def crop_gt_masks(self, gt_mask_size):
        """Crops the ground truth binary masks and resize to fixed-size masks."""
        num_boxes = tf.shape(self._boxes)[0]
        num_masks = tf.shape(self._masks)[0]
        assert_length = tf.Assert(tf.equal(num_boxes, num_masks), [num_masks])

        def padded_bounding_box_fn():
            return tf.reshape(self._masks,
                              [-1, self._ori_height, self._ori_width, 1])

        def zeroed_box_fn():
            return tf.zeros([0, self._ori_height, self._ori_width, 1])

        num_masks = tf.shape(self._masks)[0]
        # Check if there is any instance in this image or not.
        scaled_masks = tf.cond(num_masks > 0, padded_bounding_box_fn,
                               zeroed_box_fn)
        with tf.control_dependencies([assert_length]):
            cropped_gt_masks = tf.image.crop_and_resize(
                image=scaled_masks,
                boxes=self._boxes,
                box_ind=tf.range(num_masks, dtype=tf.int32),
                crop_size=[gt_mask_size, gt_mask_size],
                method='bilinear')[:, :, :, 0]
        cropped_gt_masks = tf.pad(cropped_gt_masks,
                                  paddings=tf.constant([[
                                      0,
                                      0,
                                  ], [
                                      2,
                                      2,
                                  ], [2, 2]]),
                                  mode='CONSTANT',
                                  constant_values=0.)
        return cropped_gt_masks
Esempio n. 2
0
 def _unpack_labels(self, labels):
     """Unpacks an array of labels into multiscales labels."""
     labels_unpacked = OrderedDict()
     anchors = self._anchors
     count = 0
     for level in range(anchors.min_level, anchors.max_level + 1):
         feat_size = int(anchors.image_size / 2**level)
         steps = feat_size**2 * anchors.get_anchors_per_location()
         indices = tf.range(count, count + steps)
         count += steps
         labels_unpacked[level] = tf.reshape(tf.gather(labels, indices),
                                             [feat_size, feat_size, -1])
     return labels_unpacked
Esempio n. 3
0
  def parser(record):
    """function used to parse tfrecord."""

    record_spec = {
        "input": tf.FixedLenFeature([seq_len], tf.int64),
        "target": tf.FixedLenFeature([seq_len], tf.int64),
        "seg_id": tf.FixedLenFeature([seq_len], tf.int64),
        "label": tf.FixedLenFeature([1], tf.int64),
        "is_masked": tf.FixedLenFeature([seq_len], tf.int64),
    }

    # retrieve serialized example
    example = tf.parse_single_example(
        serialized=record,
        features=record_spec)

    inputs = example.pop("input")
    target = example.pop("target")
    is_masked = tf.cast(example.pop("is_masked"), tf.bool)

    non_reuse_len = seq_len - reuse_len
    assert perm_size <= reuse_len and perm_size <= non_reuse_len

    perm_mask_0, target_0, target_mask_0, input_k_0, input_q_0 = _local_perm(
        inputs[:reuse_len],
        target[:reuse_len],
        is_masked[:reuse_len],
        perm_size,
        reuse_len)

    perm_mask_1, target_1, target_mask_1, input_k_1, input_q_1 = _local_perm(
        inputs[reuse_len:],
        target[reuse_len:],
        is_masked[reuse_len:],
        perm_size,
        non_reuse_len)

    perm_mask_0 = tf.concat([perm_mask_0, tf.ones([reuse_len, non_reuse_len])],
                            axis=1)
    perm_mask_1 = tf.concat([tf.zeros([non_reuse_len, reuse_len]), perm_mask_1],
                            axis=1)
    perm_mask = tf.concat([perm_mask_0, perm_mask_1], axis=0)
    target = tf.concat([target_0, target_1], axis=0)
    target_mask = tf.concat([target_mask_0, target_mask_1], axis=0)
    input_k = tf.concat([input_k_0, input_k_1], axis=0)
    input_q = tf.concat([input_q_0, input_q_1], axis=0)

    if num_predict is not None:
      indices = tf.range(seq_len, dtype=tf.int64)
      bool_target_mask = tf.cast(target_mask, tf.bool)
      indices = tf.boolean_mask(indices, bool_target_mask)

