Esempio n. 1
0
def create_backbone_model(input_shape):
    # Very good efficiency/cost ratio for this model
    # I should test it without avg pooling, but time is short and results are
    # goot enough
    return EfficientNetB0(
            include_top=False, 
            weights='imagenet',
            pooling='avg',
            input_shape=input_shape)
Esempio n. 2
0
def define_classifier_architecture(architecture_name,
                                   image_size,
                                   weights,
                                   classifier_kwargs=None):
    if architecture_name == 'MobileNet':
        model = MobileNetV2(input_shape=image_size,
                            include_top=False,
                            weights=weights,
                            **classifier_kwargs)
    elif architecture_name == 'VGG16':
        model = VGG16(input_shape=image_size,
                      include_top=False,
                      weights=weights,
                      **classifier_kwargs)
    elif architecture_name == 'VGG19':
        model = VGG19(input_shape=image_size,
                      include_top=False,
                      weights=weights,
                      **classifier_kwargs)
    elif architecture_name == 'NASNetMobile':
        model = NASNetMobile(input_shape=image_size,
                             include_top=False,
                             weights=weights,
                             **classifier_kwargs)
    elif architecture_name == 'NASNetLarge':
        model = NASNetLarge(input_shape=image_size,
                            include_top=False,
                            weights=weights,
                            **classifier_kwargs)
    elif architecture_name == 'InceptionV3':
        model = InceptionV3(input_shape=image_size,
                            include_top=False,
                            weights=weights,
                            **classifier_kwargs)
    elif architecture_name == 'InceptionResNetV2':
        model = InceptionResNetV2(input_shape=image_size,
                                  include_top=False,
                                  weights=weights,
                                  **classifier_kwargs)
    elif architecture_name == 'Resnet50':
        model = ResNet50(input_shape=image_size,
                         include_top=False,
                         weights=weights,
                         **classifier_kwargs)
    elif architecture_name == 'EfficientNetB0':
        model = EfficientNetB0(input_shape=image_size,
                               include_top=False,
                               weights=weights,
                               **classifier_kwargs)
    else:
        raise ValueError(
            f"Classifier '{architecture_name}' is wrong or not implemented.")

    return model
Esempio n. 3
0
    def __init__(self, image_shape, name, trainable=False):
        super(BaseModel, self).__init__(name=name)
        if name == "EfficientNetB0":
            self.base_model = EfficientNetB0(include_top=False, input_shape=image_shape)
            self.preprocess_input = preprocess_input_efficientnetB0
        elif name == "InceptionV3":
            self.base_model = InceptionV3(include_top=False, input_shape=image_shape)
            self.preprocess_input = preprocess_input_inception_v3
        elif name == "VGG16":
            self.base_model = VGG16(include_top=False, input_shape=image_shape)
            self.preprocess_input = preprocess_input_vgg16
        elif name == "VGG19":
            self.base_model = VGG19(include_top=False, input_shape=image_shape)
            self.preprocess_input = preprocess_input_vgg19

        self.base_model.trainable = trainable
Esempio n. 4
0
def create_efficientnetb0(height, width, pretrained: bool, mode: XModelMode = XModelMode.SIMPLE):
    shape = (height, width, 3)

    tf.keras.layers.BatchNormalization = BatchNormalization
    base_model = EfficientNetB0(input_shape=shape, include_top=False, weights="imagenet" if pretrained else None)

    inputs = tf.keras.Input(shape=shape, name="input")
    base_model, features = upsample(
        base_model,
        inputs,
        ["block2b_activation", "block3b_activation", "block5c_activation", "top_activation"],  # 144, 240, 672, 1280
        # ["block2b_add", "block3b_add", "block5c_add", "block6d_add"], # 24, 40, 112, 192
        # resnet50: 256, 512, 1024, 2048
        mode,
    )
    return base_model, inputs, features
Esempio n. 5
0
    def __init__(self, is_new):
        super(Model, self).__init__()
        """
        This model will be used to classify temple run images into the action that should
        be taken at this point in the game.
        """

        print("Setting up model...")

