def get_bounds_dict(bounds: Bounds, index: int) -> Dict[str, np.array]: """ :param bounds: Bounds output data. :param index: The index in `bounds` of the target object. :return: A dictionary of the bounds. Key = the name of the position. Value = the position as a numpy array. """ return { "top": np.array(bounds.get_top(index)), "bottom": np.array(bounds.get_bottom(index)), "left": np.array(bounds.get_left(index)), "right": np.array(bounds.get_right(index)), "front": np.array(bounds.get_front(index)), "back": np.array(bounds.get_back(index)) }
def get_bounds_extents(bounds: Bounds, index: int) -> np.array: """ :param bounds: Bounds output data. :param index: The index in `bounds` of the target object. :return: The width (left to right), length (front to back), and height (top to bottom) of the bounds as a numpy array. """ return np.array([ np.linalg.norm( np.array(bounds.get_left(index)) - np.array(bounds.get_right(index))), np.linalg.norm( np.array(bounds.get_front(index)) - np.array(bounds.get_back(index))), np.linalg.norm( np.array(bounds.get_top(index)) - np.array(bounds.get_bottom(index))) ])
def run(self): """ Generate room using COCO_TDW dataset """ objects_in_scene = 15 object_ids = [] # Get Category-Object mapping TDW_COCO_models = TDW_relationships.get_COCO_TDW_mapping() # print("TDWCOCO:", TDW_COCO_models) # print("KEYS:", TDW_COCO_models.keys()) # Gets COCO categories co-occurring in a scene # +5 is for dealing with failed object insertion attempts COCO_configurations = msCOCO_matrix.get_max_co_occurrence(5, int(objects_in_scene + 5)) configuration_1 = COCO_configurations[0] print("Config 1:", configuration_1) # TDW models/objects objects = [] for COCO_object in configuration_1: print(COCO_object) print(COCO_object.split()) if len(COCO_object.split()) > 1: COCO_object = COCO_object.split()[-1] print(COCO_object) # Check if COCO category is a key in the COCO-TDW mapping if COCO_object in TDW_COCO_models.keys(): # Gets random TDW model (from COCO-to-TDW map) based on COCO category key print(TDW_COCO_models[COCO_object]) model = TDW_COCO_models[COCO_object][random.randint(0, len(TDW_COCO_models[COCO_object]) - 1)] objects.append(model) print("COCO to TDW objects:", objects) # print(len(objects)) # Stores object categories that other objects can be placed upon (e.g. table, chair, couch, bed) surface_properties_list = TDW_COCO_models['table'] + TDW_COCO_models['chair'] + \ TDW_COCO_models['bed'] + TDW_COCO_models['couch'] + \ TDW_COCO_models['bench'] + TDW_COCO_models['refrigerator'] surface_categories = [] for surface_properties in surface_properties_list: surface_categories.append(surface_properties[0]) print("Surface Categories:", surface_categories) # Stores the actual surface object instances/ids alongside number of objects on the surface surface_object_ids = {} self.start() positions_list = [] # Stores current model locations and radii scene_dimensions = [] # Store scene/environment dimensions init_setup_commands = [{"$type": "set_screen_size", "width": 640, "height": 481}, {"$type": "set_render_quality", "render_quality": 1}] self.communicate(init_setup_commands) scene_lib = SceneLibrarian() # Disable physics when adding in new objects (objects float) self.communicate({"$type": "simulate_physics", "value": False}) for scene in scenes[1:]: # Load in scene # print("Scene", scene[0]) if scene[3] == "interior" and scene[0] == "box_room_2018": self.start() scene_record = scene_lib.get_record(scene[0]) self.communicate({"$type": "add_scene", "name": scene_record.name, "url": scene_record.get_url()}) # Gets dimensions of environments (e.g. inside, outside) in the scene # This command returns environment data in the form of a list of serialized byte arrays scene_bytes = self.communicate({"$type": "send_environments", "frequency": "once"}) # Iterating through data and parsing byte array # Ignoring the last element (the frame count) for b in scene_bytes[:-1]: e = Environments(b) for i in range(e.get_num()): center = e.get_center(i) bounds = e.get_bounds(i) env_id = e.get_id(i) scene_dimensions = [center, bounds, env_id] # Center, bounds are tuples # Must come before set_pass_masks avatar_position = TDWUtils.array_to_vector3([0.9 * scene_dimensions[1][0] / 2, scene_dimensions[1][1] / 2, 0]) # print("Avatar Position:", avatar_position) self.communicate(TDWUtils.create_avatar(avatar_id="avatar", position=avatar_position, look_at={"x": 