def test_function_decorator(self):

    def function_decorator():

      def decorator(f):
        return lambda a: f(a) + 1

      return decorator

    # The Python parser does capture decorators into the AST.
    # However, the interpreter desugars them on load, and refering to the
    # decorated function at runtime usually loses any trace of the decorator.
    # Below is an example when that doesn't happen.
    def static_wrapper():

      @function_decorator()
      def test_fn(a):  # pylint:disable=unused-variable
        return a

    node = self.parse_and_analyze(static_wrapper,
                                  {'function_decorator': function_decorator})
    node = node.body[0].body[0]

    node = decorators.transform(node, remove_decorators=())
    # Since the decorator is not removed, we need to include its source
    # code. We cannot do it after the fact because decorators are executed
    # on load.
    result, _ = compiler.ast_to_object(
        node,
        source_prefix=textwrap.dedent(tf_inspect.getsource(function_decorator)))
    self.assertEqual(2, result.test_fn(1))

    node = decorators.transform(node, remove_decorators=(function_decorator,))
    with self.compiled(node) as result:
      self.assertEqual(1, result.test_fn(1))
Esempio n. 2
0
  def test_simple_decorator(self):

    def simple_decorator(f):
      return lambda a: f(a) + 1

    # The Python parser does capture decorators into the AST.
    # However, the interpreter desugars them upon load, and refering to the
    # decorated function at runtime usually loses any trace of the decorator.
    # Below is an example when that doesn't happen.
    def static_wrapper():

      @simple_decorator
      def test_fn(a):  # pylint:disable=unused-variable
        return a

    node = self.parse_and_analyze(static_wrapper,
                                  {'simple_decorator': simple_decorator})
    node = node.body[0].body[0]

    node = decorators.transform(node, remove_decorators=())
    result = compiler.ast_to_object(
        node,
        source_prefix=textwrap.dedent(tf_inspect.getsource(simple_decorator)))
    self.assertEqual(2, result.test_fn(1))

    node = decorators.transform(node, remove_decorators=(simple_decorator,))
    result = compiler.ast_to_object(node)
    self.assertEqual(1, result.test_fn(1))
Esempio n. 3
0
    def test_simple_decorator(self):
        def simple_decorator(f):
            return lambda a: f(a) + 1

        # The Python parser does capture decorators into the AST.
        # However, the interpreter desugars them upon load, and refering to the
        # decorated function at runtime usually loses any trace of the decorator.
        # Below is an example when that doesn't happen.
        def static_wrapper():
            @simple_decorator
            def test_fn(a):  # pylint:disable=unused-variable
                return a

        node = self.parse_and_analyze(static_wrapper,
                                      {'simple_decorator': simple_decorator})
        node = node.body[0].body[0]

        node = decorators.transform(node, remove_decorators=())
        # Since the decorator is not removed, we need to include its source
        # code. We cannot do it after the fact because decorators are executed
        # on load.
        result, _ = compiler.ast_to_object(
            node,
            source_prefix=textwrap.dedent(
                tf_inspect.getsource(simple_decorator)))
        self.assertEqual(2, result.test_fn(1))

        node = decorators.transform(node,
                                    remove_decorators=(simple_decorator, ))
        with self.compiled(node) as result:
            self.assertEqual(1, result.test_fn(1))
Esempio n. 4
0
    def test_function_decorator(self):
        def function_decorator():
            def decorator(f):
                return lambda a: f(a) + 1

            return decorator

        # The Python parser does capture decorators into the AST.
        # However, the interpreter desugars them on load, and refering to the
        # decorated function at runtime usually loses any trace of the decorator.
        # Below is an example when that doesn't happen.
        def static_wrapper():
            @function_decorator()
            def test_fn(a):  # pylint:disable=unused-variable
                return a

        node = self.parse_and_analyze(
            static_wrapper, {'function_decorator': function_decorator})
        node = node.body[0].body[0]

        node = decorators.transform(node, remove_decorators=())
        result = compiler.ast_to_object(
            node,
            source_prefix=textwrap.dedent(
                tf_inspect.getsource(function_decorator)))
        self.assertEqual(2, result.test_fn(1))

        node = decorators.transform(node,
                                    remove_decorators=(function_decorator, ))
        result = compiler.ast_to_object(node)
        self.assertEqual(1, result.test_fn(1))
Esempio n. 5
0
def node_to_graph(node, ctx, nocompile_decorators):
    """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
    # TODO(mdan): Verify arguments for correctness.

