Esempio n. 1
0
def train(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    drop_last = True

    dataset = SegDataset(file_list=cfg.DATASET.TRAIN_FILE_LIST,
                         mode=ModelPhase.TRAIN,
                         shuffle=True,
                         data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
    # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    # place = places[0]
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

    py_reader, avg_loss, lr, pred, grts, masks = build_model(
        train_prog, startup_prog, phase=ModelPhase.TRAIN)
    py_reader.decorate_sample_generator(data_generator,
                                        batch_size=batch_size_per_dev,
                                        drop_last=drop_last)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()

    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

    if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
        if dev_count > 1:
            # Apply sync batch norm strategy
            print_info("Sync BatchNorm strategy is effective.")
            build_strategy.sync_batch_norm = True
        else:
            print_info(
                "Sync BatchNorm strategy will not be effective if GPU device"
                " count <= 1")
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=avg_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
    if cfg.TRAIN.RESUME_MODEL_DIR:
        begin_epoch = load_checkpoint(exe, train_prog)
    # Load pretrained model
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
        print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
        load_vars = []
        load_fail_vars = []

        def var_shape_matched(var, shape):
            """
            Check whehter persitable variable shape is match with current network
            """
            var_exist = os.path.exists(
                os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
            if var_exist:
                var_shape = parse_shape_from_file(
                    os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
                return var_shape == shape
            return False

        for x in train_prog.list_vars():
            if isinstance(x, fluid.framework.Parameter):
                shape = tuple(fluid.global_scope().find_var(
                    x.name).get_tensor().shape())
                if var_shape_matched(x, shape):
                    load_vars.append(x)
                else:
                    load_fail_vars.append(x)

        fluid.io.load_vars(exe,
                           dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR,
                           vars=load_vars)
        for var in load_vars:
            print_info("Parameter[{}] loaded sucessfully!".format(var.name))
        for var in load_fail_vars:
            print_info(
                "Parameter[{}] don't exist or shape does not match current network, skip"
                " to load it.".format(var.name))
        print_info("{}/{} pretrained parameters loaded successfully!".format(
            len(load_vars),
            len(load_vars) + len(load_fail_vars)))
    else:
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))

    fetch_list = [avg_loss.name, lr.name]
    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(precision=4,
                            suppress=True,
                            linewidth=160,
                            floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

    if args.use_tb:
        if not args.tb_log_dir:
            print_info("Please specify the log directory by --tb_log_dir.")
            exit(1)

        from tb_paddle import SummaryWriter
        log_writer = SummaryWriter(args.tb_log_dir)

    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    global_step = 0
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError((
            "begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

    if args.use_mpio:
        print_info("Use multiprocess reader")
    else:
        print_info("Use multi-thread reader")

    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
        py_reader.start()
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0:
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

                        print_info((
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, mean_acc,
                                 mean_iou, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
                        if args.use_tb:
                            log_writer.add_scalar('Train/mean_iou', mean_iou,
                                                  global_step)
                            log_writer.add_scalar('Train/mean_acc', mean_acc,
                                                  global_step)
                            log_writer.add_scalar('Train/loss', avg_loss,
                                                  global_step)
                            log_writer.add_scalar('Train/lr', lr[0],
                                                  global_step)
                            log_writer.add_scalar('Train/step/sec', speed,
                                                  global_step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, lr = exe.run(program=compiled_train_prog,
                                       fetch_list=fetch_list,
                                       return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
                        avg_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        if args.use_tb:
                            log_writer.add_scalar('Train/loss', avg_loss,
                                                  global_step)
                            log_writer.add_scalar('Train/lr', lr[0],
                                                  global_step)
                            log_writer.add_scalar('Train/speed', speed,
                                                  global_step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        timer.restart()

            except fluid.core.EOFException:
                py_reader.reset()
                break
            except Exception as e:
                print(e)

        if epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0 and cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(exe, train_prog, epoch)

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(cfg=cfg,
                                                    ckpt_dir=ckpt_dir,
                                                    use_gpu=args.use_gpu,
                                                    use_mpio=args.use_mpio)
                if args.use_tb:
                    log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
                                          global_step)
                    log_writer.add_scalar('Evaluate/mean_acc', mean_acc,
                                          global_step)