0, "y": scene_dimensions[0][1] / 2, "z": 0})) # Set collision mode self.communicate({"$type": "set_avatar_collision_detection_mode", "mode": "continuous_speculative", "avatar_id": "avatar"}) # Alter FOV self.communicate({"$type": "set_field_of_view", "field_of_view": 80, "avatar_id": "avatar"}) # # Gets rid of header (Model: Category) # objects = TDW_COCO_models[1:] # random.shuffle(objects) obj_count = 0 obj_overlaps = 0 # Number of failed attempts to place object due to over-dense objects area while obj_count < objects_in_scene and obj_overlaps < 5: # Handles if object has been added to a flat surface added_to_surface = False print("Object COUNT:", obj_count) # Need to have random position for Bounds Data to return meaningful info valid_obj_pos = {"x": random.uniform(-1 * scene_dimensions[1][0] / 2, 0.5 * scene_dimensions[1][0] / 2), "y": scene_dimensions[1][1] / 4, "z": random.uniform(-0.9 * scene_dimensions[1][2] / 2, 0.9 * scene_dimensions[1][2] / 2)} print("First random position") # Add in the object at random position # Object will later be removed or updated accordingly after performing collision calculations record = ModelLibrarian(library="models_full.json").get_record(objects[obj_count][0]) print("Record gotten") print(objects[obj_count][0]) o_id = self.communicate({"$type": "add_object", "name": objects[obj_count][0], "url": record.get_url(), "scale_factor": record.scale_factor, "position": valid_obj_pos, "rotation": TDWUtils.VECTOR3_ZERO, "category": record.wcategory, "id": obj_count}) print("Random first add") # Returns bound data for added object bounds_data = self.communicate({"$type": "send_bounds", "frequency": "once"}) print("Bounds returned") # Appends object, with information on position and obj_radius, to positions_list # Length of buffer array should be 1 # print("Bounds Data:", bounds_data) for b in bounds_data[:-1]: # print("Buffer Loop:", b) b_id = OutputData.get_data_type_id(b) if b_id == "boun": # print("BOUNDS") o = Bounds(b) # print("# of Objects:", o.get_num()) # print("# of Failed Attempts:", obj_overlaps) # print("Buffer Array:", b) # print("Bounds Object:", o) for i in range(o.get_num()): print("Object ID:", o.get_id(i)) print("obj_count:", obj_count) print("Object:", objects[obj_count][0], "Category:", objects[obj_count][1]) # print("Object Center:", o.get_center(i)) # Only want to compute valid_position for object we are about to add # Skip any computation if this is not the case if o.get_id(i) != obj_count: continue # Useful for detecting if object fits in environment # print("Calculating if object fits in environment") width = distance.euclidean(o.get_left(i), o.get_right(i)) depth = distance.euclidean(o.get_front(i), o.get_back(i)) height = distance.euclidean(o.get_top(i), o.get_bottom(i)) # print("Width:", width) # print("Depth:", depth) # ("Height:", height) # Useful for avoiding object overlap # print("Calculating Object Bounds") center_to_top = distance.euclidean(o.get_center(i), o.get_top(i)) center_to_bottom = distance.euclidean(o.get_center(i), o.get_bottom(i)) center_to_left = distance.euclidean(o.get_center(i), o.get_left(i)) center_to_right = distance.euclidean(o.get_center(i), o.get_right(i)) center_to_front = distance.euclidean(o.get_center(i), o.get_front(i)) center_to_back = distance.euclidean(o.get_center(i), o.get_back(i)) # Max object radius (center to diagonal of bounding box) obj_radius = \ max(math.sqrt(center_to_top ** 2 + center_to_left ** 2 + center_to_front ** 2), math.sqrt(center_to_top ** 2 + center_to_right ** 2 + center_to_front ** 2), math.sqrt(center_to_top ** 2 + center_to_left ** 2 + center_to_back ** 2), math.sqrt(center_to_top ** 2 + center_to_right ** 2 + center_to_back ** 2), math.sqrt(center_to_bottom ** 2 + center_to_left ** 2 + center_to_front ** 2), math.sqrt(center_to_bottom ** 2 + center_to_right ** 2 + center_to_front ** 2), math.sqrt(center_to_bottom ** 2 + center_to_left ** 2 + center_to_back ** 2), math.sqrt(center_to_bottom ** 2 + center_to_right ** 2 + center_to_back ** 2)) # print("Obj_Radius:", obj_radius) # Set sweeping radius, based on scene plane dimensions l_radius = random.uniform(0, min(0.5 * scene_dimensions[1][0] / 2, 0.5 * scene_dimensions[1][2] / 2)) # Checking that object fits in scene viewing if (width > min(0.7 * scene_dimensions[1][0], 0.7 * scene_dimensions[1][2]) or depth > min(0.7 * scene_dimensions[1][0], 0.7 * scene_dimensions[1][2]) or