msfile)
     except exceptions.RuntimeError, instance:
         print "Expected error: %s" % instance
Esempio n. 6
0
    def test_corrected_col(self):
        '''hanningsmooth: Apply smoothing in CORRECTED column'''
        self.outputms = 'hanncorr.ms'

        # check correct flagging before (just for one row as a sample)
        flag_col = th.getVarCol(self.msfile, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [False])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][3838] == [False])
        self.assertTrue(flag_col['r1'][0][3839] == [False])

        # input column
        data_col = th.getVarCol(self.msfile, 'CORRECTED_DATA')

        hanningsmooth(vis=self.msfile,
                      outputvis=self.outputms,
                      datacolumn='corrected')

        # output smoothed column
        corr_col = th.getVarCol(self.outputms, 'DATA')
        nrows = len(corr_col)

        # check correct flagging after (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [True])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][3838] == [False])
        self.assertTrue(flag_col['r1'][0][3839] == [True])

        # Loop over every 2nd row,pol and get the data for each channel
        max = 1e-04
        for i in range(1, nrows, 2):
            row = 'r%s' % i
            # polarization is 0-1
            for pol in range(0, 2):
                # array's channels is 0-3840
                for chan in range(1, 3839):
                    # channels must start from second and end before the last
                    data = data_col[row][pol][chan]
                    dataB = data_col[row][pol][chan - 1]
                    dataA = data_col[row][pol][chan + 1]

                    Smoothed = th.calculateHanning(dataB, data, dataA)
                    CorData = corr_col[row][pol][chan]

                    # Check the difference
                    self.assertTrue(
                        abs(CorData - Smoothed) < max,
                        'CorData=%s Smoothed=%s in row=%s pol=%s chan=%s' %
                        (CorData, Smoothed, row, pol, chan))
Esempio n. 7
0
    def test_corrected_col(self):
        """hanningsmooth: Apply smoothing in CORRECTED column"""
        self.outputms = "hanncorr.ms"

        # check correct flagging before (just for one row as a sample)
        flag_col = th.getVarCol(self.msfile, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [False])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][3838] == [False])
        self.assertTrue(flag_col["r1"][0][3839] == [False])

        # input column
        data_col = th.getVarCol(self.msfile, "CORRECTED_DATA")

        hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="corrected")

        # output smoothed column
        corr_col = th.getVarCol(self.outputms, "DATA")
        nrows = len(corr_col)

        # check correct flagging after (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [True])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][3838] == [False])
        self.assertTrue(flag_col["r1"][0][3839] == [True])

        # Loop over every 2nd row,pol and get the data for each channel
        max = 1e-04
        for i in range(1, nrows, 2):
            row = "r%s" % i
            # polarization is 0-1
            for pol in range(0, 2):
                # array's channels is 0-3840
                for chan in range(1, 3839):
                    # channels must start from second and end before the last
                    data = data_col[row][pol][chan]
                    dataB = data_col[row][pol][chan - 1]
                    dataA = data_col[row][pol][chan + 1]

                    Smoothed = th.calculateHanning(dataB, data, dataA)
                    CorData = corr_col[row][pol][chan]

                    # Check the difference
                    self.assertTrue(
                        abs(CorData - Smoothed) < max,
                        "CorData=%s Smoothed=%s in row=%s pol=%s chan=%s" % (CorData, Smoothed, row, pol, chan),
                    )
Esempio n. 8
0
    def test3(self):
        '''hanningsmooth - Test 3: Check theoretical and calculated values on non-existing CORRECTED column'''
        self.outputms = 'hann3.ms'

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.msfile, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [False])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][61] == [False])
        self.assertTrue(flag_col['r1'][0][62] == [False])

        # It should fall-back and use the input DATA column
        hanningsmooth(vis=self.msfile,
                      outputvis=self.outputms,
                      datacolumn='corrected')

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [True])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][61] == [False])
        self.assertTrue(flag_col['r1'][0][62] == [True])

        data_col = th.getVarCol(self.msfile, 'DATA')
        corr_col = th.getVarCol(self.outputms, 'DATA')
        nrows = len(corr_col)

