Esempio n. 1
0
def tf_so8_sugra_potential(t_v70):
    """Returns dict with key tensors from the SUGRA potential's TF graph."""
    tc_28_8_8 = tf.constant(su8.m_28_8_8)
    t_e7_generator_v70 = tf.einsum(
        'v,vIJ->JI',
        tf.complex(t_v70, tf.constant([0.0] * 70, dtype=tf.float64)),
        tf.constant(e7.t_a_ij_kl[:70, :, :], dtype=tf.complex128))
    t_complex_vielbein = tf.linalg.expm(t_e7_generator_v70)

    def expand_ijkl(t_ab):
        return 0.5 * tf.einsum('ijB,BIJ->ijIJ',
                               tf.einsum('AB,Aij->ijB', t_ab, tc_28_8_8),
                               tc_28_8_8)

    #
    t_u_ijIJ = expand_ijkl(t_complex_vielbein[:28, :28])
    t_u_klKL = expand_ijkl(t_complex_vielbein[28:, 28:])
    t_v_ijKL = expand_ijkl(t_complex_vielbein[:28, 28:])
    t_v_klIJ = expand_ijkl(t_complex_vielbein[28:, :28])
    #
    t_uv = t_u_klKL + t_v_klIJ
    t_uuvv = (tf.einsum('lmJK,kmKI->lkIJ', t_u_ijIJ, t_u_klKL) -
              tf.einsum('lmJK,kmKI->lkIJ', t_v_ijKL, t_v_klIJ))
    t_T = tf.einsum('ijIJ,lkIJ->lkij', t_uv, t_uuvv)
    t_A1 = (-4.0 / 21.0) * tf.trace(tf.einsum('mijn->ijmn', t_T))
    t_A2 = (-4.0 / (3 * 3)) * (
        # Antisymmetrize in last 3 indices, taking into account antisymmetry
        # in last two indices.
        t_T + tf.einsum('lijk->ljki', t_T) + tf.einsum('lijk->lkij', t_T))
    t_A1_real = tf.real(t_A1)
    t_A1_imag = tf.imag(t_A1)
    t_A2_real = tf.real(t_A2)
    t_A2_imag = tf.imag(t_A2)
    t_A1_potential = (-3.0 / 4) * (tf.einsum('ij,ij->', t_A1_real, t_A1_real) +
                                   tf.einsum('ij,ij->', t_A1_imag, t_A1_imag))
    t_A2_potential = (1.0 /
                      24) * (tf.einsum('ijkl,ijkl->', t_A2_real, t_A2_real) +
                             tf.einsum('ijkl,ijkl->', t_A2_imag, t_A2_imag))
    t_potential = t_A1_potential + t_A2_potential
    #
    return dict(v70=t_v70,
                vielbein=t_complex_vielbein,
                tee_tensor=t_T,
                a1=t_A1,
                a2=t_A2,
                potential=t_potential)
Esempio n. 2
0
def c2q(w, gain):
    """
    Scale by gain and convert from complex w(:,:,1:2) to real quad-numbers
    in z.

    Arrange pixels from the real and imag parts of the 2 highpasses
    into 4 separate subimages .
     A----B     Re   Im of w(:,:,1)
     |    |
     |    |
     C----D     Re   Im of w(:,:,2)

    """

    # Input has shape [batch, r, c, 2]
    r, c = w.get_shape().as_list()[1:3]

    sc = np.sqrt(0.5) * gain
    P = w[:, :, :, 0] * sc[0] + w[:, :, :, 1] * sc[1]
    Q = w[:, :, :, 0] * sc[0] - w[:, :, :, 1] * sc[1]

    # Recover each of the 4 corners of the quads.
    x1 = tf.real(P)
    x2 = tf.imag(P)
    x3 = tf.imag(Q)
    x4 = -tf.real(Q)

    # Stack 2 inputs of shape [batch, r, c] to [batch, r, 2, c]
    x_rows1 = tf.stack([x1, x3], axis=-2)
    # Reshaping interleaves the results
    x_rows1 = tf.reshape(x_rows1, [-1, 2 * r, c])
    # Do the same for the even columns
    x_rows2 = tf.stack([x2, x4], axis=-2)
    x_rows2 = tf.reshape(x_rows2, [-1, 2 * r, c])