height > 0.7 * scene_dimensions[1][1]): print("Object does not fit in scene") self.communicate([{"$type": "send_images", "frequency": "never"}, {"$type": "destroy_object", "id": obj_count}]) # Ensures next attempt to load in item is not the same item as before random.shuffle(objects) break # Not possible to find valid object position -- too many overlapping objects elif (not self._get_object_position(scene_dimensions=scene_dimensions, object_positions=positions_list, object_to_add_radius=obj_radius, max_tries=20, location_radius=l_radius)[0]): print("Could not calculate valid object location") self.communicate([{"$type": "send_images", "frequency": "never"}, {"$type": "destroy_object", "id": obj_count}]) obj_overlaps += 1 # Ensures next attempt to load in item is not the same item as before random.shuffle(objects) break # Find appropriate, non-overlapping object position # Reset object position to the valid position else: print("Object fits in scene") # Check if object fits on table, chair, couch, etc. # Add object if it fits, place it somewhere on top of the surface for surface_id in surface_object_ids.keys(): print("Surface ID:", surface_id) # Skip placement feasibility if the object is already a surface-type object # Ex. no chair on top of a table if objects[obj_count][0] in surface_categories: print("Object: %s is already a surface object" % objects[obj_count][0]) break # Check how many objects are on surface if surface_object_ids[surface_id] >= 3: print("Too many objects on surface") print("From surface objects dict:", surface_object_ids[surface_id]) continue surface_bounds = self.get_bounds_data(surface_id) surface_area = distance.euclidean(surface_bounds.get_left(0), surface_bounds.get_right(0)) * \ distance.euclidean(surface_bounds.get_front(0), surface_bounds.get_back(0)) obj_area = width * height if obj_area < surface_area: s_center_to_top = distance.euclidean(surface_bounds.get_center(0), surface_bounds.get_top(0)) s_center_to_bottom = distance.euclidean(surface_bounds.get_center(0), surface_bounds.get_bottom(0)) s_center_to_left = distance.euclidean(surface_bounds.get_center(0), surface_bounds.get_left(0)) s_center_to_right = distance.euclidean(surface_bounds.get_center(0), surface_bounds.get_right(0)) s_center_to_front = distance.euclidean(surface_bounds.get_center(0), surface_bounds.get_front(0)) s_center_to_back = distance.euclidean(surface_bounds.get_center(0), surface_bounds.get_back(0)) surface_radius = \ max(math.sqrt( s_center_to_top ** 2 + s_center_to_left ** 2 + s_center_to_front ** 2), math.sqrt( s_center_to_top ** 2 + s_center_to_right ** 2 + s_center_to_front ** 2), math.sqrt( s_center_to_top ** 2 + s_center_to_left ** 2 + s_center_to_back ** 2), math.sqrt( s_center_to_top ** 2 + s_center_to_right ** 2 + s_center_to_back ** 2), math.sqrt( s_center_to_bottom ** 2 + s_center_to_left ** 2 + s_center_to_front ** 2), math.sqrt( s_center_to_bottom ** 2 + s_center_to_right ** 2 + s_center_to_front ** 2), math.sqrt( s_center_to_bottom ** 2 + s_center_to_left ** 2 + s_center_to_back ** 2), math.sqrt( s_center_to_bottom ** 2 + s_center_to_right ** 2 + s_center_to_back ** 2)) print("Surface-type object") self.communicate({"$type": "destroy_object", "id": obj_count}) # Adding the object to the top of the surface on_pos = surface_bounds.get_top(0) on_y = on_pos[1] on_pos = TDWUtils.get_random_point_in_circle(np.array(on_pos), 0.7 * surface_radius) on_pos[1] = on_y on_pos = TDWUtils.array_to_vector3(on_pos) on_rot = {"x": 0, "y": random.uniform(-45, 45), "z": 0} # Add the object. print("Model Name on Surface:", objects[obj_count][0]) record = ModelLibrarian(library="models_full.json").get_record( objects[obj_count][0]) on_id = self.communicate({"$type": "add_object", "name": objects[obj_count][0], "url": record.get_url(), "scale_factor": record.scale_factor, "position": on_pos, "rotation": on_rot, "category": record.wcategory, "id": obj_count}) obj_count += 1 surface_object_ids[surface_id] += 1 object_ids.append(obj_count) print("Object added on top of surface") added_to_surface = True # Breaking out of surface objects loop break if added_to_surface: print("Breaking out of object loop") # Breaking out of object loop break print("Post-surface") valid_obj_pos = self._get_object_position(scene_dimensions=scene_dimensions, object_positions=positions_list, object_to_add_radius=obj_radius, max_tries=20, location_radius=l_radius)[1] print("Position