        # hyperparamters

        self.batch_size = 20
        self.num_classes = 6
        self.img_height = 180
        self.img_width = 96
        self.image_shape = (self.img_height, self.img_width, 3)
        self.class_names = [
            'jmp', 'lean_left', 'lean_right', 'slide', 'turn_left',
            'turn_right'
        ]

        # create the model

        if is_new:  # check if making a new model or loading old (trained) model
            self.normalize = tf.keras.layers.experimental.preprocessing.Rescaling(
                1. / 255, input_shape=self.image_shape)  # normalizing layer

            # self.base_model = ResNet50(input_shape=self.image_shape, include_top=False, weights='imagenet') # resnet50
            self.base_model = EfficientNetB0(input_shape=self.image_shape,
                                             include_top=False,
                                             weights='imagenet')  # resnet50
            self.base_model.trainable = False  # freeze the base layer
            self.pool_layer = tf.keras.layers.GlobalAveragePooling2D()
            self.out_layer = tf.keras.layers.Dense(self.num_classes,
                                                   activation='relu')
            self.model = tf.keras.Sequential(
                [self.base_model, self.pool_layer,
                 self.out_layer])  # final model
            print(self.model.summary())

        else:
            self.model = tf.keras.models.load_model(
                '..models/tflow_model5')  # load the model from saved version
            print(self.model.summary())
Esempio n. 6
0
def build_efn_b0_model(num_classes):
    inputs = tf.keras.layers.Input(shape=(50, 50, 3))
    efn_b0_model = EfficientNetB0(include_top=False, input_tensor=inputs, weights="imagenet")

    # Freeze the pretrained weights
    efn_b0_model.trainable = False

    # Rebuild top
    x = tf.keras.layers.GlobalAveragePooling2D(name="avg_pool")(efn_b0_model.output)
    x = tf.keras.layers.BatchNormalization()(x)

    top_dropout_rate = 0.5
    x = tf.keras.layers.Dropout(top_dropout_rate, name="top_dropout")(x)
    outputs = tf.keras.layers.Dense(num_classes, activation="softmax", name="pred")(x)

    # Compile
    efn_b0_model = tf.keras.Model(inputs, outputs, name="EfficientNet")
    optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2)
    efn_b0_model.compile(
        optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"]
    )
    return efn_b0_model
Esempio n. 7
0
    seed = seed,
    subset = 'validation'
)

# Found 72000 images belonging to 1 classes.
test_data = test_gen.flow_from_directory(
    'C:/LPD_competition/t/test',
    target_size = (128, 128),
    class_mode = None,
    batch_size = batch,
    seed = seed,
    shuffle = False
)

#2. 모델
eff = EfficientNetB0(include_top = False, input_shape = (128, 128, 3))
eff.trainable = False

model = Sequential()
model.add(eff)
model.add(MaxPooling2D(2, padding = 'same'))
model.add(Conv2D(1280, 2, padding = 'same'))
model.add(MaxPooling2D(2, padding = 'same'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(5120, activation = 'relu', kernel_initializer = 'he_normal'))
model.add(Dropout(dropout))
model.add(Dense(2560, activation = 'relu', kernel_initializer = 'he_normal'))
model.add(Dense(1280, activation = 'relu', kernel_initializer = 'he_normal'))
model.add(Dense(1000, activation = 'softmax'))
Esempio n. 8
0
)
'''

import tensorflow as tf
#from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.efficientnet import EfficientNetB0
from tensorflow.keras.preprocessing import image
#from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
from tensorflow.keras.applications.efficientnet import preprocess_input, decode_predictions
import numpy as np

#model = ResNet50(weights='imagenet')
#model = EfficientNetB0(
#model = tf.keras.applications.EfficientNetB0(
model = EfficientNetB0(
  weights='imagenet'
)
print(model.summary())

#img_path = 'elephant.jpg'
img_path = 'dog.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
# 결과를 튜플의 리스트(클래스, 설명, 확률)로 디코딩합니다
# (배치 내 각 샘플 당 하나의 리스트)
print('Predicted:', decode_predictions(preds, top=3)[0])
# 예측결과: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]
Esempio n. 9
0
def create_feature_extactor(config: Dict):
    """
    Create the feature extractor based on pretrained existing keras models.
    :param config: dict holding the model and data config
    :return: feature extractor model
    """
    input_shape = (config["data"]["image_target_size"][0],
                   config["data"]["image_target_size"][1], 3)

    feature_extractor_type = config["model"]["feature_extractor"]["type"]