    # TODO(mdan): Factor out common elements.
    # These include:
    #   * code move between blocks
    #   * visiting blocks in transformers

    # Certain steps, especially canonicalization, insert new symbols into the
    # tree, which must be accounted. Although less efficient, it is most robust
    # to re-run the analysis.

    node = _static_analysis_pass(node, ctx)
    # Past this point, line numbers are no longer accurate so we ignore the
    # source.
    # TODO(mdan): Is it feasible to reconstruct intermediate source code?
    ctx.source_code = None
    node = decorators.transform(node, nocompile_decorators)
    node = break_statements.transform(node, ctx)
    node = asserts.transform(node, ctx)

    # Note: sequencing continue canonicalization before for loop one avoids
    # dealing with the extra loop increment operation that the for
    # canonicalization creates.
    node = continue_statements.transform(node, ctx)
    ctx.namespace['len'] = len

    node = _static_analysis_pass(node, ctx)
    node = for_loops.transform(node, ctx)
    # for_loops may insert new global references.
    node = builtin_functions.transform(node, ctx)
    # TODO(mdan): Kept for CL consistency. Remove.
    # builtin_functions may insert new global references.
    ctx.namespace['print'] = print

    node = _static_analysis_pass(node, ctx)
    node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                                nocompile_decorators)
    node = control_flow.transform(node, ctx)

    # control_flow may create new symbols and change scopes.
    node = _static_analysis_pass(node, ctx)
    node = logical_expressions.transform(node)
    node = side_effect_guards.transform(node, ctx)

    return node
Esempio n. 6
0
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * code move between blocks
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  # Past this point, line numbers are no longer accurate so we ignore the
  # source.
  # TODO(mdan): Is it feasible to reconstruct intermediate source code?
  ctx.source_code = None
  node = decorators.transform(node, nocompile_decorators)
  node = break_canonicalization.transform(node, ctx)
  node = asserts.transform(node, ctx)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_canonicalization.transform(node, ctx)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_canonicalization.transform(node, ctx)
  # for_canonicalization may insert new global references.
  node = builtin_functions.transform(node, ctx)
  # builtin_functions may insert new global references.
  ctx.namespace['print'] = print

  node = _static_analysis_pass(node, ctx)
  node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx)

  # control_flow may create new symbols and change scopes.
  node = _static_analysis_pass(node, ctx)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx)

  return node
Esempio n. 7
0
 def _remover_wrapper(self, f, remove_decorators):
   namespace = {
       'self_removing_decorator': self_removing_decorator,
       'simple_decorator': simple_decorator
   }
   node = self.parse_and_analyze(f, namespace)
   node, _ = decorators.transform(node, remove_decorators=remove_decorators)
   result, _ = compiler.ast_to_object(node)
   return getattr(result, f.__name__)
Esempio n. 8
0
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * keeping track of symbols that have been created
  #   * marking nodes (e.g. py_func wrappers) to suppress further processing
  #   * code move between blocks
  #   * insertion of new global references
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  node = decorators.transform(node, nocompile_decorators)
  node = break_canonicalization.transform(node, ctx.namer)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_canonicalization.transform(node, ctx.namer)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_canonicalization.transform(node, ctx.namer)
  # for_canonicalization may insert new global references.
  node = builtin_functions.transform(node)
  # builtin_functions may insert new global references.
  ctx.namespace['print'] = print

  node = _static_analysis_pass(node, ctx)
  node = print_functions.transform(node)
  node = call_trees.transform(node, ctx.namer, ctx.namespace,
                              config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx.namer)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx.namer)

  return node
Esempio n. 9
0
    def test_noop(self):
        def test_fn(a):
            return a

        node = self.parse_and_analyze(test_fn, {})
        node, deps = decorators.transform(node, remove_decorators=())
        result, _ = compiler.ast_to_object(node)

        self.assertFalse(deps)
        self.assertEqual(1, result.test_fn(1))
Esempio n. 10
0
 def _remover_wrapper(self, f, remove_decorators):
     namespace = {
         'self_removing_decorator': self_removing_decorator,
         'simple_decorator': simple_decorator
     }
     node = self.parse_and_analyze(f, namespace)
     node, _ = decorators.transform(node,
                                    remove_decorators=remove_decorators)
     result, _ = compiler.ast_to_object(node)
     return getattr(result, f.__name__)
Esempio n. 11
0
  def test_noop(self):

    def test_fn(a):
      return a

    node = self.parse_and_analyze(test_fn, {})
    node, deps = decorators.transform(node, remove_decorators=())
    result, _ = compiler.ast_to_object(node)

    self.assertFalse(deps)
    self.assertEqual(1, result.test_fn(1))