            # Use Tensorboard to visualize results
            if args.use_tb and cfg.DATASET.VIS_FILE_LIST is not None:
                visualize(cfg=cfg,
                          use_gpu=args.use_gpu,
                          vis_file_list=cfg.DATASET.VIS_FILE_LIST,
                          vis_dir="visual",
                          ckpt_dir=ckpt_dir,
                          log_writer=log_writer)

    # save final model
    if cfg.TRAINER_ID == 0:
        save_checkpoint(exe, train_prog, 'final')
Esempio n. 2
0
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    main_arch = cfg.architecture

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)
                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.print_params:
        param_delimit_str = '-' * 20 + "All parameters in current graph" + '-' * 20
        print(param_delimit_str)
        for block in train_prog.blocks:
            for param in block.all_parameters():
                print("parameter name: {}\tshape: {}".format(param.name,
                                                             param.shape))
        print('-' * len(param_delimit_str))
        return

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        if cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    start_iter = 0
    if cfg.pretrain_weights:
        checkpoint.load_params(exe, train_prog, cfg.pretrain_weights)

    pruned_params = FLAGS.pruned_params
    assert FLAGS.pruned_params is not None, \
        "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
    logger.info("pruned ratios: {}".format(pruned_ratios))
    assert len(pruned_params) == len(pruned_ratios), \
        "The length of pruned params and pruned ratios should be equal."
    assert (pruned_ratios > [0] * len(pruned_ratios) and
            pruned_ratios < [1] * len(pruned_ratios)
            ), "The elements of pruned ratios should be in range (0, 1)."

    assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \
            "unsupported prune criterion {}".format(FLAGS.prune_criterion)
    pruner = Pruner(criterion=FLAGS.prune_criterion)
    train_prog = pruner.prune(
        train_prog,
        fluid.global_scope(),
        params=pruned_params,
        ratios=pruned_ratios,
        place=place,
        only_graph=False)[0]

    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:

        base_flops = flops(eval_prog)
        eval_prog = pruner.prune(
            eval_prog,
            fluid.global_scope(),
            params=pruned_params,
            ratios=pruned_ratios,
            place=place,
            only_graph=True)[0]
        pruned_flops = flops(eval_prog)
        logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format(
            float(base_flops - pruned_flops) / base_flops, base_flops,
            pruned_flops))
        compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()

    train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
                                 devices_num, cfg)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use tb-paddle to log data
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_loss_step = 0
        tb_mAP_step = 0

    if FLAGS.eval:
        # evaluation
        results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys,
                           eval_values, eval_cls, cfg)
        resolution = None
        if 'mask' in results[0]:
            resolution = model.mask_head.resolution
        dataset = cfg['EvalReader']['dataset']
        box_ap_stats = eval_results(
            results,
            cfg.metric,
            cfg.num_classes,
            resolution,
            is_bbox_normalized,
            FLAGS.output_eval,
            map_type,
            dataset=dataset)

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use tb-paddle to log loss
        if FLAGS.use_tb:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    tb_writer.add_scalar(loss_name, loss_value, tb_loss_step)
                tb_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                results = eval_run(
                    exe,
                    compiled_eval_prog,
                    eval_loader,
                    eval_keys,
                    eval_values,
                    eval_cls,
                    cfg=cfg)
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
                box_ap_stats = eval_results(
                    results,
                    cfg.metric,
                    cfg.num_classes,
                    resolution,
                    is_bbox_normalized,
                    FLAGS.output_eval,
                    map_type,
                    dataset=dataset)

                # use tb_paddle to log mAP
                if FLAGS.use_tb:
                    tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step)
                    tb_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

    train_loader.reset()
Esempio n. 3
0
class BasicTask(object):
    def __init__(self,
                 feed_list,
                 data_reader,
                 main_program=None,
                 startup_program=None,
                 config=None,
                 metrics_choices="default"):

