def test_default_cols(self): """hanningsmooth: Default datacolumn=all and MMS output""" self.createMMS(self.msfile, column="all") self.outputms = "hannall.ms" hanningsmooth(vis=self.testmms, outputvis=self.outputms) self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms), "Output should be an MMS") # Should have all scratch columns in output cd = th.getColDesc(self.outputms, "DATA") self.assertGreater(len(cd), 0, "DATA column does not exist") cc = th.getColDesc(self.outputms, "CORRECTED_DATA") self.assertGreater(len(cc), 0, "CORRECTED_DATA does not exist") # Now repeat the above steps but create an output MS by setting keepmms=False os.system("rm -rf " + self.outputms) hanningsmooth(vis=self.testmms, outputvis=self.outputms, keepmms=False) self.assertFalse(ParallelDataHelper.isParallelMS(self.outputms), "Output should be a normal MS") # Should have all scratch columns in output cd = th.getColDesc(self.outputms, "DATA") self.assertGreater(len(cd), 0, "DATA column does not exist") cc = th.getColDesc(self.outputms, "CORRECTED_DATA") self.assertGreater(len(cc), 0, "CORRECTED_DATA does not exist")
def test_default_cols(self): '''hanningsmooth: Default datacolumn=all and MMS output''' self.createMMS(self.msfile, column='all') self.outputms = 'hannall.ms' hanningsmooth(vis=self.testmms, outputvis=self.outputms) self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms), 'Output should be an MMS') # Should have all scratch columns in output cd = th.getColDesc(self.outputms, 'DATA') self.assertGreater(len(cd), 0, 'DATA column does not exist') cc = th.getColDesc(self.outputms, 'CORRECTED_DATA') self.assertGreater(len(cc), 0, 'CORRECTED_DATA does not exist') # Now repeat the above steps but create an output MS by setting keepmms=False os.system('rm -rf ' + self.outputms) hanningsmooth(vis=self.testmms, outputvis=self.outputms, keepmms=False) self.assertFalse(ParallelDataHelper.isParallelMS(self.outputms), 'Output should be a normal MS') # Should have all scratch columns in output cd = th.getColDesc(self.outputms, 'DATA') self.assertGreater(len(cd), 0, 'DATA column does not exist') cc = th.getColDesc(self.outputms, 'CORRECTED_DATA') self.assertGreater(len(cc), 0, 'CORRECTED_DATA does not exist')
def test2(self): '''hanningsmooth - Test 2: Check that output MS is created''' self.outputms = 'hann2.ms' hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn='corrected') # Smoothed data should be saved in DATA column of outupt MS self.assertTrue(os.path.exists(self.outputms))
def test1(self): """hanningsmooth - Test 1: Wrong input MS should raise an exception""" msfile = 'badmsfile' self.outputms = 'none.ms' try: hanningsmooth(vis=msfile) except exceptions.RuntimeError, instance: print 'Expected error: %s' % instance
def test1(self): """hanningsmooth - Test 1: Wrong input MS should raise an exception""" msfile = "badmsfile" self.outputms = "none.ms" try: hanningsmooth(vis=msfile) except exceptions.RuntimeError, instance: print "Expected error: %s" % instance
def test_corrected_col(self): '''hanningsmooth: Apply smoothing in CORRECTED column''' self.outputms = 'hanncorr.ms' # check correct flagging before (just for one row as a sample) flag_col = th.getVarCol(self.msfile, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [False]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][3838] == [False]) self.assertTrue(flag_col['r1'][0][3839] == [False]) # input column data_col = th.getVarCol(self.msfile, 'CORRECTED_DATA') hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn='corrected') # output smoothed column corr_col = th.getVarCol(self.outputms, 'DATA') nrows = len(corr_col) # check correct flagging after (just for one row as a sample) flag_col = th.getVarCol(self.outputms, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [True]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][3838] == [False]) self.assertTrue(flag_col['r1'][0][3839] == [True]) # Loop over every 2nd row,pol and get the data for each channel max = 1e-04 for i in range(1, nrows, 2): row = 'r%s' % i # polarization is 0-1 for pol in range(0, 2): # array's channels is 0-3840 for chan in range(1, 3839): # channels must start from second and end before the last data = data_col[row][pol][chan] dataB = data_col[row][pol][chan - 1] dataA = data_col[row][pol][chan + 1] Smoothed = th.calculateHanning(dataB, data, dataA) CorData = corr_col[row][pol][chan] # Check the difference self.assertTrue( abs(CorData - Smoothed) < max, 'CorData=%s Smoothed=%s in row=%s pol=%s chan=%s' % (CorData, Smoothed, row, pol, chan))