        # Loop over every 2nd row,pol and get the data for each channel
        max = 1e-05
        for i in range(1, nrows, 2):
            row = 'r%s' % i
            # polarization is 0-1
            for pol in range(0, 2):
                # array's channels is 0-63
                for chan in range(1, 62):
                    # channels must start from second and end before the last
                    data = data_col[row][pol][chan]
                    dataB = data_col[row][pol][chan - 1]
                    dataA = data_col[row][pol][chan + 1]

                    Smoothed = th.calculateHanning(dataB, data, dataA)
                    CorData = corr_col[row][pol][chan]

                    # Check the difference
                    self.assertTrue(abs(CorData - Smoothed) < max)
Esempio n. 9
0
    def test6(self):
        """hanningsmooth - Test 6: Flagging should be correct with datacolumn==ALL"""
        self.outputms = "hann6.ms"

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.msfile, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [False])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][61] == [False])
        self.assertTrue(flag_col["r1"][0][62] == [False])

        hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="all")

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [True])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][61] == [False])
        self.assertTrue(flag_col["r1"][0][62] == [True])
Esempio n. 10
0
    def test3(self):
        """hanningsmooth - Test 3: Check theoretical and calculated values on non-existing CORRECTED column"""
        self.outputms = "hann3.ms"

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.msfile, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [False])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][61] == [False])
        self.assertTrue(flag_col["r1"][0][62] == [False])

        # It should fall-back and use the input DATA column
        hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="corrected")

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [True])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][61] == [False])
        self.assertTrue(flag_col["r1"][0][62] == [True])

        data_col = th.getVarCol(self.msfile, "DATA")
        corr_col = th.getVarCol(self.outputms, "DATA")
        nrows = len(corr_col)

        # Loop over every 2nd row,pol and get the data for each channel
        max = 1e-05
        for i in range(1, nrows, 2):
            row = "r%s" % i
            # polarization is 0-1
            for pol in range(0, 2):
                # array's channels is 0-63
                for chan in range(1, 62):
                    # channels must start from second and end before the last
                    data = data_col[row][pol][chan]
                    dataB = data_col[row][pol][chan - 1]
                    dataA = data_col[row][pol][chan + 1]

                    Smoothed = th.calculateHanning(dataB, data, dataA)
                    CorData = corr_col[row][pol][chan]

                    # Check the difference
                    self.assertTrue(abs(CorData - Smoothed) < max)
Esempio n. 11
0
    def test6(self):
        '''hanningsmooth - Test 6: Flagging should be correct with datacolumn==ALL'''
        self.outputms = 'hann6.ms'

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.msfile, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [False])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][61] == [False])
        self.assertTrue(flag_col['r1'][0][62] == [False])

        hanningsmooth(vis=self.msfile,
                      outputvis=self.outputms,
                      datacolumn='all')

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [True])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][61] == [False])
        self.assertTrue(flag_col['r1'][0][62] == [True])
Esempio n. 12
0
    def test4(self):
        '''hanningsmooth - Test 4: Theoretical and calculated values should be the same for MMS-case'''

        # Split the input to decrease the running time
        split(self.msfile,
              outputvis='splithan.ms',
              scan='1,2',
              datacolumn='data')
        self.msfile = 'splithan.ms'

        # create a test MMS. It creates self.testmms
        self.createMMS(self.msfile)
        self.outputms = 'hann4.mms'

        # check correct flagging (just for one row as a sample)
        mslocal = mstool()
        mslocal.open(self.msfile)
        mslocal.sort('sorted.ms', [
            'OBSERVATION_ID', 'ARRAY_ID', 'SCAN_NUMBER', 'FIELD_ID',
            'DATA_DESC_ID', 'ANTENNA1', 'ANTENNA2', 'TIME'
        ])
        mslocal.close()
        self.msfile = 'sorted.ms'
        flag_col = th.getVarCol(self.msfile, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [False])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][61] == [False])
        self.assertTrue(flag_col['r1'][0][62] == [False])

        data_col = th.getVarCol(self.msfile, 'DATA')
        hanningsmooth(vis=self.testmms,
                      outputvis=self.outputms,
                      datacolumn='data',
                      keepmms=True)
        self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms),
                        'Output should be an MMS')

        # Sort the MMS
        mslocal.open(self.outputms)
        mslocal.sort('sorted.mms', [
            'OBSERVATION_ID', 'ARRAY_ID', 'SCAN_NUMBER', 'FIELD_ID',
            'DATA_DESC_ID', 'ANTENNA1', 'ANTENNA2', 'TIME'
        ])
        mslocal.close()
        self.outputms = 'sorted.mms'

        corr_col = th.getVarCol(self.outputms, 'DATA')
        nrows = len(corr_col)