        # base item
        self._base_data_reader = data_reader
        self._base_feed_list = feed_list

        # metrics item
        self.best_score = -999
        if metrics_choices == "default":
            metrics_choices = ["acc"]
        elif metrics_choices == None:
            metrics_choices = []
        if isinstance(metrics_choices, list):
            self.metrics_choices = metrics_choices
        else:
            self.metrics_choices = [metrics_choices]

        if main_program is None:
            self._base_main_program = clone_program(
                fluid.default_main_program(), for_test=False)

        else:
            self._base_main_program = clone_program(main_program,
                                                    for_test=False)
        if startup_program is None:
            self._base_startup_program = clone_program(
                fluid.default_startup_program(), for_test=False)
        else:
            self._base_startup_program = clone_program(startup_program,
                                                       for_test=False)
        self.is_checkpoint_loaded = False
        self._base_compiled_program = None

        # run config
        self.config = config if config else RunConfig()
        self.place = self.places[0]
        self.device_count = len(self.places)

        if self.config.use_data_parallel:
            if not self.config.use_pyreader and self.config.batch_size < self.device_count:
                logger.warning(
                    "Batch size({}) is less than the count of devices({}), which is not allowed in current Paddle versions"
                    .format(self.config.batch_size, self.device_count))
                logger.warning(
                    "Batch size automatically adjusted to {}".format(
                        self.device_count))
                self.config._batch_size = self.device_count

        self.exe = fluid.Executor(place=self.place)
        self.build_strategy = fluid.BuildStrategy()

        # log item
        if not os.path.exists(self.config.checkpoint_dir):
            mkdir(self.config.checkpoint_dir)
        tb_log_dir = os.path.join(self.config.checkpoint_dir, "visualization")
        self.tb_writer = SummaryWriter(tb_log_dir)

        # run environment
        self._phases = []
        self._envs = {}
        self._predict_data = None

        # accelerate predict
        self.is_best_model_loaded = False

        # set default phase
        self.enter_phase("train")

    @contextlib.contextmanager
    def phase_guard(self, phase):
        self.enter_phase(phase)
        yield
        self.exit_phase()

    def enter_phase(self, phase):
        if phase not in [
                "train", "val", "dev", "test", "predict", "inference"
        ]:
            raise RuntimeError()
        if phase in ["val", "dev"]:
            phase = "dev"
        elif phase in ["predict", "inference"]:
            phase = "predict"
        self._phases.append(phase)

    def exit_phase(self):
        self._phases = self._phases[:-1]

    def init_if_necessary(self):
        if not self.is_checkpoint_loaded:
            if not self.load_checkpoint():
                self.exe.run(self._base_startup_program)
            self.is_checkpoint_loaded = True
            self.is_best_model_loaded = False

    def init_if_load_best_model(self):
        if not self.is_best_model_loaded:
            best_model_path = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("Load the best model from %s" % best_model_path)
            if os.path.exists(best_model_path):
                self.load_parameters(best_model_path)
                self.is_checkpoint_loaded = False
                self.is_best_model_loaded = True
            else:
                self.init_if_necessary()
        else:
            logger.info("The best model has been loaded")

    def _build_env(self):
        if self.env.is_inititalized:
            return

        self._build_env_start_event()
        self.env.is_inititalized = True
        self.env.main_program = clone_program(self._base_main_program,
                                              for_test=False)

        self.env.startup_program = fluid.Program()
        with fluid.program_guard(self.env.main_program,
                                 self._base_startup_program):
            with fluid.unique_name.guard(self.env.UNG):
                self.env.outputs = self._build_net()
                if self.is_train_phase or self.is_test_phase:
                    self.env.labels = self._add_label()
                    self.env.loss = self._add_loss()
                    self.env.metrics = self._add_metrics()

        if self.is_predict_phase or self.is_test_phase:
            self.env.main_program = clone_program(self.env.main_program,
                                                  for_test=True)
            hub.common.paddle_helper.set_op_attr(self.env.main_program,
                                                 is_test=True)

        if self.config.use_pyreader:
            t_program = fluid.Program()
            with fluid.program_guard(t_program, self.env.startup_program):
                self.env.py_reader = fluid.layers.py_reader(
                    capacity=64,
                    shapes=[var.shape for var in self.feed_var_list],
                    dtypes=[
                        dtype_map[var.dtype] for var in self.feed_var_list
                    ],
                    lod_levels=[var.lod_level for var in self.feed_var_list],
                    use_double_buffer=False)

