def __init__( self, archive_file=DEFAULT_ARCHIVE_FILE, model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/vhus_simulator_camrest.zip' ): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f: config = json.load(f) manager = UserDataManager() voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size() self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE) self.goal_gen = GoalGenerator() self.manager = manager self.user.eval() if not os.path.isfile(archive_file): if not model_file: raise Exception("No model for VHUS Policy is specified!") archive_file = cached_path(model_file) model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'save') if not os.path.exists(model_dir): os.mkdir(model_dir) if not os.path.exists(os.path.join(model_dir, 'best_simulator.mdl')): archive = zipfile.ZipFile(archive_file, 'r') archive.extractall(model_dir) self.load(config['load'])
def __init__(self): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f: config = json.load(f) manager = UserDataManager() voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size() self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE) self.goal_gen = GoalGenerator() self.manager = manager self.user.eval() self.load(config['load'])
def __init__(self, config): manager = UserDataManager() voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size() self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE) self.goal_gen = GoalGenerator() self.manager = manager self.print_per_batch = config['print_per_batch'] self.save_dir = config['save_dir'] self.save_per_epoch = config['save_per_epoch'] seq_goals, seq_usr_dass, seq_sys_dass = manager.data_loader_seg() train_goals, train_usrdas, train_sysdas, \ test_goals, test_usrdas, test_sysdas, \ val_goals, val_usrdas, val_sysdas = manager.train_test_val_split_seg( seq_goals, seq_usr_dass, seq_sys_dass) self.data_train = (train_goals, train_usrdas, train_sysdas, config['batchsz']) self.data_valid = (val_goals, val_usrdas, val_sysdas, config['batchsz']) self.data_test = (test_goals, test_usrdas, test_sysdas, config['batchsz']) self.alpha = config['alpha'] self.optim = torch.optim.Adam(self.user.parameters(), lr=config['lr']) self.nll_loss = nn.NLLLoss(ignore_index=0) # PAD=0 self.bce_loss = nn.BCEWithLogitsLoss()
def __init__(self, goal_generator: GoalGenerator, seed=None): """ create new Goal by random Args: goal_generator (GoalGenerator): Goal Gernerator. """ self.domain_goals = goal_generator.get_user_goal(seed) if 'reqt' in self.domain_goals.keys(): self.domain_goals['reqt'] = { slot: DEF_VAL_UNK for slot in self.domain_goals['reqt'] }
def __init__(self, archive_file=DEFAULT_ARCHIVE_FILE, model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/vhus_simulator_camrest.zip'): with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f: config = json.load(f) manager = UserDataManager() voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size() self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE) self.goal_gen = GoalGenerator() self.manager = manager self.user.eval() self.load(archive_file, model_file, config['load'])
def __init__(self): """ Constructor for User_Policy_Agenda class. """ self.max_turn = 40 self.max_initiative = 4 self.goal_generator = GoalGenerator(corpus_path=os.path.join( os.path.dirname( os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath( __file__))))), 'data/camrest/CamRest676_v2.json')) self.__turn = 0 self.goal = None self.agenda = None Policy.__init__(self)
def __init__(self, max_goal_num=100, seed=2019): """ Constructor for User_Policy_Agenda class. """ self.max_turn = 40 self.max_initiative = 4 self.goal_generator = GoalGenerator(corpus_path=os.path.join( os.path.dirname( os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath( __file__))))), 'data/camrest/CamRest676_v2.json')) self.__turn = 0 self.goal = None self.agenda = None random.seed(seed) self.goal_seeds = [random.randint(1, 1e7) for i in range(max_goal_num)] Policy.__init__(self)