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, 'FLAG')
        self.assertTrue(flag_col['r1'][0][0] == [True])
        self.assertTrue(flag_col['r1'][0][1] == [False])
        self.assertTrue(flag_col['r1'][0][61] == [False])
        self.assertTrue(flag_col['r1'][0][62] == [True])

        # Loop over every 2nd row,pol and get the data for each channel
        max = 1e-05
        for i in range(1, nrows, 2):
            row = 'r%s' % i
            # polarization is 0-1
            for pol in range(0, 2):
                # array's channels is 0-63
                for chan in range(1, 62):
                    # channels must start from second and end before the last
                    data = data_col[row][pol][chan]
                    dataB = data_col[row][pol][chan - 1]
                    dataA = data_col[row][pol][chan + 1]

                    Smoothed = th.calculateHanning(dataB, data, dataA)
                    CorData = corr_col[row][pol][chan]

                    # Check the difference
                    self.assertTrue(abs(CorData - Smoothed) < max)
Esempio n. 13
0
 def test2(self):
     """hanningsmooth - Test 2: Check that output MS is created"""
     self.outputms = "hann2.ms"
     hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="corrected")
     # Smoothed data should be saved in DATA column of outupt MS
     self.assertTrue(os.path.exists(self.outputms))
Esempio n. 14
0
    def test4(self):
        """hanningsmooth - Test 4: Theoretical and calculated values should be the same for MMS-case"""

        # Split the input to decrease the running time
        split(self.msfile, outputvis="splithan.ms", scan="1,2", datacolumn="data")
        self.msfile = "splithan.ms"

        # create a test MMS. It creates self.testmms
        self.createMMS(self.msfile)
        self.outputms = "hann4.mms"

        # check correct flagging (just for one row as a sample)
        mslocal = mstool()
        mslocal.open(self.msfile)
        mslocal.sort(
            "sorted.ms",
            ["OBSERVATION_ID", "ARRAY_ID", "SCAN_NUMBER", "FIELD_ID", "DATA_DESC_ID", "ANTENNA1", "ANTENNA2", "TIME"],
        )
        mslocal.close()
        self.msfile = "sorted.ms"
        flag_col = th.getVarCol(self.msfile, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [False])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][61] == [False])
        self.assertTrue(flag_col["r1"][0][62] == [False])

        data_col = th.getVarCol(self.msfile, "DATA")
        hanningsmooth(vis=self.testmms, outputvis=self.outputms, datacolumn="data", keepmms=True)
        self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms), "Output should be an MMS")

        # Sort the MMS
        mslocal.open(self.outputms)
        mslocal.sort(
            "sorted.mms",
            ["OBSERVATION_ID", "ARRAY_ID", "SCAN_NUMBER", "FIELD_ID", "DATA_DESC_ID", "ANTENNA1", "ANTENNA2", "TIME"],
        )
        mslocal.close()
        self.outputms = "sorted.mms"

        corr_col = th.getVarCol(self.outputms, "DATA")
        nrows = len(corr_col)

        # check correct flagging (just for one row as a sample)
        flag_col = th.getVarCol(self.outputms, "FLAG")
        self.assertTrue(flag_col["r1"][0][0] == [True])
        self.assertTrue(flag_col["r1"][0][1] == [False])
        self.assertTrue(flag_col["r1"][0][61] == [False])
        self.assertTrue(flag_col["r1"][0][62] == [True])

        # Loop over every 2nd row,pol and get the data for each channel
        max = 1e-05
        for i in range(1, nrows, 2):
            row = "r%s" % i
            # polarization is 0-1
            for pol in range(0, 2):
                # array's channels is 0-63
                for chan in range(1, 62):
                    # channels must start from second and end before the last
                    data = data_col[row][pol][chan]
                    dataB = data_col[row][pol][chan - 1]
                    dataA = data_col[row][pol][chan + 1]

                    Smoothed = th.calculateHanning(dataB, data, dataA)
                    CorData = corr_col[row][pol][chan]

                    # Check the difference
                    self.assertTrue(abs(CorData - Smoothed) < max)