                feed_var_list = self.feed_var_list
                py_vars = fluid.layers.read_file(self.env.py_reader)
                py_vars = to_list(py_vars)
                input_dict = {
                    feed_var_list[index].name: py_var
                    for index, py_var in enumerate(py_vars)
                }

                hub.connect_program(pre_program=t_program,
                                    next_program=self.env.main_program,
                                    input_dict=input_dict,
                                    need_log=False)

            self.env.main_program = t_program
            if not self.is_predict_phase:
                self.env.loss = self.env.main_program.global_block().vars[
                    self.env.loss.name]
                metrics_name = [var.name for var in self.env.metrics]
                self.env.metrics = [
                    self.env.main_program.global_block().vars[name]
                    for name in metrics_name
                ]

            outputs_name = [var.name for var in self.env.outputs]
            self.env.outputs = [
                self.env.main_program.global_block().vars[name]
                for name in outputs_name
            ]

        if self.config.enable_memory_optim:
            for var_name in self.fetch_list:
                var = self.env.main_program.global_block().vars[var_name]
                var.persistable = True

        # to avoid to print logger two times in result of the logger usage of paddle-fluid 1.6
        for handler in logging.root.handlers[:]:
            logging.root.removeHandler(handler)

        if self.is_train_phase:
            with fluid.program_guard(self.env.main_program,
                                     self._base_startup_program):
                with fluid.unique_name.guard(self.env.UNG):
                    self.scheduled_lr, self.max_train_steps = self.config.strategy.execute(
                        self.loss, self._base_data_reader, self.config,
                        self.device_count)

        if self.is_train_phase:
            loss_name = self.env.loss.name
        else:
            loss_name = None

        share_vars_from = self._base_compiled_program

        if not self.config.use_data_parallel:
            self.env.main_program_compiled = None
        else:
            self.env.main_program_compiled = fluid.CompiledProgram(
                self.env.main_program).with_data_parallel(
                    loss_name=loss_name,
                    share_vars_from=share_vars_from,
                    build_strategy=self.build_strategy)

        self.exe.run(self.env.startup_program)

        # to avoid to print logger two times in result of the logger usage of paddle-fluid 1.5
        for handler in logging.root.handlers[:]:
            logging.root.removeHandler(handler)

        self._build_env_end_event()

    @property
    def places(self):
        if self.config.use_cuda:
            _places = fluid.framework.cuda_places()
        else:
            _places = fluid.framework.cpu_places()

        if not self.config.use_data_parallel:
            return [_places[0]]
        return _places

    @property
    def return_numpy(self):
        return True

    @property
    def is_train_phase(self):
        return self.phase in ["train"]

    @property
    def is_test_phase(self):
        return self.phase in ["val", "dev", "test"]

    @property
    def is_predict_phase(self):
        return self.phase in ["predict", "inference"]

    @property
    def phase(self):
        return self._phases[-1]

    @property
    def env(self):
        phase = self.phase
        if phase in ["val", "dev", "test"]:
            phase = "dev"
        if not phase in self._envs:
            self._envs[phase] = RunEnv()
        return self._envs[phase]

    @property
    def py_reader(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.py_reader

    @property
    def current_step(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_step

    @property
    def current_epoch(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_epoch

    @property
    def main_program(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program

    @property
    def startup_program(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.startup_program

    @property
    def main_program_compiled(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program_compiled

    @property
    def main_program_to_be_run(self):
        if self.config.use_data_parallel:
            if self._base_compiled_program is None:
                self._base_compiled_program = self.env.main_program_compiled
            return self.main_program_compiled
        return self.main_program

    @property
    def reader(self):
        if self.is_predict_phase:
            data = self._predict_data
        else:
            data = None
        self.env.reader = self._base_data_reader.data_generator(
            batch_size=self.config.batch_size, phase=self.phase, data=data)
        return self.env.reader

    @property
    def loss(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.loss

    @property
    def labels(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.labels