      ##### extra padding due to CLS/SEP introduced after prepro
      actual_num_predict = tf.shape(indices)[0]
      pad_len = num_predict - actual_num_predict

      ##### target_mapping
      target_mapping = tf.one_hot(indices, seq_len, dtype=tf.float32)
      paddings = tf.zeros([pad_len, seq_len], dtype=target_mapping.dtype)
      target_mapping = tf.concat([target_mapping, paddings], axis=0)
      example["target_mapping"] = tf.reshape(target_mapping,
                                             [num_predict, seq_len])

      ##### target
      target = tf.boolean_mask(target, bool_target_mask)
      paddings = tf.zeros([pad_len], dtype=target.dtype)
      target = tf.concat([target, paddings], axis=0)
      example["target"] = tf.reshape(target, [num_predict])

      ##### target mask
      target_mask = tf.concat(
          [tf.ones([actual_num_predict], dtype=tf.float32),
           tf.zeros([pad_len], dtype=tf.float32)],
          axis=0)
      example["target_mask"] = tf.reshape(target_mask, [num_predict])
    else:
      example["target"] = tf.reshape(target, [seq_len])
      example["target_mask"] = tf.reshape(target_mask, [seq_len])

    # reshape back to fixed shape
    example["perm_mask"] = tf.reshape(perm_mask, [seq_len, seq_len])
    example["input_k"] = tf.reshape(input_k, [seq_len])
    example["input_q"] = tf.reshape(input_q, [seq_len])

    _convert_example(example, use_bfloat16)

    for k, v in example.items():
      tf.logging.info("%s: %s", k, v)

    return example
Esempio n. 4
0
def _local_perm(inputs, targets, is_masked, perm_size, seq_len):
  """
  Sample a permutation of the factorization order, and create an
  attention mask accordingly.

  Args:
    inputs: int64 Tensor in shape [seq_len], input ids.
    targets: int64 Tensor in shape [seq_len], target ids.
    is_masked: bool Tensor in shape [seq_len]. True means being selected
      for partial prediction.
    perm_size: the length of longest permutation. Could be set to be reuse_len.
      Should not be larger than reuse_len or there will be data leaks.
    seq_len: int, sequence length.
  """

  # Generate permutation indices
  index = tf.range(seq_len, dtype=tf.int64)
  index = tf.transpose(tf.reshape(index, [-1, perm_size]))
  index = tf.random_shuffle(index)
  index = tf.reshape(tf.transpose(index), [-1])

  # `perm_mask` and `target_mask`
  # non-functional tokens
  non_func_tokens = tf.logical_not(tf.logical_or(
      tf.equal(inputs, SEP_ID),
      tf.equal(inputs, CLS_ID)))

  non_mask_tokens = tf.logical_and(tf.logical_not(is_masked), non_func_tokens)
  masked_or_func_tokens = tf.logical_not(non_mask_tokens)

  # Set the permutation indices of non-masked (& non-funcional) tokens to the
  # smallest index (-1):
  # (1) they can be seen by all other positions
  # (2) they cannot see masked positions, so there won"t be information leak
  smallest_index = -tf.ones([seq_len], dtype=tf.int64)
  rev_index = tf.where(non_mask_tokens, smallest_index, index)

  # Create `target_mask`: non-funcional and maksed tokens
  # 1: use mask as input and have loss
  # 0: use token (or [SEP], [CLS]) as input and do not have loss
  target_tokens = tf.logical_and(masked_or_func_tokens, non_func_tokens)
  target_mask = tf.cast(target_tokens, tf.float32)

  # Create `perm_mask`
  # `target_tokens` cannot see themselves
  self_rev_index = tf.where(target_tokens, rev_index, rev_index + 1)

  # 1: cannot attend if i <= j and j is not non-masked (masked_or_func_tokens)
  # 0: can attend if i > j or j is non-masked
  perm_mask = tf.logical_and(
      self_rev_index[:, None] <= rev_index[None, :],
      masked_or_func_tokens)
  perm_mask = tf.cast(perm_mask, tf.float32)

  # new target: [next token] for LM and [curr token] (self) for PLM
  new_targets = tf.concat([inputs[0: 1], targets[: -1]],
                          axis=0)

  # construct inputs_k
  inputs_k = inputs

  # construct inputs_q
  inputs_q = target_mask

  return perm_mask, new_targets, target_mask, inputs_k, inputs_q