Esempio n. 1
0
def _extract_box2d(
        path: str, sequence: str,
        box2d_catalog: Box2DSubcatalog) -> Dict[int, List[LabeledBox2D]]:
    attributes = box2d_catalog.attributes
    category_names = box2d_catalog.categories.keys()

    out_of_view_level = attributes["out_of_view"].enum
    occlusion_level = attributes["occlusion"].enum

    ground_truth_path = os.path.join(path, "UAV-benchmark-MOTD_v1.0", "GT")
    frame_id_ground_truth_map = defaultdict(list)
    with open(os.path.join(ground_truth_path, f"{sequence}_gt_whole.txt"),
              encoding="utf-8") as fp:
        for elements in csv.DictReader(fp, fieldnames=_FIELDNAMES):
            box2d = LabeledBox2D.from_xywh(
                *(int(elements[key]) for key in _XYWH_KEYS),
                category=category_names[int(elements["object_category"]) - 1],
                attributes={
                    "out_of_view":
                    out_of_view_level[int(elements["out_of_view"]) - 1],
                    "occlusion":
                    occlusion_level[int(elements["occlusion"]) - 1],
                },
                instance=elements["target_id"],
            )
            frame_id = int(elements["frame_index"])
            frame_id_ground_truth_map[frame_id].append(box2d)

    return frame_id_ground_truth_map
Esempio n. 2
0
def _parse_xml(xml_path: str) -> Dict[int, List[LabeledBox2D]]:
    dom = parse(xml_path)
    frames = dom.documentElement.getElementsByTagName("frame")

    labels = defaultdict(list)

    for frame in frames:
        index = int(frame.getAttribute("number"))
        objects = frame.getElementsByTagName("objectlist")[0]
        for obj in objects.getElementsByTagName("object"):
            box = obj.getElementsByTagName("box")[0]
            box_h = int(box.getAttribute("h"))
            box_w = int(box.getAttribute("w"))
            box_xc = int(box.getAttribute("xc"))
            box_yc = int(box.getAttribute("yc"))

            labels[index].append(
                LabeledBox2D.from_xywh(
                    x=box_xc - box_w // 2,
                    y=box_yc - box_h // 2,
                    width=box_w,
                    height=box_h,
                    category=obj.getElementsByTagName("subtype")
                    [0].firstChild.data,
                ))
    return labels
Esempio n. 3
0
def _get_data(mat: Any, name: Any, bbox: Any, file_path: str) -> Data:
    image_path = "".join(chr(v[0]) for v in mat[name[0]])
    data = Data(os.path.join(file_path, image_path),
                target_remote_path=image_path.zfill(10))
    data.label.box2d = []
    mat_bbox = mat[bbox[0]]

    labeled_box = ({key: [value[0][0]]
                    for key, value in mat_bbox.items()}
                   if mat_bbox["label"].shape[0] == 1 else {
                       key: [mat[value[0]][0][0] for value in values]
                       for key, values in mat_bbox.items()
                   })

    for x, y, w, h, e in zip(
            labeled_box["left"],
            labeled_box["top"],
            labeled_box["width"],
            labeled_box["height"],
            labeled_box["label"],
    ):
        data.label.box2d.append(
            LabeledBox2D.from_xywh(x,
                                   y,
                                   w,
                                   h,
                                   category="0" if e == 10 else str(int(e))))
    return data
Esempio n. 4
0
def _get_instance_label(instances_annotations: Dict[int, Any], image_id: int,
                        categories: Dict[int, str]) -> Label:
    label: Label = Label()
    label.box2d = []
    label.multi_polygon = []
    label.rle = []
    if image_id not in instances_annotations:
        return label

    for annotation in instances_annotations[image_id]:
        category = categories[annotation["category_id"]]
        label.box2d.append(
            LabeledBox2D.from_xywh(*annotation["bbox"], category=category))
        if annotation["iscrowd"] == 0:
            points = [
                chunked(coordinates, 2)
                for coordinates in annotation["segmentation"]
            ]
            label.multi_polygon.append(
                LabeledMultiPolygon(points, category=category))
        else:
            label.rle.append(
                LabeledRLE(annotation["segmentation"]["counts"],
                           category=category))
    return label
Esempio n. 5
0
def _get_data_part1(root_path: str, aniamls: Iterable[str]) -> Iterator[Data]:
    try:
        import xmltodict  # pylint: disable=import-outside-toplevel
    except ModuleNotFoundError as error:
        raise ModuleImportError(module_name=error.name) from error

    for animal in aniamls:
        for image_path in glob(
                os.path.join(root_path, "keypoint_image_part1", animal,
                             "*.jpg")):
            data = Data(
                image_path,
                target_remote_path=f"{animal}/{os.path.basename(image_path)}")