    weights = "imagenet"
    feature_extractor = Sequential(name='feature_extractor')
    if feature_extractor_type == "mobilenetv2":
        feature_extractor.add(
            MobileNetV2(include_top=False,
                        input_shape=input_shape,
                        weights=None,
                        pooling='avg'))
    elif feature_extractor_type == "efficientnetb0":
        feature_extractor.add(
            EfficientNetB0(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb1":
        feature_extractor.add(
            EfficientNetB1(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb2":
        feature_extractor.add(
            EfficientNetB2(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb3":
        feature_extractor.add(
            EfficientNetB3(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb4":
        feature_extractor.add(
            EfficientNetB4(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb5":
        feature_extractor.add(
            EfficientNetB5(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb6":
        feature_extractor.add(
            EfficientNetB6(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "efficientnetb7":
        feature_extractor.add(
            EfficientNetB7(include_top=False,
                           input_shape=input_shape,
                           weights=weights,
                           pooling='avg'))
    elif feature_extractor_type == "resnet50":
        feature_extractor.add(
            ResNet50(include_top=False,
                     input_shape=input_shape,
                     weights=weights,
                     pooling='avg'))
    elif feature_extractor_type == "simple_cnn":
        feature_extractor.add(tf.keras.layers.Input(shape=input_shape))
        feature_extractor.add(
            SeparableConv2D(64,
                            kernel_size=3,
                            activation='relu',
                            input_shape=input_shape))
        for i in range(3):
            feature_extractor.add(
                SeparableConv2D(32, kernel_size=3, activation='relu'))
            feature_extractor.add(
                SeparableConv2D(32, kernel_size=3, activation='relu'))
            feature_extractor.add(MaxPool2D(pool_size=(2, 2)))
        feature_extractor.add(
            SeparableConv2D(32, kernel_size=3, activation='relu'))
        feature_extractor.add(
            SeparableConv2D(32, kernel_size=3, activation='relu'))
    elif feature_extractor_type == "fsconv":
        feature_extractor.add(tf.keras.layers.Input(shape=input_shape))
        feature_extractor.add(Conv2D(32, kernel_size=3, activation='relu'))
        feature_extractor.add(MaxPool2D(strides=(2, 2)))
        feature_extractor.add(Conv2D(124, kernel_size=3, activation='relu'))
        feature_extractor.add(MaxPool2D(strides=(2, 2)))
        feature_extractor.add(Conv2D(512, kernel_size=3, activation='relu'))
        feature_extractor.add(MaxPool2D(strides=(2, 2)))
    elif feature_extractor_type == "mnist_cnn":
        input_shape = (config["data"]["image_target_size"][0],
                       config["data"]["image_target_size"][1], 1)
        # feature_extractor.add(tf.keras.layers.Input(shape=input_shape))
        # feature_extractor.add(Conv2D(8, kernel_size=3, activation='relu', input_shape=input_shape))
        # feature_extractor.add(MaxPool2D(strides=(2, 2)))
        # feature_extractor.add(Conv2D(16, kernel_size=3, activation='relu', input_shape=input_shape))
        # feature_extractor.add(MaxPool2D(strides=(2, 2)))
        feature_extractor.add(Flatten(input_shape=(28, 28)))
        feature_extractor.add(tf.keras.layers.Dense(128, activation='relu'))
        feature_extractor.add(tf.keras.layers.Dense(64, activation='relu'))
    else:
        raise Exception("Choose valid model architecture!")