    @property
    def outputs(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.outputs

    @property
    def metrics(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.metrics

    @property
    def unique_name_generator(self):
        return self.env.UNG

    @property
    def feed_list(self):
        feed_list = [varname for varname in self._base_feed_list]
        if self.is_train_phase or self.is_test_phase:
            feed_list += [label.name for label in self.labels]
        return feed_list

    @property
    def feed_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.feed_list]

    @property
    def fetch_list(self):
        if self.is_train_phase or self.is_test_phase:
            return [metric.name for metric in self.metrics] + [self.loss.name]
        return [output.name for output in self.outputs]

    def _build_env_start_event(self):
        pass

    def _build_env_end_event(self):
        if not self.is_predict_phase:
            self.env.score_scalar = {}

    def _finetune_start_event(self):
        logger.info("PaddleHub finetune start")

    def _finetune_end_event(self, run_states):
        logger.info("PaddleHub finetune finished.")

    def _predict_start_event(self):
        logger.info("PaddleHub predict start")

    def _predict_end_event(self, run_states):
        logger.info("PaddleHub predict finished.")

    def _eval_start_event(self):
        logger.info("Evaluation on {} dataset start".format(self.phase))

    def _eval_end_event(self, run_states):
        eval_scores, eval_loss, run_speed = self._calculate_metrics(run_states)
        if 'train' in self._envs:
            self.tb_writer.add_scalar(
                tag="Loss_{}".format(self.phase),
                scalar_value=eval_loss,
                global_step=self._envs['train'].current_step)

        log_scores = ""
        for metric in eval_scores:
            if 'train' in self._envs:
                self.tb_writer.add_scalar(
                    tag="{}_{}".format(metric, self.phase),
                    scalar_value=eval_scores[metric],
                    global_step=self._envs['train'].current_step)
            log_scores += "%s=%.5f " % (metric, eval_scores[metric])
        logger.info(
            "[%s dataset evaluation result] loss=%.5f %s[step/sec: %.2f]" %
            (self.phase, eval_loss, log_scores, run_speed))

        eval_scores_items = eval_scores.items()
        if len(eval_scores_items):
            # The first metric will be chose to eval
            main_metric, main_value = list(eval_scores_items)[0]
        else:
            logger.warning(
                "None of metrics has been implemented, loss will be used to evaluate."
            )
            # The larger, the better
            main_metric, main_value = "negative loss", -eval_loss
        if self.phase in ["dev", "val"] and main_value > self.best_score:
            self.best_score = main_value
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("best model saved to %s [best %s=%.5f]" %
                        (model_saved_dir, main_metric, main_value))

            save_result = fluid.io.save_persistables(
                executor=self.exe,
                dirname=model_saved_dir,
                main_program=self.main_program)

    def _log_interval_event(self, run_states):
        scores, avg_loss, run_speed = self._calculate_metrics(run_states)
        self.tb_writer.add_scalar(tag="Loss_{}".format(self.phase),
                                  scalar_value=avg_loss,
                                  global_step=self._envs['train'].current_step)
        log_scores = ""
        for metric in scores:
            self.tb_writer.add_scalar(
                tag="{}_{}".format(metric, self.phase),
                scalar_value=scores[metric],
                global_step=self._envs['train'].current_step)
            log_scores += "%s=%.5f " % (metric, scores[metric])
        logger.info("step %d / %d: loss=%.5f %s[step/sec: %.2f]" %
                    (self.current_step, self.max_train_steps, avg_loss,
                     log_scores, run_speed))

    def _save_ckpt_interval_event(self):
        self.save_checkpoint()

    def _eval_interval_event(self):
        self.eval(phase="dev")

    def _run_step_event(self, run_state):
        if self.is_predict_phase:
            yield run_state.run_results

    def _build_net(self):
        raise NotImplementedError

    def _add_loss(self):
        raise NotImplementedError

    def _add_label(self):
        raise NotImplementedError

    def _add_metrics(self):
        # Some metrics like acc, auc can be calculated by fluid.layers
        # The others can be calculated in _calculate_metrics function
        raise NotImplementedError

    def _calculate_metrics(self, run_states):
        # NOTE: if you want to customize the metrics
        # you should make sure that the first parameter returned is a dict
        # The first key will be used as main metrics to update the best model
        raise NotImplementedError