    # Stack the two [batch, 2*r, c] tensors to [batch, 2*r, c, 2]
    x_cols = tf.stack([x_rows1, x_rows2], axis=-1)
    y = tf.reshape(x_cols, [-1, 2 * r, 2 * c])

    return y
Esempio n. 3
0
def tf_so8_sugra_stationarity(t_a1, t_a2):
    """Computes the stationarity-condition tensor."""
    # See: https://arxiv.org/pdf/1302.6219.pdf, text after (3.2).
    t_x0 = (+4.0 * tf.einsum('mi,mjkl->ijkl', t_a1, t_a2) -
            3.0 * tf.einsum('mnij,nklm->ijkl', t_a2, t_a2))
    t_x0_real = tf.real(t_x0)
    t_x0_imag = tf.imag(t_x0)
    tc_sd = tf.constant(get_proj_35_8888(True))
    tc_asd = tf.constant(get_proj_35_8888(False))
    t_x_real_sd = tf.einsum('aijkl,ijkl->a', tc_sd, t_x0_real)
    t_x_imag_asd = tf.einsum('aijkl,ijkl->a', tc_asd, t_x0_imag)
    return (tf.einsum('a,a->', t_x_real_sd, t_x_real_sd) +
            tf.einsum('a,a->', t_x_imag_asd, t_x_imag_asd))
Esempio n. 4
0
def stabilized_power_compress_abs(values, power=0.5, offset=1e-8):
    """Outputs stabilized power-law compression of the abs of the input."""
    if values.dtype is tf.complex64:
        # Note that tf.abs(a+bj) = tf.sqrt(a*a+b*b).
        # Need to avoid 0.0 for complex numbers.
        # The offset is in default magnitude-level offset. We need to square
        # it when it is used for power-level offset. However, (1e-8)**2=1e-16
        # in default could be too much small, here we use offset**1.5 as the
        # power-level offset.
        stabilized_values = stabilized_real_imag_abs(tf.real(values),
                                                     tf.imag(values),
                                                     offset=offset**1.5)
    else:
        stabilized_values = tf.abs(values) + offset
    return stabilized_values if power == 1.0 else tf.pow(
        stabilized_values, power)
Esempio n. 5
0
    def build(self):
        self.audios = tf.placeholder(tf.float32,
                                     [self.batch_size, self.n_speaker, None],
                                     name='input_signals')
        self.mix_input = tf.reduce_sum(self.audios, axis=1)

        with tf.variable_scope("encoder"):
            # [batch, encode_len, channels]
            encoded_input = tf.layers.Conv1D(
                filters=self.config["model"]["filters"]["ae"],
                kernel_size=self.fft_len,
                strides=self.fft_hop,
                activation=tf.nn.relu,
                name="conv1d_relu")(tf.expand_dims(self.mix_input, -1))

        stfts_mix = tf.signal.stft(self.mix_input,
                                   frame_length=self.fft_len,
                                   frame_step=self.fft_hop,
                                   fft_length=self.fft_len,
                                   window_fn=self.fft_wnd)
        magni_mix = tf.abs(stfts_mix)
        phase_mix = tf.atan2(tf.imag(stfts_mix), tf.real(stfts_mix))

        with tf.variable_scope("bottle_start"):
            norm_input = self.cLN(
                tf.concat([encoded_input, tf.log1p(magni_mix)], axis=-1),
                "layer_norm")
            block_input = tf.layers.Conv1D(
                filters=self.config["model"]["filters"]["1*1-conv"],
                kernel_size=1)(norm_input)

        for stack_i in range(self.num_stacks):
            for dilation in self.dilations:
                with tf.variable_scope("conv_block_{}_{}".format(
                        stack_i, dilation)):
                    block_output = tf.layers.Conv1D(
                        filters=self.config["model"]["filters"]["d-conv"],
                        kernel_size=1)(block_input)
                    block_output = self.prelu(block_output,
                                              name='1st-prelu',
                                              shared_axes=[1])
                    block_output = self.gLN(block_output, "first")
                    block_output = self._depthwise_conv1d(
                        block_output, dilation)
                    block_output = self.prelu(block_output,
                                              name='2nd-prelu',
                                              shared_axes=[1])
                    block_output = self.gLN(block_output, "second")
                    block_output = tf.layers.Conv1D(
                        filters=self.config["model"]["filters"]["1*1-conv"],
                        kernel_size=1)(block_output)
                    block_input += block_output

        if self.output_ratio == 1:
            embed_channel = self.config["model"]["filters"]["ae"]
            feature_map = encoded_input
        elif self.output_ratio == 0:
            embed_channel = self.stft_ch
            feature_map = magni_mix
        else:
            embed_channel = self.concat_channels
            feature_map = tf.concat([encoded_input, magni_mix], axis=-1)

        with tf.variable_scope('separator'):
            s_embed = tf.layers.Dense(
                embed_channel *
                self.config["model"]["embed_size"])(block_input)
            s_embed = tf.reshape(s_embed, [
                self.batch_size, -1, embed_channel,
                self.config["model"]["embed_size"]
            ])