    if config["model"]["feature_extractor"]["global_max_pooling"]:
        feature_extractor.add(GlobalMaxPool2D())
    if config["model"]["feature_extractor"]["num_output_features"] > 0:
        activation = config["model"]["feature_extractor"]["output_activation"]
        feature_extractor.add(
            Dense(config["model"]["feature_extractor"]["num_output_features"],
                  activation=activation))
    # feature_extractor.build(input_shape=input_shape)
    return feature_extractor
Esempio n. 10
0
 def download_for_url(self, path: str, **kwargs):
     """
     Download the file at the given URL
     :param path:  the path to download
     :param kwargs:  various kwargs for customizing the underlying behavior of
     the model download and setup
     :return: the absolute path to the model
     """
     path_split = path.split('/')
     type = path_split[0]
     weights_file = path_split[1]
     include_top = 'no_top' in weights_file
     if type == 'vgg19':
         ret = VGG19(include_top=include_top, **kwargs)
     elif type == 'vgg16':
         ret = VGG16(include_top=include_top, **kwargs)
     elif type == 'resnet50':
         ret = ResNet50(include_top=include_top, **kwargs)
     elif type == 'resnet101':
         ret = ResNet101(include_top=include_top, **kwargs)
     elif type == 'resnet152':
         ret = ResNet152(include_top=include_top, **kwargs)
     elif type == 'resnet50v2':
         ret = ResNet50V2(include_top=include_top, **kwargs)
     elif type == 'resnet101v2':
         ret = ResNet101V2(include_top=include_top, **kwargs)
     elif type == 'resnet152v2':
         ret = ResNet152V2(include_top=include_top, **kwargs)
     elif type == 'densenet121':
         ret = DenseNet121(include_top=include_top)
     elif type == 'densenet169':
         ret = DenseNet169(include_top=include_top, **kwargs)
     elif type == 'densenet201':
         ret = DenseNet201(include_top=include_top, **kwargs)
     elif type == 'inceptionresnetv2':
         ret = InceptionResNetV2(include_top=include_top, **kwargs)
     elif type == 'efficientnetb0':
         ret = EfficientNetB0(include_top=include_top, **kwargs)
     elif type == 'efficientnetb1':
         ret = EfficientNetB1(include_top=include_top, **kwargs)
     elif type == 'efficientnetb2':
         ret = EfficientNetB2(include_top=include_top, **kwargs)
     elif type == 'efficientnetb3':
         ret = EfficientNetB3(include_top=include_top, **kwargs)
     elif type == 'efficientnetb4':
         ret = EfficientNetB4(include_top=include_top, **kwargs)
     elif type == 'efficientnetb5':
         ret = EfficientNetB5(include_top=include_top, **kwargs)
     elif type == 'efficientnetb6':
         ret = EfficientNetB6(include_top=include_top, **kwargs)
     elif type == 'efficientnetb7':
         efficient_net = EfficientNetB7(include_top=include_top, **kwargs)
     elif type == 'mobilenet':
         ret = MobileNet(include_top=include_top, **kwargs)
     elif type == 'mobilenetv2':
         ret = MobileNetV2(include_top=include_top)
     #  MobileNetV3() missing 2 required positional arguments: 'stack_fn' and 'last_point_ch'
     #elif type == 'mobilenetv3':
     #    mobile_net = MobileNetV3(include_top=include_top, **kwargs)
     elif type == 'inceptionv3':
         ret = InceptionV3(include_top=include_top, **kwargs)
     elif type == 'nasnet':
         ret = NASNetLarge(include_top=include_top, **kwargs)
     elif type == 'nasnet_mobile':
         ret = NASNetMobile(include_top=include_top, **kwargs)
     elif type == 'xception':
         ret = Xception(include_top=include_top, **kwargs)
     model_path = os.path.join(keras_path, weights_file)
     ret.save(model_path)
     return model_path
Esempio n. 11
0
              metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=30)
'''

import tensorflow as tf
from tensorflow.keras.applications.efficientnet import EfficientNetB0
from tensorflow.keras.preprocessing import image
#from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
from tensorflow.keras.applications.efficientnet import preprocess_input, decode_predictions
import numpy as np

#model = ResNet50(weights='imagenet')
#model = EfficientNetB0(
#model = tf.keras.applications.EfficientNetB0(
model = EfficientNetB0(weights=None, input_shape=(96, 96, 3), classes=10)

checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

latest = tf.train.latest_checkpoint(checkpoint_dir)
print(latest)
model.load_weights(latest)

print(model.summary())

train_images = preprocess_input(train_images)

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
Esempio n. 12
0
def train(args):
    '''
    Trains model and saves it to <model_save> directory
    '''
    if args['resume_training'] is None:
        efficientnet_backbone = EfficientNetB0(include_top=False,
                                               weights='imagenet',
                                               input_shape=(224, 224, 3),
                                               pooling='max')

        for layer in efficientnet_backbone.layers[:-20]:
            layer.trainable = False

        fcl = Dense(360,
                    activation='softmax',
                    kernel_initializer='glorot_uniform',
                    name='output')(efficientnet_backbone.output)

        model = Model(inputs=efficientnet_backbone.input, outputs=fcl)

    else:
        model = load_model(args['resume_training'],
                           custom_objects={'angle_loss': angle_loss})