    # NOTE: current saved checkpoint machanism is not completed,
    # it can't restore dataset training status
    def save_checkpoint(self):
        save_checkpoint(checkpoint_dir=self.config.checkpoint_dir,
                        current_epoch=self.current_epoch,
                        global_step=self.current_step,
                        best_score=self.best_score,
                        exe=self.exe,
                        main_program=self.main_program)

    def load_checkpoint(self):
        is_load_successful, self.env.current_epoch, self.env.current_step, self.best_score = load_checkpoint(
            self.config.checkpoint_dir,
            self.exe,
            main_program=self.main_program)

        return is_load_successful

    def load_parameters(self, dirname):
        def if_exist(var):
            path = os.path.join(dirname, var.name)
            return os.path.exists(path)

        fluid.io.load_vars(self.exe,
                           dirname,
                           self.main_program,
                           predicate=if_exist)

    def save_parameters(self, dirname):
        fluid.io.save_params(self.exe,
                             dirname=dirname,
                             main_program=self.main_program)

    def finetune_and_eval(self):
        return self.finetune(do_eval=True)

    def finetune(self, do_eval=False):

        # Start to finetune
        with self.phase_guard(phase="train"):
            self.init_if_necessary()
            self._finetune_start_event()
            run_states = []
            if self.current_epoch <= self.config.num_epoch:
                while self.current_epoch <= self.config.num_epoch:
                    self.config.strategy.step()
                    run_states = self._run(do_eval=do_eval)
                    self.env.current_epoch += 1

                # Final evaluation
                if self._base_data_reader.get_dev_examples() != []:
                    self.eval(phase="dev")
                if self._base_data_reader.get_test_examples() != []:
                    self.eval(phase="test", load_best_model=True)
                # Save checkpoint after finetune
                self.save_checkpoint()

            self._finetune_end_event(run_states)
            return run_states

    def eval(self, phase="dev", load_best_model=False):
        # Warning: DO NOT use eval(load_best_model=True) in finetune_and_eval
        # It will cause trainer unable to continue training from checkpoint after eval
        # More important, The model should evaluate current performance during training.
        with self.phase_guard(phase=phase):
            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
            self._eval_start_event()
            run_states = self._run()
            self._eval_end_event(run_states)
            return run_states

    def predict(self, data, load_best_model=True):
        with self.phase_guard(phase="predict"):
            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
            self._predict_data = data
            self._predict_start_event()
            run_states = self._run()
            self._predict_end_event(run_states)
            self._predict_data = None
        return run_states

    def _run(self, do_eval=False):
        with fluid.program_guard(self.main_program, self.startup_program):
            if self.config.use_pyreader:
                return self._run_with_py_reader(do_eval=do_eval)
            return self._run_with_data_feeder(do_eval=do_eval)

    def _run_with_data_feeder(self, do_eval=False):

        data_feeder = fluid.DataFeeder(feed_list=self.feed_list,
                                       place=self.place)

        global_run_states = []
        period_run_states = []

        for run_step, batch in enumerate(self.reader(), start=1):
            if self.config.use_data_parallel and len(
                    batch) < self.device_count:
                continue
            step_run_state = RunState(len(self.fetch_list))
            step_run_state.run_step = 1
            num_batch_examples = len(batch)

            if self.return_numpy:
                fetch_result = self.exe.run(self.main_program_to_be_run,
                                            feed=data_feeder.feed(batch),
                                            fetch_list=self.fetch_list)
            else:
                fetch_result = self.exe.run(self.main_program_to_be_run,
                                            feed=data_feeder.feed(batch),
                                            fetch_list=self.fetch_list,
                                            return_numpy=False)
                fetch_result = [np.array(x) for x in fetch_result]

            for index, result in enumerate(fetch_result):
                step_run_state.run_results[index] = result
            step_run_state.run_examples += num_batch_examples
            step_run_state.update()
            period_run_states += [step_run_state]
            self.env.current_step += 1
            if self.is_train_phase:
                if self.current_step % self.config.log_interval == 0:
                    self._log_interval_event(period_run_states)
                    global_run_states += period_run_states
                    period_run_states = []