def test_corrected_col(self): """hanningsmooth: Apply smoothing in CORRECTED column""" self.outputms = "hanncorr.ms" # check correct flagging before (just for one row as a sample) flag_col = th.getVarCol(self.msfile, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [False]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][3838] == [False]) self.assertTrue(flag_col["r1"][0][3839] == [False]) # input column data_col = th.getVarCol(self.msfile, "CORRECTED_DATA") hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="corrected") # output smoothed column corr_col = th.getVarCol(self.outputms, "DATA") nrows = len(corr_col) # check correct flagging after (just for one row as a sample) flag_col = th.getVarCol(self.outputms, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [True]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][3838] == [False]) self.assertTrue(flag_col["r1"][0][3839] == [True]) # Loop over every 2nd row,pol and get the data for each channel max = 1e-04 for i in range(1, nrows, 2): row = "r%s" % i # polarization is 0-1 for pol in range(0, 2): # array's channels is 0-3840 for chan in range(1, 3839): # channels must start from second and end before the last data = data_col[row][pol][chan] dataB = data_col[row][pol][chan - 1] dataA = data_col[row][pol][chan + 1] Smoothed = th.calculateHanning(dataB, data, dataA) CorData = corr_col[row][pol][chan] # Check the difference self.assertTrue( abs(CorData - Smoothed) < max, "CorData=%s Smoothed=%s in row=%s pol=%s chan=%s" % (CorData, Smoothed, row, pol, chan), )
def test3(self): '''hanningsmooth - Test 3: Check theoretical and calculated values on non-existing CORRECTED column''' self.outputms = 'hann3.ms' # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.msfile, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [False]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][61] == [False]) self.assertTrue(flag_col['r1'][0][62] == [False]) # It should fall-back and use the input DATA column hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn='corrected') # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.outputms, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [True]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][61] == [False]) self.assertTrue(flag_col['r1'][0][62] == [True]) data_col = th.getVarCol(self.msfile, 'DATA') corr_col = th.getVarCol(self.outputms, 'DATA') nrows = len(corr_col) # Loop over every 2nd row,pol and get the data for each channel max = 1e-05 for i in range(1, nrows, 2): row = 'r%s' % i # polarization is 0-1 for pol in range(0, 2): # array's channels is 0-63 for chan in range(1, 62): # channels must start from second and end before the last data = data_col[row][pol][chan] dataB = data_col[row][pol][chan - 1] dataA = data_col[row][pol][chan + 1] Smoothed = th.calculateHanning(dataB, data, dataA) CorData = corr_col[row][pol][chan] # Check the difference self.assertTrue(abs(CorData - Smoothed) < max)
def test6(self): """hanningsmooth - Test 6: Flagging should be correct with datacolumn==ALL""" self.outputms = "hann6.ms" # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.msfile, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [False]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][61] == [False]) self.assertTrue(flag_col["r1"][0][62] == [False]) hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="all") # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.outputms, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [True]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][61] == [False]) self.assertTrue(flag_col["r1"][0][62] == [True])
def test3(self): """hanningsmooth - Test 3: Check theoretical and calculated values on non-existing CORRECTED column""" self.outputms = "hann3.ms" # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.msfile, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [False]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][61] == [False]) self.assertTrue(flag_col["r1"][0][62] == [False]) # It should fall-back and use the input DATA column hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="corrected") # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.outputms, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [True]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][61] == [False]) self.assertTrue(flag_col["r1"][0][62] == [True]) data_col = th.getVarCol(self.msfile, "DATA") corr_col = th.getVarCol(self.outputms, "DATA") nrows = len(corr_col) # Loop over every 2nd row,pol and get the data for each channel max = 1e-05 for i in range(1, nrows, 2): row = "r%s" % i # polarization is 0-1 for pol in range(0, 2): # array's channels is 0-63 for chan in range(1, 62): # channels must start from second and end before the last data = data_col[row][pol][chan] dataB = data_col[row][pol][chan - 1] dataA = data_col[row][pol][chan + 1] Smoothed = th.calculateHanning(dataB, data, dataA) CorData = corr_col[row][pol][chan] # Check the difference self.assertTrue(abs(CorData - Smoothed) < max)
def test6(self): '''hanningsmooth - Test 6: Flagging should be correct with datacolumn==ALL''' self.outputms = 'hann6.ms' # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.msfile, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [False]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][61] == [False]) self.assertTrue(flag_col['r1'][0][62] == [False]) hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn='all') # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.outputms, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [True]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][61] == [False]) self.assertTrue(flag_col['r1'][0][62] == [True])