    # Used for iterative training strategy
    # model = load_model("model_4.h5", custom_objects={'angle_loss': angle_loss})
    # for layer in model.layers[-25:]:
    #     layer.trainable = True

    total_img_paths = glob.glob(os.path.join(args['image_dir'], "*.jpg"))
    random.shuffle(total_img_paths)

    split = int(args['val_split'] * len(total_img_paths))

    # Splitting into training and valididation sets
    val_img_paths = total_img_paths[:split]
    train_img_paths = total_img_paths[split:]

    # Defining training and validation generators
    train_gen = DataGenerator(train_img_paths,
                              rotate=True,
                              batch_size=args['batch_size'],
                              preprocess_function=preprocess_input,
                              dim=args['img_size'],
                              shuffle=True,
                              show_intermediate=False,
                              regress=args['regress'])

    val_gen = DataGenerator(val_img_paths,
                            rotate=True,
                            batch_size=args['batch_size'],
                            preprocess_function=preprocess_input,
                            dim=args['img_size'],
                            shuffle=True,
                            show_intermediate=False,
                            regress=args['regress'])

    checkpoint_dir = '../model_checkpoints' if args[
        'resume_training'] is None else args['resume_training']

    # Defining callbacks
    rlr = ReduceLROnPlateau(monitor='val_angle_loss',
                            patience=1,
                            verbose=1,
                            min_lr=1e-6)
    es = EarlyStopping(monitor='val_angle_loss',
                       patience=2,
                       verbose=1,
                       restore_best_weights=True)
    tsb = TensorBoard(log_dir=args['tb_dir'],
                      histogram_freq=0,
                      write_images=True,
                      write_graph=False,
                      update_freq='batch')
    ckpt = ModelCheckpoint(filepath=checkpoint_dir,
                           monitor='val_angle_loss',
                           verbose=1,
                           save_best_only=True)

    # Compiling the model
    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=[angle_loss])
    print(model.summary())

    # Start training
    print("Starting training..")
    model.fit(train_gen,
              steps_per_epoch=len(train_img_paths) // args['batch_size'],
              epochs=args['n_epochs'],
              callbacks=[es, rlr, ckpt, tsb],
              validation_data=val_gen,
              validation_batch_size=args['batch_size'],
              validation_steps=len(val_img_paths) // args['batch_size'])

    # Saving the trained model
    print("Saving model to:", args['model_save'])
    model.save(os.path.join(args['model_save'], "model.h5"))
Esempio n. 13
0
    seed = seed,
    subset = 'validation'
)

# Found 72000 images belonging to 1 classes.
test_data = test_gen.flow_from_directory(
    'C:/data/LPD_competition/test',
    target_size = (256, 256),
    class_mode = None,
    batch_size = batch,
    seed = seed,
    shuffle = False
)

#2. 모델
eff = EfficientNetB0(include_top = False, input_shape = (256, 256, 3))
eff.trainable = False

model = Sequential()
model.add(eff)
# model.add(MaxPooling2D(2, padding = 'same'))
# model.add(Conv2D(1280, 2, padding = 'same'))
# model.add(MaxPooling2D(2, padding = 'same'))
# model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(1500, activation = 'relu', kernel_initializer = 'he_normal'))
# model.add(Dropout(dropout))
# model.add(Dense(2560, activation = 'relu', kernel_initializer = 'he_normal'))
# model.add(Dense(1280, activation = 'relu', kernel_initializer = 'he_normal'))
model.add(Dense(1000, activation = 'softmax'))
Esempio n. 14
0
import tensorflow as tf
import matplotlib.pyplot as plt
from pathlib import Path
from typing import List, Dict
from datetime import datetime
from fastapi import FastAPI, BackgroundTasks, File, UploadFile
from tensorflow.keras.applications.efficientnet import EfficientNetB0, decode_predictions


IMAGE_SIZE = (224, 224)

plt.switch_backend('Agg')

app = FastAPI()

model = EfficientNetB0(weights=None)
model.load_weights('weights/effnet-b0.ckpt')


def save_prediction(image: np.ndarray,
                    classes: List[str],
                    probs: List[float],
                    savepath: Path) -> None:
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
    ax1.set_title('Input image')
    ax1.imshow(image)
    ax2.set_title('Top probabilities')
    ax2.barh(classes, probs)
    ax2.invert_yaxis()
    fig.tight_layout()
    plt.savefig(savepath)