            for annotation_path in glob(
                    os.path.join(
                        root_path,
                        "PASCAL2011_animal_annotation",
                        animal,
                        f"{os.path.splitext(os.path.basename(image_path))[0]}_*.xml",
                    )):

                with open(annotation_path, encoding="utf-8") as fp:
                    labels: Any = xmltodict.parse(fp.read())

                box2d = labels["annotation"]["visible_bounds"]
                data.label.box2d = [
                    LabeledBox2D.from_xywh(
                        x=float(box2d["@xmin"]),
                        y=float(box2d["@ymin"]),
                        width=float(box2d["@width"]),
                        height=float(box2d["@height"]),
                        category=animal,
                    )
                ]

                keypoints2d: List[Tuple[float, float, int]] = [
                    ()
                ] * 20  # type: ignore[list-item]
                for keypoint in labels["annotation"]["keypoints"]["keypoint"]:
                    keypoints2d[_KEYPOINT_TO_INDEX[keypoint["@name"]]] = (
                        float(keypoint["@x"]),
                        float(keypoint["@y"]),
                        int(keypoint["@visible"]),
                    )
                data.label.keypoints2d = [
                    LabeledKeypoints2D(keypoints2d, category=animal)
                ]

            yield data
def _load_box_labels(file_path: str) -> List[LabeledBox2D]:
    box_labels = []
    with open(file_path, encoding="utf-8") as fp:
        for line in fp:
            center_x, center_y, width, height, occlusion, blur = map(int, line.strip().split())
            attributes = {"occlusion-level": _OCCLUSION_MAP[occlusion], "blur-level": bool(blur)}
            box_labels.append(
                LabeledBox2D.from_xywh(
                    x=center_x - width / 2,
                    y=center_y - height / 2,
                    width=width,
                    height=height,
                    attributes=attributes,
                )
            )
    return box_labels
Esempio n. 7
0
def _get_panoptic_box2d(panoptic_annotations: Dict[int, Any], image_id: int,
                        categories: Dict[int, str]) -> List[LabeledBox2D]:
    if image_id not in panoptic_annotations:
        return []

    box2d: List[LabeledBox2D] = []
    for annotation in panoptic_annotations[image_id]:
        for segment_info in annotation["segments_info"]:
            # category_id 1-91 are thing categories from the detection task
            # category_id 92-200 are stuff categories from the stuff task
            if segment_info["category_id"] > 91:
                category = categories[segment_info["category_id"]]
                box2d.append(
                    LabeledBox2D.from_xywh(*segment_info["bbox"],
                                           category=category))
    return box2d
Esempio n. 8
0
def _get_data_part2(root_path: str, aniamls: Iterable[str]) -> Iterator[Data]:
    try:
        import xmltodict  # pylint: disable=import-outside-toplevel
    except ModuleNotFoundError as error:
        raise ModuleImportError(module_name=error.name) from error

    for animal in aniamls:
        for image_path in glob(
                os.path.join(root_path, "animalpose_image_part2", animal,
                             "*.jpeg")):
            data = Data(
                image_path,
                target_remote_path=f"{animal}/{os.path.basename(image_path)}")

            annotation_path = os.path.join(
                root_path,
                "animalpose_anno2",
                animal,
                f"{os.path.splitext(os.path.basename(image_path))[0]}.xml",
            )

            with open(annotation_path, encoding="utf-8") as fp:
                labels: Any = xmltodict.parse(fp.read())

            box2d = labels["annotation"]["visible_bounds"]
            data.label.box2d = [
                LabeledBox2D.from_xywh(
                    x=float(box2d["@xmin"]),
                    y=float(
                        box2d["@xmax"]),  # xmax means ymin in the annotation
                    width=float(box2d["@width"]),
                    height=float(box2d["@height"]),
                    category=animal,
                )
            ]

            keypoints2d = LabeledKeypoints2D(category=animal)
            for keypoint in labels["annotation"]["keypoints"]["keypoint"]:
                keypoints2d.append(
                    Keypoint2D(float(keypoint["@x"]), float(keypoint["@y"]),
                               int(keypoint["@visible"])))
            data.label.keypoints2d = [keypoints2d]
            yield data
    def test_from_xywh(self):
        x, y, width, height = 1, 2, 3, 4
        xmin, xmax, ymin, ymax = 1, 2, 4, 6

        labeledbox2d = LabeledBox2D.from_xywh(
            x,
            y,
            width,
            height,
            category="cat",
            attributes={"gender": "male"},
            instance="12345",
        )

        assert labeledbox2d.category == "cat"
        assert labeledbox2d.attributes == {"gender": "male"}
        assert labeledbox2d.instance == "12345"

        assert labeledbox2d[0] == xmin
        assert labeledbox2d[1] == xmax
        assert labeledbox2d[2] == ymin
        assert labeledbox2d[3] == ymax
Esempio n. 10
0
def _generate_data(image_path: str, labels: Dict[str, Any]) -> Data:
    data = Data(image_path)
    data.label.box2d = []