class UserPolicyVHUS(Policy): def __init__( self, archive_file=DEFAULT_ARCHIVE_FILE, model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/vhus_simulator_camrest.zip' ): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f: config = json.load(f) manager = UserDataManager() voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size() self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE) self.goal_gen = GoalGenerator() self.manager = manager self.user.eval() if not os.path.isfile(archive_file): if not model_file: raise Exception("No model for VHUS Policy is specified!") archive_file = cached_path(model_file) model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'save') if not os.path.exists(model_dir): os.mkdir(model_dir) if not os.path.exists(os.path.join(model_dir, 'best_simulator.mdl')): archive = zipfile.ZipFile(archive_file, 'r') archive.extractall(model_dir) self.load(config['load']) def init_session(self): self.time_step = -1 self.topic = 'NONE' self.goal = self.goal_gen.get_user_goal() self.goal_input = torch.LongTensor( self.manager.get_goal_id(self.manager.usrgoal2seq(self.goal))) self.goal_len_input = torch.LongTensor([len(self.goal_input) ]).squeeze() self.sys_da_id_stack = [] # to save sys da history def predict(self, state): """Predict an user act based on state and preorder system action. Args: state (tuple): Dialog state. Returns: usr_action (tuple): User act. session_over (boolean): True to terminate session, otherwise session continues. """ sys_action = state sys_seq_turn = self.manager.sysda2seq( self.manager.ref_data2stand(sys_action), self.goal) self.sys_da_id_stack += self.manager.get_sysda_id([sys_seq_turn]) sys_seq_len = torch.LongTensor( [max(len(sen), 1) for sen in self.sys_da_id_stack]) max_sen_len = sys_seq_len.max().item() sys_seq = torch.LongTensor(padding(self.sys_da_id_stack, max_sen_len)) usr_a, terminal = self.user.select_action(self.goal_input, self.goal_len_input, sys_seq, sys_seq_len) usr_action = self.manager.usrseq2da(self.manager.id2sentence(usr_a), self.goal) return usr_action, terminal def load(self, filename): user_mdl = os.path.join(os.path.dirname(os.path.abspath(__file__)), filename + '_simulator.mdl') if os.path.exists(user_mdl): self.user.load_state_dict(torch.load(user_mdl)) print('<<user simulator>> loaded checkpoint from file: {}'.format( user_mdl))
import json import logging import sys root_dir = os.path.dirname( os.path.dirname( os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))) sys.path.append(root_dir) from tatk.util.train_util import init_logging_handler from tatk.task.camrest.goal_generator import GoalGenerator from tatk.policy.vhus.camrest.usermanager import UserDataManager from tatk.policy.vhus.train import VHUS_Trainer if __name__ == '__main__': with open('config.json', 'r') as f: cfg = json.load(f) init_logging_handler(cfg['log_dir']) manager = UserDataManager() goal_gen = GoalGenerator() env = VHUS_Trainer(cfg, manager, goal_gen) logging.debug('start training') best = float('inf') for e in range(cfg['epoch']): env.imitating(e) best = env.imit_test(e, best)
class UserPolicyVHUS(Policy): def __init__(self): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f: config = json.load(f) manager = UserDataManager() voc_goal_size, voc_usr_size, voc_sys_size = manager.get_voc_size() self.user = VHUS(config, voc_goal_size, voc_usr_size, voc_sys_size).to(device=DEVICE) self.goal_gen = GoalGenerator() self.manager = manager self.user.eval() self.load(config['load']) def init_session(self): self.time_step = -1 self.topic = 'NONE' self.goal = self.goal_gen.get_user_goal() self.goal_input = torch.LongTensor( self.manager.get_goal_id(self.manager.usrgoal2seq(self.goal))) self.goal_len_input = torch.LongTensor([len(self.goal_input) ]).squeeze() self.sys_da_id_stack = [] # to save sys da history def predict(self, state): """Predict an user act based on state and preorder system action. Args: state (tuple): Dialog state. Returns: usr_action (tuple): User act. session_over (boolean): True to terminate session, otherwise session continues. """ sys_action = state['system_action'] sys_seq_turn = self.manager.sysda2seq( self.manager.ref_data2stand(sys_action), self.goal) self.sys_da_id_stack += self.manager.get_sysda_id([sys_seq_turn]) sys_seq_len = torch.LongTensor( [max(len(sen), 1) for sen in self.sys_da_id_stack]) max_sen_len = sys_seq_len.max().item() sys_seq = torch.LongTensor(padding(self.sys_da_id_stack, max_sen_len)) usr_a, terminal = self.user.select_action(self.goal_input, self.goal_len_input, sys_seq, sys_seq_len) usr_action = self.manager.usrseq2da(self.manager.id2sentence(usr_a), self.goal) return usr_action, terminal def load(self, filename): user_mdl = os.path.join(os.path.dirname(os.path.abspath(__file__)), filename + '_simulator.mdl') if os.path.exists(user_mdl): self.user.load_state_dict(torch.load(user_mdl)) print('<<user simulator>> loaded checkpoint from file: {}'.format( user_mdl))