calculated") positions_list.append(ObjectPosition(valid_obj_pos, obj_radius)) self.communicate([{"$type": "send_images", "frequency": "never"}, {"$type": "destroy_object", "id": obj_count}]) added_object_id = self.communicate({"$type": "add_object", "name": objects[obj_count][0], "url": record.get_url(), "scale_factor": record.scale_factor, "position": valid_obj_pos, "rotation": {"x": 0, "y": 0, "z": 0}, "category": record.wcategory, "id": obj_count}) # print("Object ID:", added_object_id) print("Regular object add") object_ids.append(added_object_id) # If TDW model belongs to surface categories, store id_information if objects[obj_count][0] in surface_categories: surface_object_ids[obj_count] = 0 # Rotate the object randomly print("Rotating object") self.communicate({"$type": "rotate_object_by", "angle": random.uniform(-45, 45), "axis": "yaw", "id": obj_count, "is_world": True}) # Minimal rotating for position differences # Don't rotate the object if doing so will result in overlap into scene if not (o.get_bottom(i)[1] < 0 or o.get_top(i)[1] > 0.9 * scene_dimensions[1][1]): pitch_angle = random.uniform(-45, 45) self.communicate({"$type": "rotate_object_by", "angle": pitch_angle, "axis": "pitch", "id": obj_count, "is_world": True}) roll_angle = random.uniform(-45, 45) self.communicate({"$type": "rotate_object_by", "angle": roll_angle, "axis": "roll", "id": obj_count, "is_world": True}) # Don't need this for just changing positions # Setting random materials/textures # Looping through sub-objects and materials sub_count = 0 for sub_object in record.substructure: # Loop through materials in sub-objects for j in range(len(sub_object)): # Get random material and load in material = random.choice(materials[1:]) self.load_material(material) print("Material loaded") # Set random material on material of sub-object self.communicate({"$type": "set_visual_material", "material_index": j, "material_name": material[0], "object_name": sub_object['name'], "id": obj_count}) print("Material set") sub_count += 1 if sub_count > 10: break break print("Updating count") obj_count += 1 print("Breaking out of object_id loop") break # Break out of buffer loop print("Breaking out of buffer loop") break # Move onto next iteration of while loop (next object to load in) print("Object added - next while loop iteration") continue # for i in range(200): # self.communicate({"$type": "simulate_physics", # "value": False}) # Enable image capture self.communicate({"$type": "set_pass_masks", "avatar_id": "avatar", "pass_masks": ["_img", "_id"]}) self.communicate({"$type": "send_images", "frequency": "always"}) # Capture scene # NOTE: THESE SCENES GET REPLACED IN THE TARGET DIRECTORY scene_data = self.communicate({"$type": "look_at_position", "avatar_id": "avatar", "position": {"x": 0, "y": scene_dimensions[0][1] / 2, "z": 0}}) images = Images(scene_data[0]) TDWUtils.save_images(images, TDWUtils.zero_padding(i), output_directory=path) print("Object ids:", object_ids)
def run(self): self.start() positions_list = [] # Stores current model locations and radii scene_dimensions = [] # Store scene/environment dimensions init_setup_commands = [{ "$type": "set_screen_size", "width": 1280, "height": 962 }, { "$type": "set_render_quality", "render_quality": 5 }] self.communicate(init_setup_commands) scene_lib = SceneLibrarian() # Disable physics when adding in new objects (objects float) self.communicate({"$type": "simulate_physics", "value": False}) for scene in scenes[1:]: # Load in scene print("Scene", scene[0]) if scene[3] == "interior" and scene[0] == "box_room_2018": self.start() scene_record = scene_lib.get_record(scene[0]) self.communicate({ "$type": "add_scene", "name": scene_record.name, "url": scene_record.get_url() }) # Gets dimensions of environments (e.g. inside, outside) in the scene # This command returns environment data in the form of a list of serialized byte arrays scene_bytes = self.communicate({ "$type": "send_environments", "frequency": "once" }) # Iterating through data and parsing byte array # Ignoring the last element (the frame count) for b in scene_bytes[:-1]: e = Environments(b) for i in range(e.get_num()): center = e.get_center(i) bounds = e.get_bounds(i) env_id = e.get_id(i) scene_dimensions = [center, bounds, env_id] # Center, bounds are tuples # Must come before set_pass_masks avatar_position = TDWUtils.array_to_vector3([ 0.9 * scene_dimensions[1][0] / 2, scene_dimensions[1][1] / 2, 0 ]) print("Avatar Position:", avatar_position) self.communicate( TDWUtils.create_avatar(avatar_id="avatar", position=avatar_position, look_at={ "x": 0, "y": scene_dimensions[0][1] / 2, "z": 0 })) # Set collision mode self.communicate({ "$type": "set_avatar_collision_detection_mode", "mode": "continuous_speculative", "avatar_id": "avatar" }) # Alter FOV self.communicate({ "$type": "set_field_of_view", "field_of_view": 80, "avatar_id": "avatar" }) # Gets rid of header (Model: Category) objects = models[1:] random.shuffle(objects) obj_count = 0 obj_overlaps = 0 # Number of failed attempts to place object due to over-dense objects area while obj_count < 30 and obj_overlaps < 5: # Need to have random position for Bounds Data to return meaningful info valid_obj_pos = { "x": random.uniform(-1 * scene_dimensions[1][0] / 2, 0.5 * scene_dimensions[1][0] / 2), "y": scene_dimensions[1][1] / 4, "z": random.uniform(-0.9 * scene_dimensions[1][2] / 2, 0.9 * scene_dimensions[1][2] / 2) } # Add in the object at random position # Object will later be removed or updated accordingly after performing collision calculations record = ModelLibrarian( library="models_full.json").get_record( objects[obj_count][0]) self.communicate({ "$type": "add_object", "name": objects[obj_count][0], "url": record.get_url(), "scale_factor": record.scale_factor, "position": valid_obj_pos, "rotation": { "x": 0, "y": 0, "z": 0 }, "category": record.wcategory, "id": obj_count }) # Returns bound data for added object bounds_data = self.communicate({ "$type": "send_bounds", "frequency": "once" }) # Appends object, with information on position and obj_radius, to positions_list # Length of buffer array should be 1 print("Bounds Data:", bounds_data) for b in bounds_data[:-1]: print("Buffer Loop:", b) b_id = OutputData.get_data_type_id(b) if b_id == "boun": print("BOUNDS") o = Bounds(b) print("# of Objects:", o.get_num()) print("# of Failed Attempts:", obj_overlaps) print("Buffer Array:", b) print("Bounds Object:", o) for i in range(o.get_num()): print("Object ID:", o.get_id(i)) print("obj_count:", obj_count) print("Object:", objects[obj_count][0], "Category:", objects[obj_count][1]) print("Object Center:", o.get_center(i)) # Only want to compute valid_position for object we are about to add # Skip any computation if this is not the case if o.get_id(i) != obj_count: continue # Useful for detecting if object fits in environment print( "Calculating if object fits in environment" ) width = distance.euclidean( o.get_left(i), o.get_right(i)) depth = distance.euclidean( o.get_front(i), o.get_back(i)) height = distance.euclidean( o.get_top(i), o.get_bottom(i)) print("Width:", width) print("Depth:", depth) print("Height:", height) # Useful for avoiding object overlap print("Calculating Object Bounds") center_to_top = distance.euclidean( o.get_center(i), o.get_top(i)) center_to_bottom = distance.euclidean( o.get_center(i), o.get_bottom(i)) center_to_left = distance.euclidean( o.get_center(i), o.get_left(i)) center_to_right = distance.euclidean( o.get_center(i), o.get_right(i)) center_to_front = distance.euclidean( o.get_center(i), o.get_front(i)) center_to_back = distance.euclidean( o.get_center(i), o.get_back(i)) # Max object radius (center to diagonal of bounding box) obj_radius = \ max(math.sqrt(center_to_top ** 2 + center_to_left ** 2 + center_to_front ** 2), math.sqrt(center_to_top ** 2 + center_to_right ** 2 + center_to_front ** 2), math.sqrt(center_to_top ** 2 + center_to_left ** 2 + center_to_back ** 2), math.sqrt(center_to_top ** 2 + center_to_right ** 2 + center_to_back ** 2), math.sqrt(center_to_bottom ** 2 + center_to_left ** 2 + center_to_front ** 2), math.sqrt(center_to_bottom ** 2 + center_to_right ** 2 + center_to_front ** 2), math.sqrt(center_to_bottom ** 2 + center_to_left ** 2 + center_to_back ** 2), math.sqrt(center_to_bottom ** 2 + center_to_right ** 2 + center_to_back ** 2)) print("Obj_Radius:", obj_radius) # Set sweeping radius, based on scene plane dimensions l_radius = random.uniform( 0, min(0.9 * scene_dimensions[1][0] / 2, 0.9 * scene_dimensions[1][2] / 2)) # Checking that object fits in scene viewing if (width > min(0.7 * scene_dimensions[1][0], 0.7 * scene_dimensions[1][2]) or depth > min( 0.7 * scene_dimensions[1][0], 0.7 * scene_dimensions[1][2]) or height > 0.7 * scene_dimensions[1][1]): print("Object