Esempio n. 1
0
    def test_session(self):
        vgg = VGG19(include_top=False, weights="imagenet")
        vgg.trainable = False
        session = tf.compat.v1.Session()
        perceptual_vgg = smlosses.PerceptualVGG(vgg=vgg, eager=False, session=session)

        from skimage import data
        from supermariopy.tfutils import image

        x = (
            data.astronaut()
            .astype(np.float32)
            .reshape((1, 512, 512, 3))[:, :224, :224, :]
        )
        y = (
            data.astronaut()
            .astype(np.float32)
            .reshape((1, 512, 512, 3))[:, :224, :224, :]
        )

        x_ph = tf.placeholder(shape=(1, 224, 224, 3), dtype=tf.float32)
        y_ph = tf.placeholder(shape=(1, 224, 224, 3), dtype=tf.float32)

        loss = perceptual_vgg.loss(x_ph, y_ph)
        session.run(tf.initialize_all_variables())
        loss_v = session.run(loss, {x_ph: x, y_ph: y})
        assert all([np.allclose(l, np.array([0])) for l in loss_v])
Esempio n. 2
0
    def __init__(self,
                 session,
                 feature_layers=None,
                 feature_weights=None,
                 gram_weights=None):
        K.set_session(session)
        self.base_model = VGG19(include_top=False, weights='imagenet')
        if feature_layers is None:
            feature_layers = [
                "input_1", "block1_conv2", "block2_conv2", "block3_conv2",
                "block4_conv2", "block5_conv2"
            ]
        self.layer_names = [l.val_set_name for l in self.base_model.layers]
        for k in feature_layers:
            if not k in self.layer_names:
                raise KeyError("Invalid layer {}. Available layers: {}".format(
                    k, self.layer_names))
        features = [
            self.base_model.get_layer(k).output for k in feature_layers
        ]
        self.model = Model(inputs=self.base_model.input, outputs=features)
        if feature_weights is None:
            feature_weights = len(feature_layers) * [1.0]
        if gram_weights is None:
            gram_weights = len(feature_layers) * [0.1]
        self.feature_weights = feature_weights
        self.gram_weights = gram_weights
        assert len(self.feature_weights) == len(features)
        self.use_gram = np.max(self.gram_weights) > 0.0

        self.variables = self.base_model.weights
Esempio n. 3
0
    def test_eager(self):
        tf.enable_eager_execution()
        vgg = VGG19(include_top=False, weights="imagenet")
        vgg.trainable = False
        perceptual_vgg = smlosses.PerceptualVGG(vgg=vgg, eager=True)

        x = data.astronaut().astype(np.float32).reshape((1, 512, 512, 3))
        x = image.resize_bilinear(x, [224, 224])
        y = data.astronaut().astype(np.float32).reshape((1, 512, 512, 3))
        y = image.resize_bilinear(y, [224, 224])
        losses = perceptual_vgg.loss(tf.convert_to_tensor(x), tf.convert_to_tensor(y))
        assert all([np.allclose(loss, np.array([0])) for loss in losses])

        y = image.resize_bilinear(y, [224, 224]) + tf.random.normal(y.shape)
        losses = perceptual_vgg.loss(tf.convert_to_tensor(x), tf.convert_to_tensor(y))
        assert all([not np.allclose(loss, np.array([0])) for loss in losses])
Esempio n. 4
0
    def __init__(
        self,
        session,
        feature_layers=None,
        feature_weights=None,
        gram_weights=None,
        default_gram=0.1,
        original_scale=False,
        eager=False,
    ):
        if eager:
            pass
        else:
            K.set_session(session)
        self.base_model = VGG19(include_top=False, weights="imagenet")
        if feature_layers is None:
            feature_layers = [
                "input_1",
                "block1_conv2",
                "block2_conv2",
                "block3_conv2",
                "block4_conv2",
                "block5_conv2",
            ]
        self.layer_names = [l.name for l in self.base_model.layers]
        for k in feature_layers:
            if not k in self.layer_names:
                raise KeyError("Invalid layer {}. Available layers: {}".format(
                    k, self.layer_names))
        self.feature_layers = feature_layers
        features = [
            self.base_model.get_layer(k).output for k in feature_layers
        ]
        self.model = Model(inputs=self.base_model.input, outputs=features)
        if feature_weights is None:
            feature_weights = len(feature_layers) * [1.0]
        if gram_weights is None:
            gram_weights = len(feature_layers) * [default_gram]
        elif isinstance(gram_weights, (int, float)):
            gram_weights = len(feature_layers) * [gram_weights]
        self.feature_weights = feature_weights
        self.gram_weights = gram_weights
        assert len(self.feature_weights) == len(features)
        self.use_gram = np.max(self.gram_weights) > 0.0
        self.original_scale = original_scale

        self.variables = self.base_model.weights
Esempio n. 5
0
 def __init__(self):
     # self.input = tf.placeholder(tf.float32, [None,224,224,3], name='input_img')
     self.model = VGG19(include_top=False)