    image_id = labels["image_name_id_map"][os.path.basename(image_path)]
    image_annotations_map = labels["image_annotations_map"]

    if image_id not in image_annotations_map:
        return data

    annotations = labels["annotations"]
    poses = labels["poses"]
    categories = labels["categories"]

    for annotation_id in image_annotations_map[image_id]:
        annotation = annotations[annotation_id]
        x_top, y_top, width, height = annotation["bbox"]

        attributes = {
            "occluded": annotation["occluded"],
            "difficult": annotation["difficult"],
            "pose": poses[annotation["pose_id"] - 1]["name"],
            "truncated": annotation["truncated"],
        }

        data.label.box2d.append(
            LabeledBox2D.from_xywh(
                x=x_top,
                y=y_top,
                width=width,
                height=height,
                category=categories[annotation["category_id"]]["name"],
                attributes=attributes,
                instance=str(annotation["tracking_id"]),
            ))

    return data
Esempio n. 11
0
def _get_box2ds(label_path: str) -> Dict[str, LabeledBox2D]:
    all_box2d_attributes: DefaultDict[str, AttributeType] = defaultdict(dict)
    # The normal format of each line of the file is
    # n000002/0032_01.jpg	0
    # n000002/0039_01.jpg	0
    # n000002/0090_01.jpg	0
    # ...
    for file_path in glob(os.path.join(label_path, "attributes", "*.txt")):
        attribute_name = os.path.basename(file_path).rstrip(".txt").split(
            "-", 1)[1]
        with open(file_path, encoding="utf-8") as fp:
            for line in fp:
                name, attribute_value = line.rstrip("\n").split("\t", 1)
                all_box2d_attributes[name.rstrip(
                    ".jpg")][attribute_name] = bool(int(attribute_value))
    all_boxes = {}
    for file_path in (
            os.path.join(label_path, "loose_bb_test.csv"),
            os.path.join(label_path, "loose_bb_train.csv"),
    ):
        # The normal format of each line of the file is
        # NAME_ID,X,Y,W,H
        # "n000001/0001_01",60,60,79,109
        # "n000001/0002_01",134,81,207,295
        # "n000001/0003_01",58,32,75,103
        # ...
        with open(file_path, encoding="utf-8") as fp:
            for row in islice(csv.reader(fp), 1, None):
                name_id = row.pop(0).strip('"')
                box = LabeledBox2D.from_xywh(*map(float, row))
                box2d_attribute = all_box2d_attributes.get(name_id)
                if box2d_attribute:
                    box.attributes = box2d_attribute
                all_boxes[name_id] = box

    return all_boxes
Esempio n. 12
0
def _load_data(path: str, attribute_map: _ATTRIBUTE_MAP_TYPE, segment_name: str) -> Iterator[Data]:
    """Loads the box2d and classification label in to data.

    The train and val label file context should be like::

        0--Parade/0_Parade_marchingband_1_849.jpg
        1
        449 330 122 149 0 0 0 0 0 0
        0--Parade/0_Parade_Parade_0_452.jpg
        0
        0 0 0 0 0 0 0 0 0 0
        0--Parade/0_Parade_marchingband_1_799.jpg
        21
        78 221 7 8 2 0 0 0 0 0
        78 238 14 17 2 0 0 0 0 0
        113 212 11 15 2 0 0 0 0 0
        134 260 15 15 2 0 0 0 0 0

    Arguments:
        path: The path of label file.
        attribute_map: A attribute value enum table.
        segment_name: Name of the segment.

    Yields:
        Data with loaded lables.

    """
    is_test = segment_name == "test"
    with open(path, encoding="utf-8") as fp:
        for image_path in fp:
            event, file_name = image_path.split("/")
            # translate directory name to category. like 0--Parade -> Parade
            category = "_".join(event.split("--")[1:])
            root_path = path.rsplit(os.sep, 2)[0]
            data = Data(
                os.path.join(root_path, f"WIDER_{segment_name}", "images", event, file_name)
            )
            data.label.classification = Classification(category)
            if not is_test:
                label_num = int(fp.readline())

                # when the label num is 0, a line of "0 0 0 0 0 0 0 0 0 0" also given
                if label_num == 0:
                    fp.readline()
                data.label.box2d = []
                for line in islice(fp, label_num):
                    labels = line.strip().split()
                    attributes = {
                        key: mapping[int(value)]
                        for (key, mapping), value in zip(attribute_map.items(), labels[4:10])
                    }
                    data.label.box2d.append(
                        LabeledBox2D.from_xywh(
                            x=int(labels[0]),
                            y=int(labels[1]),
                            width=int(labels[2]),
                            height=int(labels[3]),
                            attributes=attributes,
                        )
                    )

            yield data