                if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                    self._save_ckpt_interval_event()

                if do_eval and self.current_step % self.config.eval_interval == 0:
                    self._eval_interval_event()

            self._run_step_event(step_run_state)

        global_run_states += period_run_states
        return global_run_states

    def _run_with_py_reader(self, do_eval=False):
        flag = False
        use_data_parallel_backup = self.config.use_data_parallel
        while True:
            global_run_states = []
            period_run_states = []
            self.py_reader.decorate_paddle_reader(self.reader)
            self.py_reader.start()
            try:
                while True:
                    num_batch_examples = self.config.batch_size * self.device_count
                    step_run_state = RunState(len(self.fetch_list))
                    step_run_state.run_step = 1

                    if self.return_numpy:
                        fetch_result = self.exe.run(
                            self.main_program_to_be_run,
                            fetch_list=self.fetch_list)
                    else:
                        fetch_result = self.exe.run(
                            self.main_program_to_be_run,
                            fetch_list=self.fetch_list,
                            return_numpy=False)
                        fetch_result = [np.array(x) for x in fetch_result]

                    for index, result in enumerate(fetch_result):
                        step_run_state.run_results[index] = result
                    step_run_state.run_examples += num_batch_examples
                    step_run_state.update()
                    period_run_states += [step_run_state]
                    self.env.current_step += 1
                    if self.is_train_phase:
                        if self.current_step % self.config.log_interval == 0:
                            self._log_interval_event(period_run_states)
                            global_run_states += period_run_states
                            period_run_states = []

                        if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                            self._save_ckpt_interval_event()

                        if do_eval and self.current_step % self.config.eval_interval == 0:
                            self._eval_interval_event()

                    self._run_step_event(step_run_state)
            except fluid.core.EOFException:
                global_run_states += period_run_states
                self.py_reader.reset()
                '''
                When opening use_data_parallel and use_pyreader, if the amount of data is too small,
                the reader will have thrown EOF Exception when not fetching to the running result.
                In this case, temporarily close the use_data_parallel to get the result.
                '''
                if flag:
                    self.config._use_data_parallel = use_data_parallel_backup
                elif len(global_run_states) == 0:
                    flag = True
                    self.config._use_data_parallel = False
                    continue
                break

        return global_run_states
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    if FLAGS.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()

    main_arch = cfg.architecture

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if FLAGS.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            if FLAGS.fp16:
                assert (getattr(model.backbone, 'norm_type', None)
                        != 'affine_channel'), \
                    '--fp16 currently does not support affine channel, ' \
                    ' please modify backbone settings to use batch norm'

            with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx:
                inputs_def = cfg['TrainReader']['inputs_def']
                feed_vars, train_loader = model.build_inputs(**inputs_def)
                train_fetches = model.train(feed_vars)
                loss = train_fetches['loss']
                if FLAGS.fp16:
                    loss *= ctx.get_loss_scale_var()
                lr = lr_builder()
                optimizer = optim_builder(lr)
                optimizer.minimize(loss)

                if FLAGS.fp16:
                    loss /= ctx.get_loss_scale_var()

            if 'use_ema' in cfg and cfg['use_ema']:
                global_steps = _decay_step_counter()
                ema = ExponentialMovingAverage(cfg['ema_decay'],
                                               thres_steps=global_steps)
                ema.update()

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader, devices_num=1)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        elif cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        elif cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        else:
            extra_keys = ['gt_bbox', 'gt_class', 'im_id']
        eval_keys, eval_values, eval_cls = parse_fetches(
            fetches, eval_prog, extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:
        compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []

    start_iter = 0
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()
    elif cfg.pretrain_weights and fuse_bn and not ignore_params:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_params(exe,
                               train_prog,
                               cfg.pretrain_weights,
                               ignore_params=ignore_params)

    train_reader = create_reader(cfg.TrainReader,
                                 (cfg.max_iters - start_iter) * devices_num,
                                 cfg,
                                 devices_num=devices_num)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    # use tb-paddle to log data
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_loss_step = 0
        tb_mAP_step = 0

