Esempio n. 1
0
def node_to_graph(node, ctx, nocompile_decorators):
    """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
    # TODO(mdan): Verify arguments for correctness.

    # TODO(mdan): Factor out common elements.
    # These include:
    #   * code move between blocks
    #   * visiting blocks in transformers

    # Certain steps, especially canonicalization, insert new symbols into the
    # tree, which must be accounted. Although less efficient, it is most robust
    # to re-run the analysis.

    node = _static_analysis_pass(node, ctx)
    # Past this point, line numbers are no longer accurate so we ignore the
    # source.
    # TODO(mdan): Is it feasible to reconstruct intermediate source code?
    ctx.source_code = None
    node = decorators.transform(node, nocompile_decorators)
    node = break_statements.transform(node, ctx)
    node = asserts.transform(node, ctx)

    # Note: sequencing continue canonicalization before for loop one avoids
    # dealing with the extra loop increment operation that the for
    # canonicalization creates.
    node = continue_statements.transform(node, ctx)
    ctx.namespace['len'] = len

    node = _static_analysis_pass(node, ctx)
    node = for_loops.transform(node, ctx)
    # for_loops may insert new global references.
    node = builtin_functions.transform(node, ctx)
    # TODO(mdan): Kept for CL consistency. Remove.
    # builtin_functions may insert new global references.
    ctx.namespace['print'] = print

    node = _static_analysis_pass(node, ctx)
    node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                                nocompile_decorators)
    node = control_flow.transform(node, ctx)

    # control_flow may create new symbols and change scopes.
    node = _static_analysis_pass(node, ctx)
    node = logical_expressions.transform(node)
    node = side_effect_guards.transform(node, ctx)

    return node
Esempio n. 2
0
def node_to_graph(node, ctx, nocompile_decorators):
  """Convert Python code to equivalent TF graph mode code.

  Args:
    node: A Python AST node representing the code to convert.
    ctx: An EntityContext object.
    nocompile_decorators: A tuple containing decorators to be stripped from
        functions during conversion.

  Returns:
    A tuple (node, deps):
        * node: A Python ast node, representing the converted code.
        * deps: A set of strings, the fully qualified names of entity
            dependencies that this node has.
  """
  # TODO(mdan): Verify arguments for correctness.

  # TODO(mdan): Factor out common elements.
  # These include:
  #   * code move between blocks
  #   * visiting blocks in transformers

  # Certain steps, especially canonicalization, insert new symbols into the
  # tree, which must be accounted. Although less efficient, it is most robust
  # to re-run the analysis.

  node = _static_analysis_pass(node, ctx)
  # Past this point, line numbers are no longer accurate so we ignore the
  # source.
  # TODO(mdan): Is it feasible to reconstruct intermediate source code?
  ctx.source_code = None
  node, deps = decorators.transform(node, nocompile_decorators)
  node = break_statements.transform(node, ctx)
  node = asserts.transform(node, ctx)

  # Note: sequencing continue canonicalization before for loop one avoids
  # dealing with the extra loop increment operation that the for
  # canonicalization creates.
  node = continue_statements.transform(node, ctx)
  ctx.namespace['len'] = len

  node = _static_analysis_pass(node, ctx)
  node = for_loops.transform(node, ctx)
  # for_loops may insert new global references.
  node = builtin_functions.transform(node, ctx)

  node = _static_analysis_pass(node, ctx)
  node = call_trees.transform(node, ctx, config.DEFAULT_UNCOMPILED_MODULES,
                              nocompile_decorators)
  node = control_flow.transform(node, ctx)

  # control_flow may create new symbols and change scopes.
  node = _static_analysis_pass(node, ctx)
  node = logical_expressions.transform(node)
  node = side_effect_guards.transform(node, ctx)
  node = name_scopes.transform(node, ctx)

  return node, deps
    def test_basic_for(self):
        def test_fn(l):
            s = 0
            for e in l:
                s += e
            return s

        node = self.parse_and_analyze(test_fn, {})
        node = for_loops.transform(node, self.ctx)

        with self.compiled(node) as result:
            l = [1, 2, 3]
            self.assertEqual(test_fn(l), result.test_fn(l))
            l = []
            self.assertEqual(test_fn(l), result.test_fn(l))
Esempio n. 4
0
  def test_basic_for(self):

    def test_fn(l):
      s = 0
      for e in l:
        s += e
      return s

    node = self.parse_and_analyze(test_fn, {})
    node = for_loops.transform(node, self.ctx)

    with self.compiled(node) as result:
      l = [1, 2, 3]
      self.assertEqual(test_fn(l), result.test_fn(l))
      l = []
      self.assertEqual(test_fn(l), result.test_fn(l))
Esempio n. 5
0
  def test_for_with_iterated_expression(self):

    eval_count = [0]

    def count_evals(x):
      eval_count[0] += 1
      return x

    def test_fn(n):
      s = 0
      for e in count_evals(range(n)):
        s += e
      return s

    node = self.parse_and_analyze(test_fn, {'count_evals': count_evals})
    node = for_loops.transform(node, self.ctx)

    with self.compiled(node) as result:
      result.count_evals = count_evals
      self.assertEqual(test_fn(5), result.test_fn(5))
      # count_evals ran twice, once for test_fn and another for result.test_fn
      self.assertEqual(eval_count[0], 2)
Esempio n. 6
0
    def test_for_with_iterated_expression(self):

        eval_count = [0]

        def count_evals(x):
            eval_count[0] += 1
            return x

        def test_fn(n):
            s = 0
            for e in count_evals(range(n)):
                s += e
            return s

        node = self.parse_and_analyze(test_fn, {'count_evals': count_evals})
        node = for_loops.transform(node, self.ctx)

        with self.compiled(node) as result:
            result.count_evals = count_evals
            self.assertEqual(test_fn(5), result.test_fn(5))
            # count_evals ran twice, once for test_fn and another for result.test_fn
            self.assertEqual(eval_count[0], 2)