def test4(self): '''hanningsmooth - Test 4: Theoretical and calculated values should be the same for MMS-case''' # Split the input to decrease the running time split(self.msfile, outputvis='splithan.ms', scan='1,2', datacolumn='data') self.msfile = 'splithan.ms' # create a test MMS. It creates self.testmms self.createMMS(self.msfile) self.outputms = 'hann4.mms' # check correct flagging (just for one row as a sample) mslocal = mstool() mslocal.open(self.msfile) mslocal.sort('sorted.ms', [ 'OBSERVATION_ID', 'ARRAY_ID', 'SCAN_NUMBER', 'FIELD_ID', 'DATA_DESC_ID', 'ANTENNA1', 'ANTENNA2', 'TIME' ]) mslocal.close() self.msfile = 'sorted.ms' flag_col = th.getVarCol(self.msfile, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [False]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][61] == [False]) self.assertTrue(flag_col['r1'][0][62] == [False]) data_col = th.getVarCol(self.msfile, 'DATA') hanningsmooth(vis=self.testmms, outputvis=self.outputms, datacolumn='data', keepmms=True) self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms), 'Output should be an MMS') # Sort the MMS mslocal.open(self.outputms) mslocal.sort('sorted.mms', [ 'OBSERVATION_ID', 'ARRAY_ID', 'SCAN_NUMBER', 'FIELD_ID', 'DATA_DESC_ID', 'ANTENNA1', 'ANTENNA2', 'TIME' ]) mslocal.close() self.outputms = 'sorted.mms' corr_col = th.getVarCol(self.outputms, 'DATA') nrows = len(corr_col) # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.outputms, 'FLAG') self.assertTrue(flag_col['r1'][0][0] == [True]) self.assertTrue(flag_col['r1'][0][1] == [False]) self.assertTrue(flag_col['r1'][0][61] == [False]) self.assertTrue(flag_col['r1'][0][62] == [True]) # Loop over every 2nd row,pol and get the data for each channel max = 1e-05 for i in range(1, nrows, 2): row = 'r%s' % i # polarization is 0-1 for pol in range(0, 2): # array's channels is 0-63 for chan in range(1, 62): # channels must start from second and end before the last data = data_col[row][pol][chan] dataB = data_col[row][pol][chan - 1] dataA = data_col[row][pol][chan + 1] Smoothed = th.calculateHanning(dataB, data, dataA) CorData = corr_col[row][pol][chan] # Check the difference self.assertTrue(abs(CorData - Smoothed) < max)
def test2(self): """hanningsmooth - Test 2: Check that output MS is created""" self.outputms = "hann2.ms" hanningsmooth(vis=self.msfile, outputvis=self.outputms, datacolumn="corrected") # Smoothed data should be saved in DATA column of outupt MS self.assertTrue(os.path.exists(self.outputms))
def test4(self): """hanningsmooth - Test 4: Theoretical and calculated values should be the same for MMS-case""" # Split the input to decrease the running time split(self.msfile, outputvis="splithan.ms", scan="1,2", datacolumn="data") self.msfile = "splithan.ms" # create a test MMS. It creates self.testmms self.createMMS(self.msfile) self.outputms = "hann4.mms" # check correct flagging (just for one row as a sample) mslocal = mstool() mslocal.open(self.msfile) mslocal.sort( "sorted.ms", ["OBSERVATION_ID", "ARRAY_ID", "SCAN_NUMBER", "FIELD_ID", "DATA_DESC_ID", "ANTENNA1", "ANTENNA2", "TIME"], ) mslocal.close() self.msfile = "sorted.ms" flag_col = th.getVarCol(self.msfile, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [False]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][61] == [False]) self.assertTrue(flag_col["r1"][0][62] == [False]) data_col = th.getVarCol(self.msfile, "DATA") hanningsmooth(vis=self.testmms, outputvis=self.outputms, datacolumn="data", keepmms=True) self.assertTrue(ParallelDataHelper.isParallelMS(self.outputms), "Output should be an MMS") # Sort the MMS mslocal.open(self.outputms) mslocal.sort( "sorted.mms", ["OBSERVATION_ID", "ARRAY_ID", "SCAN_NUMBER", "FIELD_ID", "DATA_DESC_ID", "ANTENNA1", "ANTENNA2", "TIME"], ) mslocal.close() self.outputms = "sorted.mms" corr_col = th.getVarCol(self.outputms, "DATA") nrows = len(corr_col) # check correct flagging (just for one row as a sample) flag_col = th.getVarCol(self.outputms, "FLAG") self.assertTrue(flag_col["r1"][0][0] == [True]) self.assertTrue(flag_col["r1"][0][1] == [False]) self.assertTrue(flag_col["r1"][0][61] == [False]) self.assertTrue(flag_col["r1"][0][62] == [True]) # Loop over every 2nd row,pol and get the data for each channel max = 1e-05 for i in range(1, nrows, 2): row = "r%s" % i # polarization is 0-1 for pol in range(0, 2): # array's channels is 0-63 for chan in range(1, 62): # channels must start from second and end before the last data = data_col[row][pol][chan] dataB = data_col[row][pol][chan - 1] dataA = data_col[row][pol][chan + 1] Smoothed = th.calculateHanning(dataB, data, dataA) CorData = corr_col[row][pol][chan] # Check the difference self.assertTrue(abs(CorData - Smoothed) < max)