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        # use tb-paddle to log loss
        if FLAGS.use_tb:
            if it % cfg.log_iter == 0:
                for loss_name, loss_value in stats.items():
                    tb_writer.add_scalar(loss_name, loss_value, tb_loss_step)
                tb_loss_step += 1

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        # NOTE : profiler tools, used for benchmark
        if FLAGS.is_profiler and it == 5:
            profiler.start_profiler("All")
        elif FLAGS.is_profiler and it == 10:
            profiler.stop_profiler("total", FLAGS.profiler_path)
            return


        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.apply_program)
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                resolution = None
                if 'Mask' in cfg.architecture:
                    resolution = model.mask_head.resolution
                results = eval_run(exe,
                                   compiled_eval_prog,
                                   eval_loader,
                                   eval_keys,
                                   eval_values,
                                   eval_cls,
                                   cfg,
                                   resolution=resolution)
                box_ap_stats = eval_results(results, cfg.metric,
                                            cfg.num_classes, resolution,
                                            is_bbox_normalized,
                                            FLAGS.output_eval, map_type,
                                            cfg['EvalReader']['dataset'])

                # use tb_paddle to log mAP
                if FLAGS.use_tb:
                    tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step)
                    tb_mAP_step += 1

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

            if 'use_ema' in cfg and cfg['use_ema']:
                exe.run(ema.restore_program)

    train_loader.reset()
#########
round_id = 0
while not trainer.stop():
    round_id += 1

    if round_id > params["federated"]["num_round"]:
        break

    for e in range(params["federated"]["num_epoch"]):
        for data in train_reader():
            trainer.run(feeder.feed(data), fetch=job._target_names)
    
    train_metrics = metrics(trainer.exe, test_program,feeder, train_reader, job._target_names)
    val_metrics = metrics(trainer.exe, test_program,feeder, val_reader, job._target_names)
    if trainer_id == 0:
        test_metrics = metrics(trainer.exe, test_program,feeder, test_reader, job._target_names)


    txt_log = "{} Round {} ".format(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),
                                     round_id)

    for metric in range(len(job._target_names)):
        metric_name = job._target_names[metric]
        txt_log += f"Train {metric_name}: {train_metrics[metric]} Val {metric_name}: {val_metrics[metric]}"
        data_writer.add_scalar(f"train/{metric_name}", train_metrics[metric], round_id)
        data_writer.add_scalar(f"val/{metric_name}", val_metrics[metric], round_id)
        if trainer_id == 0:
            txt_log += f" Test {metric_name}: {test_metrics[metric]} "
            data_writer.add_scalar(f"test/{metric_name}", test_metrics[metric], round_id)
    
    print(txt_log)
Esempio n. 6
0
                                                     check_content=False)
                # elif batch_id == 401:
                #     predict, avg_acc = model.forward(image, label, check_shape=False, check_content=True)
                else:
                    predict, avg_acc = model.forward(
                        image,
                        label,
                    )

                # loss = fluid.layers.square_error_cost(predict,label)
                loss = fluid.layers.cross_entropy(predict, label)
                avg_loss = fluid.layers.mean(loss)
                if batch_id % 100 == 0:
                    print("epoch:{},batch:{},loss is :{},acc:{}".format(
                        epoch_id, batch_id, avg_loss.numpy(), avg_acc.numpy()))
                    data_writer.add_scalar("train/loss", avg_loss.numpy(),
                                           iter)
                    data_writer.add_scalar("train/accuracy", avg_acc.numpy(),
                                           iter)
                    iter += 100
                    loss_list.append(avg_loss.numpy()[0])
                    acc_list.append(avg_acc.numpy()[0])
                avg_loss.backward()
                optimizer.minimize(avg_loss)
                model.clear_gradients()
        loss_lists.append(loss_list)
        acc_lists.append(acc_list)
        fluid.save_dygraph(model.state_dict(), 'mnist_0707_' + names[index])

for i in range(len(acc_lists)):
    print("acc", i, acc_lists[i])
    print("loss", i, loss_lists[i])