class MLP(chainer.Chain):
    def __init__(self, n_units, n_out):
        super(MLP, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(None, n_units)  # n_in -> n_units
            self.l2 = L.Linear(None, n_units)  # n_units -> n_units
            self.l3 = L.Linear(None, n_out)  # n_units -> n_out

    @within_name_scope('MLP')
    def __call__(self, x):
        with name_scope('linear1', self.l1.params()):
            h1 = F.relu(self.l1(x))
        with name_scope('linear2', self.l2.params()):
            h2 = F.relu(self.l2(h1))
        with name_scope('linear3', self.l3.params()):
            o = self.l3(h2)
        return o


model = L.Classifier(MLP(1000, 10))

res = model(chainer.Variable(np.random.rand(1, 784).astype(np.float32)),
            chainer.Variable(np.random.rand(1).astype(np.int32)))

writer = SummaryWriter('runs/' + datetime.now().strftime('%B%d  %H:%M:%S'))
writer.add_graph([res])
writer.add_all_variable_images([res], pattern='.*MLP.*')
writer.add_all_parameter_histograms([res], pattern='.*MLP.*')

writer.close()
Esempio n. 2
0
                        [str(float(l.data))
                         for l in model.predictor.loss]) + '\n')
                logf.flush()
                if args.gpu >= 0: model.to_gpu()

            if (count % args.save) == 0:
                print('save the model')
                serializers.save_npz('models/' + str(count) + '.model', model)
                print('save the optimizer')
                serializers.save_npz('models/' + str(count) + '.state',
                                     optimizer)
                if args.tensorboard:
                    for name, param in model.predictor.namedparams():
                        writer.add_histogram(name,
                                             chainer.cuda.to_cpu(param.data),
                                             count)
                    writer.add_scalar('loss', float(model.loss.data), count)
            x_batch[0] = y_batch[0]
            if count > args.period:
                break
            count += 1

        seq = (seq + 1) % len(sequencelist)

# For logging graph structure
if args.tensorboard:
    model(chainer.Variable(xp.asarray(x_batch)),
          chainer.Variable(xp.asarray(y_batch)))
    writer.add_graph(model.y)
    writer.close()