does not fit in scene") self.communicate([{ "$type": "send_images", "frequency": "never" }, { "$type": "destroy_object", "id": obj_count }]) # Ensures next attempt to load in item is not the same item as before random.shuffle(objects) break # Not possible to find valid object position -- too many overlapping objects elif (not self._get_object_position( scene_dimensions=scene_dimensions, object_positions=positions_list, object_to_add_radius=obj_radius, max_tries=20, location_radius=l_radius)[0]): print( "Could not calculate valid object location" ) self.communicate([{ "$type": "send_images", "frequency": "never" }, { "$type": "destroy_object", "id": obj_count }]) obj_overlaps += 1 # Ensures next attempt to load in item is not the same item as before random.shuffle(objects) break # Find appropriate, non-overlapping object position # Reset object position to the valid position else: print("Object fits in scene") valid_obj_pos = self._get_object_position( scene_dimensions=scene_dimensions, object_positions=positions_list, object_to_add_radius=obj_radius, max_tries=20, location_radius=l_radius)[1] print("Position calculated") positions_list.append( ObjectPosition(valid_obj_pos, obj_radius)) self.communicate([{ "$type": "send_images", "frequency": "never" }, { "$type": "destroy_object", "id": obj_count }]) print("Object ready to reset") self.communicate([{ "$type": "send_images", "frequency": "never" }, { "$type": "add_object", "name": objects[obj_count][0], "url": record.get_url(), "scale_factor": record.scale_factor, "position": valid_obj_pos, "rotation": { "x": 0, "y": 0, "z": 0 }, "category": record.wcategory, "id": obj_count }]) print("Object reset") # Rotate the object randomly print("Rotating object") self.communicate({ "$type": "rotate_object_by", "angle": random.uniform(-45, 45), "axis": "yaw", "id": obj_count, "is_world": True }) # Don't rotate the object if doing so will result in overlap into scene if not (o.get_bottom(i)[1] < 0 or o.get_top(i)[1] > 0.9 * scene_dimensions[1][1]): pitch_angle = random.uniform(-45, 45) self.communicate({ "$type": "rotate_object_by", "angle": pitch_angle, "axis": "pitch", "id": obj_count, "is_world": True }) roll_angle = random.uniform(-45, 45) self.communicate({ "$type": "rotate_object_by", "angle": roll_angle, "axis": "roll", "id": obj_count, "is_world": True }) # Setting random materials/textures # Looping through sub-objects and materials sub_count = 0 for sub_object in record.substructure: # Loop through materials in sub-objects for j in range(len(sub_object)): # Get random material and load in material = random.choice( materials[1:]) self.load_material(material) print("Material loaded") # Set random material on material of sub-object self.communicate({ "$type": "set_visual_material", "material_index": j, "material_name": material[0], "object_name": sub_object['name'], "id": obj_count }) print("Material set") sub_count += 1 if sub_count > 10: break break print("Updating count") obj_count += 1 print("Breaking out of object_id loop") break # Break out of buffer loop print("Breaking out of buffer loop") break # Move onto next iteration of while loop (next object to load in) print("Object added - next while loop iteration") continue # Enable image capture self.communicate({ "$type": "set_pass_masks", "avatar_id": "avatar", "pass_masks": ["_img", "_id"] }) self.communicate({ "$type": "send_images", "frequency": "always" }) # Capture scene scene_data = self.communicate({ "$type": "look_at_position", "avatar_id": "avatar", "position": { "x": 0, "y": scene_dimensions[0][1] / 2, "z": 0 } }) images = Images(scene_data[0]) TDWUtils.save_images(images, TDWUtils.zero_padding(i), output_directory=path)
def run(self) -> None: self.start() # Get IDs for the object, the table, and the avatars. o_id = self.get_unique_id() table_id = self.get_unique_id() table_position = {"x": 0, "y": 0, "z": 6.8} a = "a" # 1. Create the room. commands = [TDWUtils.create_empty_room(20, 20)] # 2. Add the avatar. commands.extend( TDWUtils.create_avatar(avatar_type="A_StickyMitten_Adult", avatar_id="a")) # 3. Add the objects. Scale the objects. Set a high mass for the table. # 4. Disable the avatar's cameras. # 5. Set the stickiness of the avatar's left mitten. Set a high drag. Rotate the head. # 6. Request AvatarChildrenNames data and Bounds data (this frame only). # 7. Strengthen the left shoulder a bit. commands.extend([ self.get_add_object("jug05", position={ "x": -0.417, "y": 0.197, "z": 0.139 }, rotation={ "x": 90, "y": 0, "z": 0 }, object_id=o_id), { "$type": "scale_object", "scale_factor": { "x": 2, "y": 2, "z": 2 }, "id": o_id }, self.get_add_object("small_table_green_marble", position={ "x": 0, "y": 0, "z": 6.8 }, rotation={ "x": 0, "y": 0, "z": 0 }, object_id=table_id), { "$type": "scale_object", "scale_factor": { "x": 2, "y": 0.5, "z": 2 }, "id": table_id }, { "$type": "set_object_collision_detection_mode", "id": table_id, "mode": "continuous_dynamic" }, { "$type": "set_object_collision_detection_mode", "id": o_id, "mode": "continuous_dynamic" }, { "$type": "set_mass", "mass": 100, "id": table_id }, { "$type": "toggle_image_sensor", "sensor_name": "SensorContainer", "avatar_id": a }, { "$type": "toggle_image_sensor", "sensor_name": "FollowCamera", "avatar_id": a }, { "$type": "set_stickiness", "sub_mitten": "back", "sticky": True, "is_left": True, "avatar_id": a }, { "$type": "set_avatar_drag", "drag": 1000, "angular_drag": 1000, "avatar_id": a }, { "$type": "rotate_head_by", "axis": "pitch", "angle": 5 }, { "$type": "send_avatar_children_names", "ids": [a], "frequency": "once" }, { "$type": "send_bounds", "ids": [table_id], "frequency": "once" }, { "$type": "adjust_joint_force_by", "delta": 2, "joint": "shoulder_left", "axis": "pitch" } ]) # 7. Add a 3rd-person camera. commands.extend( TDWUtils.create_avatar(avatar_type="A_Img_Caps_Kinematic", avatar_id="c", position={ "x": -3.9, "y": 2.3, "z": 4.3 })) # 8. Request StickyMittenAvatar and Images data per-frame. commands.extend([{ "$type": "set_pass_masks", "pass_masks": ["_img"], "avatar_id": self.cam_id }, { "$type": "send_avatars", "ids": [a], "frequency": "always" }, { "$type": "send_images", "ids": [self.cam_id], "frequency": "always" }]) resp = self.communicate(commands) # Get the object ID of the left mitten, the size of the table, and the avatar's position. mitten_left_id = None table_size: Tuple[float, float, float] = (0, 0, 0) for r in resp[:-1]: r_id = OutputData.get_data_type_id(r) # Get the mitten ID. if r_id == "avcn": avcn = AvatarChildrenNames(r) for i in range(avcn.get_num_children()): if avcn.get_child_name(i) == "mitten_left": mitten_left_id = avcn.get_child_id(i) # Get the table bounds. elif r_id == "boun": boun = Bounds(r) for i in range(boun.get_num()): if boun.get_id(i) == table_id: table_size = (boun.get_right(i)[0] - boun.get_left(i)[0], boun.get_top(i)[1] - boun.get_bottom(i)[1], boun.get_front(i)[2] - boun.get_back(i)[2]) # Get the avatar's position. elif r_id == "avsm": self.avatar_position = AvatarStickyMitten(r).get_position() # Pick up the object. # Lift up the object. self._bend_arm_joints([{ "$type": "pick_up_proximity", "distance": 20, "grip": 10000, "is_left": True, "avatar_id": a }, { "$type": "rotate_head_by", "axis": "pitch", "angle": 20, "avatar_id": a }, { "$type": "bend_arm_joint_by", "angle": 25, "joint": "shoulder_left", "axis": "pitch", "avatar_id": a }, { "$type": "bend_arm_joint_by", "angle": -25, "joint": "shoulder_left", "axis": "yaw", "avatar_id": a }, { "$type": "bend_arm_joint_by", "angle": 60, "joint": "shoulder_left", "axis": "roll", "avatar_id": a }, { "$type": "bend_arm_joint_by", "angle": 100, "joint": "elbow_left", "axis": "pitch", "avatar_id": a }]) # Allow the avatar to move again. self._do_frame({ "$type": "set_avatar_drag", "drag": 0.125, "angular_drag": 1000, "avatar_id": a }) # Move to the table. move_to_table = True # The position of the side of the table the avatar is aiming for. table_side_position = { "x": table_position["x"], "y": 0, "z": table_position["z"] - table_size[2] } while move_to_table: # Stop moving if we are close enough. if TDWUtils.get_distance( table_side_position, TDWUtils.array_to_vector3(self.avatar_position)) < 0.7: move_to_table = False # Keep moving forward. else: self._do_frame({ "$type": "move_avatar_forward_by", "avatar_id": a, "magnitude": 20 }) # Stop. # Allow the avatar to move again. self._do_frame({ "$type": "set_avatar_drag", "drag": 1000, "angular_drag": 1000, "avatar_id": a }) mitten_over_table = False target_z = table_side_position["z"] + 0.17 # Keep lifting until the mitten is over the table. while not mitten_over_table: avsm = self._bend_arm_joints([{ "$type": "bend_arm_joint_by", "angle": 15, "joint": "shoulder_left", "axis": "pitch", "avatar_id": a }, { "$type": "bend_arm_joint_by", "angle": -10, "joint": "elbow_left", "axis": "pitch", "avatar_id": a }]) # Get the mitten. for i in range(avsm.get_num_body_parts()): if avsm.get_body_part_id(i) == mitten_left_id: # Check if the mitten is over the table. mitten_over_table = avsm.get_body_part_position( i)[2] >= target_z # Drop the arm gently. mitten_near_table = False while not mitten_near_table: avsm = self._bend_arm_joints([{ "$type": "bend_arm_joint_by", "angle": -25, "joint": "shoulder_left", "axis": "pitch", "avatar_id": a }]) # Get the mitten. for i in range(avsm.get_num_body_parts()): if avsm.get_body_part_id(i) == mitten_left_id: # Check if the mitten very close to the table surface. mitten_near_table = avsm.get_body_part_position( i)[1] - table_size[1] <= 0.1 # Drop the object. # Allow the avatar to move again. self._do_frame([{ "$type": "put_down", "is_left": True, "avatar_id": a }, { "$type": "set_avatar_drag", "drag": 0.125, "angular_drag": 1000, "avatar_id": a }]) # Back away from the table. mitten_away_from_table = False while not mitten_away_from_table: avsm = self._do_frame({ "$type": "move_avatar_forward_by", "avatar_id": a, "magnitude": -50 }) # Get the mitten. for i in range(avsm.get_num_body_parts()): if avsm.get_body_part_id(i) == mitten_left_id: # Check if the mitten has cleared the table. mitten_away_from_table = avsm.get_body_part_position( i)[2] < target_z # Drop the arm. self._do_frame([{ "$type": "rotate_head_by", "axis": "pitch", "angle": -25 }, { "$type": "bend_arm_joint_to", "angle": 0, "joint": "shoulder_left", "axis": "pitch", "avatar_id": a }, { "$type": "bend_arm_joint_to", "angle": 0, "joint": "shoulder_left", "axis": "yaw", "avatar_id": a }, { "$type": "bend_arm_joint_to", "angle": 0, "joint": "shoulder_left", "axis": "roll", "avatar_id": a }, { "$type": "bend_arm_joint_to", "angle": 0, "joint": "elbow_left", "axis": "pitch", "avatar_id": a }]) # Back away from the table. away_from_table = False while not away_from_table: self._do_frame({ "$type": "move_avatar_forward_by", "avatar_id": a, "magnitude": -20 }) away_from_table = TDWUtils.get_distance( TDWUtils.array_to_vector3(self.avatar_position), table_position) > 1.8 # Let the joints drop. self._bend_arm_joints([]) self.communicate({"$type": "terminate"})
def __init__(self, object_id: int, rigidbodies: Rigidbodies, segmentation_colors: SegmentationColors, bounds: Bounds, audio: ObjectInfo, target_object: bool = False): """ :param object_id: The unique ID of the object. :param rigidbodies: Rigidbodies output data. :param bounds: Bounds output data. :param segmentation_colors: Segmentation colors output data. """ self.object_id = object_id self.model_name = audio.name self.container = self.model_name in StaticObjectInfo.CONTAINERS self.kinematic = self.model_name in StaticObjectInfo._KINEMATIC self.target_object = target_object self.category = "" # This is a sub-object of a composite object. if audio.library == "": # Get the record of the composite object. for k in StaticObjectInfo._COMPOSITE_OBJECTS: for v in StaticObjectInfo._COMPOSITE_OBJECTS[k]: if v == audio.name: record = TransformInitData.LIBRARIES[ "models_core.json"].get_record(k) # Get the semantic category. self.category = record.wcategory break else: # Get the model record from the audio data. record = TransformInitData.LIBRARIES[audio.library].get_record( audio.name) # Get the semantic category. self.category = record.wcategory # Get the segmentation color. self.segmentation_color: Optional[np.array] = None for i in range(segmentation_colors.get_num()): if segmentation_colors.get_object_id(i) == self.object_id: self.segmentation_color = np.array( segmentation_colors.get_object_color(i)) break assert self.segmentation_color is not None, f"Segmentation color not found: {self.object_id}" # Get the size of the object. self.size = np.array([0, 0, 0]) for i in range(bounds.get_num()): if bounds.get_id(i) == self.object_id: self.size = np.array([ float( np.abs(bounds.get_right(i)[0] - bounds.get_left(i)[0])), float( np.abs(bounds.get_top(i)[1] - bounds.get_bottom(i)[1])), float( np.abs(bounds.get_front(i)[2] - bounds.get_back(i)[2])) ]) break assert np.linalg.norm( self.size) > 0, f"Bounds data not found for: {self.object_id}" # Get the mass. self.mass: float = -1 for i in range(rigidbodies.get_num()): if rigidbodies.get_id(i) == self.object_id: self.mass = rigidbodies.get_mass(i) break assert self.mass >= 0, f"Mass not found: {self.object_id}"