Esempio n. 1
0
    def testRawDataOp(self):
        with tf.summary.FileWriter(
                self.logdir) as writer, tf.Session() as sess:
            # We pass raw counts and precision/recall values.
            writer.add_summary(
                sess.run(
                    summary.raw_data_op(
                        tag='foo',
                        true_positive_counts=tf.constant([75, 64, 21, 5, 0]),
                        false_positive_counts=tf.constant([150, 105, 18, 0,
                                                           0]),
                        true_negative_counts=tf.constant(
                            [0, 45, 132, 150, 150]),
                        false_negative_counts=tf.constant([0, 11, 54, 70, 75]),
                        precision=tf.constant(
                            [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]),
                        recall=tf.constant(
                            [1.0, 0.8533334, 0.28, 0.0666667, 0.0]),
                        num_thresholds=5,
                        display_name='some_raw_values',
                        description='We passed raw values into a summary op.'))
            )

        multiplexer = self.createMultiplexer()
        accumulator = multiplexer.GetAccumulator('.')
        tag_content_dict = accumulator.PluginTagToContent('pr_curves')
        self.assertItemsEqual(['foo/pr_curves'], list(tag_content_dict.keys()))

        # Test the metadata.
        summary_metadata = multiplexer.SummaryMetadata('.', 'foo/pr_curves')
        self.assertEqual('some_raw_values', summary_metadata.display_name)
        self.assertEqual('We passed raw values into a summary op.',
                         summary_metadata.summary_description)

        # Test the stored plugin data.
        plugin_data = metadata.parse_plugin_metadata(
            tag_content_dict['foo/pr_curves'])
        self.assertEqual(5, plugin_data.num_thresholds)

        # Test the summary contents.
        tensor_events = accumulator.Tensors('foo/pr_curves')
        self.assertEqual(1, len(tensor_events))
        self.validateTensorEvent(
            0,
            [
                [75.0, 64.0, 21.0, 5.0, 0.0],  # True positives.
                [150.0, 105.0, 18.0, 0.0, 0.0],  # False positives.
                [0.0, 45.0, 132.0, 150.0, 150.0],  # True negatives.
                [0.0, 11.0, 54.0, 70.0, 75.0],  # False negatives.
                [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0],  # Precision.
                [1.0, 0.8533334, 0.28, 0.0666667, 0.0],  # Recall.
            ],
            tensor_events[0])
Esempio n. 2
0
    def test_raw_data(self):
        # We pass these raw counts and precision/recall values.
        name = "foo"
        true_positive_counts = [75, 64, 21, 5, 0]
        false_positive_counts = [150, 105, 18, 0, 0]
        true_negative_counts = [0, 45, 132, 150, 150]
        false_negative_counts = [0, 11, 54, 70, 75]
        precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
        recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
        num_thresholds = 5
        display_name = "some_raw_values"
        description = "We passed raw values into a summary op."

        op = summary.raw_data_op(
            name=name,
            true_positive_counts=tf.constant(true_positive_counts),
            false_positive_counts=tf.constant(false_positive_counts),
            true_negative_counts=tf.constant(true_negative_counts),
            false_negative_counts=tf.constant(false_negative_counts),
            precision=tf.constant(precision),
            recall=tf.constant(recall),
            num_thresholds=num_thresholds,
            display_name=display_name,
            description=description,
        )
        pb_via_op = self.normalize_summary_pb(self.pb_via_op(op))

        # Call the corresponding method that is decoupled from TensorFlow.
        pb = self.normalize_summary_pb(
            summary.raw_data_pb(
                name=name,
                true_positive_counts=true_positive_counts,
                false_positive_counts=false_positive_counts,
                true_negative_counts=true_negative_counts,
                false_negative_counts=false_negative_counts,
                precision=precision,
                recall=recall,
                num_thresholds=num_thresholds,
                display_name=display_name,
                description=description,
            ))

        # The 2 methods above should write summaries with the same data.
        self.assertProtoEquals(pb, pb_via_op)

        # Test the metadata.
        summary_metadata = pb.value[0].metadata
        self.assertEqual("some_raw_values", summary_metadata.display_name)
        self.assertEqual(
            "We passed raw values into a summary op.",
            summary_metadata.summary_description,
        )
        self.assertEqual(metadata.PLUGIN_NAME,
                         summary_metadata.plugin_data.plugin_name)

        plugin_data = metadata.parse_plugin_metadata(
            summary_metadata.plugin_data.content)
        self.assertEqual(5, plugin_data.num_thresholds)

        # Test the summary contents.
        values = tensor_util.make_ndarray(pb.value[0].tensor)
        self.verify_float_arrays_are_equal(
            [
                [75.0, 64.0, 21.0, 5.0, 0.0],  # True positives.
                [150.0, 105.0, 18.0, 0.0, 0.0],  # False positives.
                [0.0, 45.0, 132.0, 150.0, 150.0],  # True negatives.
                [0.0, 11.0, 54.0, 70.0, 75.0],  # False negatives.
                [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0],  # Precision.
                [1.0, 0.8533334, 0.28, 0.0666667, 0.0],  # Recall.
            ],
            values,
        )