            # Estimate attractor from best combination from anchors
            v_anchors = tf.get_variable(
                'anchors', [self.n_anchor, self.config["model"]["embed_size"]],
                dtype=tf.float32)
            c_combs = tf.constant(list(
                itertools.combinations(range(self.n_anchor), self.n_speaker)),
                                  name='combs')
            s_anchor_sets = tf.gather(v_anchors, c_combs)

            s_anchor_assignment = tf.einsum('btfe,pce->bptfc', s_embed,
                                            s_anchor_sets)
            s_anchor_assignment = tf.nn.softmax(s_anchor_assignment)

            s_attractor_sets = tf.einsum('bptfc,btfe->bpce',
                                         s_anchor_assignment, s_embed)
            s_attractor_sets /= tf.expand_dims(
                tf.reduce_sum(s_anchor_assignment, axis=(2, 3)), -1)

            sp = tf.matmul(s_attractor_sets,
                           tf.transpose(s_attractor_sets, [0, 1, 3, 2]))
            diag = tf.fill(sp.shape[:-1], float("-inf"))
            sp = tf.linalg.set_diag(sp, diag)

            s_in_set_similarities = tf.reduce_max(sp, axis=(-1, -2))

            s_subset_choice = tf.argmin(s_in_set_similarities, axis=1)
            s_subset_choice_nd = tf.transpose(
                tf.stack([
                    tf.range(self.batch_size, dtype=tf.int64), s_subset_choice
                ]))
            s_attractors = tf.gather_nd(s_attractor_sets, s_subset_choice_nd)

            s_logits = tf.einsum('btfe,bce->bctf', s_embed, s_attractors)
            output_code = s_logits * tf.expand_dims(feature_map, 1)

        with tf.variable_scope("decoder"):
            conv_out = pred_istfts = 0
            if self.output_ratio != 0:
                output_frame = tf.layers.Dense(
                    self.config["model"]["kernel_size"]["ae"])(output_code[
                        ..., :self.config["model"]["filters"]["ae"]])
                conv_out = tf.signal.overlap_and_add(signal=output_frame,
                                                     frame_step=self.fft_hop)

            if self.output_ratio != 1:
                phase_mix_expand = tf.expand_dims(phase_mix, 1)
                pred_stfts = tf.complex(
                    tf.cos(phase_mix_expand) *
                    output_code[..., -self.stft_ch:],
                    tf.sin(phase_mix_expand) *
                    output_code[..., -self.stft_ch:])
                pred_istfts = tf.signal.inverse_stft(
                    pred_stfts,
                    frame_length=self.fft_len,
                    frame_step=self.fft_hop,
                    fft_length=self.fft_len,
                    window_fn=tf.signal.inverse_stft_window_fn(
                        self.fft_hop, forward_window_fn=self.fft_wnd))

            self.data_out = conv_out * self.output_ratio + pred_istfts * (
                1 - self.output_ratio)

        self.loss, self.pred_output, self.sdr, self.perm_idxs = loss.pit_loss(
            self.audios, self.data_out, self.config, self.batch_size,
            self.n_speaker, self.n_output)

        ### fixed loss not implemented yet !!!!!! ###
        self.loss_fix, self.pred_output_fix, self.sdr_fix, self.perm_idxs_fix = loss.pit_loss(
            self.audios, self.data_out, self.config, self.batch_size,
            self.n_speaker, self.n_output)
        mean=0.0,
        stddev=np.sqrt(2 / (num_filter_1))),
                name='wf4'),
}

biases_decoder1 = {
    'bf1': tf.Variable(tf.zeros([num_filter_3]), name='bf1'),
    'bf2': tf.Variable(tf.zeros([num_filter_2]), name='bf2'),
    'bf3': tf.Variable(tf.zeros([num_filter_1]), name='bf3'),
    'bf4': tf.Variable(tf.zeros([dim_feature * n_user]), name='bf4'),
}

# Construct model
for u_ii in range(n_user):
    x_reshape = tf.reshape(x[:, :, :, u_ii], [-1, L_ * n_rx])
    x_user = tf.concat([tf.real(x_reshape), tf.imag(x_reshape)], axis=1)

    Out_encoder_low, _ = Dnn_Encoder(x_user, weights_encoder1, biases_encoder1,
                                     train_flag)

    if u_ii == 0:
        Out_encoder_low_cat = Out_encoder_low
    else:
        Out_encoder_low_cat = tf.concat([Out_encoder_low_cat, Out_encoder_low],
                                        1)

# Transmitter DNN with quantization
Out_decoder_low = Dnn_Decoder_low(Out_encoder_low_cat, weights_decoder1,
                                  biases_decoder1, train_flag)

w_esti_low = tf.reshape(Out_decoder_low, [-1, n_tx, n_rx, n_user])