Conv2D(filters=32, kernel_size=(1, 1), padding='same', activation='relu', name='conv2dweight_' + str(ii), weights=[W, bias])) else: if layer_type == "Conv2D": layer_config = Conv2D.get_config(layer_lst[ii]) layer_temp = Conv2D.from_config(layer_config) elif layer_type == "MaxPooling2D": layer_config = MaxPooling2D.get_config(layer_lst[ii]) layer_temp = MaxPooling2D.from_config(layer_config) elif layer_type == "Dense": layer_config = Dense.get_config(layer_lst[ii]) layer_temp = Dense.from_config(layer_config) elif layer_type == "Flatten": layer_temp = Flatten() else: layer_config = tf.keras.layers.Layer.get_config(layer_lst[ii]) layer_temp = tf.keras.layers.Layer.from_config(layer_config) layer_weight = layer_lst[ii].get_weights() layer_temp.build(layer_lst[ii].input_shape) if layer_weight: layer_temp.set_weights(layer_weight) model_new.add(layer_temp) model_new.compile(optimizer='adam',
def conv_swap(filepath, model=settings.options.predictmodel): old_model = load_model(model, custom_objects={ 'dsc_l2': dsc_l2, 'l1': l1, 'dsc': dsc, 'dsc_int': dsc, 'ISTA': ISTA }) layer_lst = [l for l in old_model.layers] with tf.name_scope('my_scope'): layer_in = layer_lst[0].input print(layer_lst[0].name) print(layer_lst[1].name) layer_config = Activation.get_config(layer_lst[1]) layer_temp = Activation.from_config(layer_config) layer_temp.build(layer_lst[1].input_shape) layer_mid = layer_temp(layer_in) for ii in range(2, len(layer_lst) - 1): layer_type = type(layer_lst[ii]).__name__ layer_next = type(layer_lst[ii + 1]).__name__ print(layer_lst[ii].name) if layer_type == "Conv2D" and layer_type != "MaxPooling2D" and layer_lst[ ii].input_shape == layer_lst[ii].output_shape: conv, bias = layer_lst[ii].get_weights() D, W, _, err, idx = depthwise_factorization(np.array(conv)) print(err[idx - 1]) D = D[..., np.newaxis] W = W.T W = W[np.newaxis, np.newaxis, ...] if layer_next == "Add": layer_temp = DepthwiseConv2D( kernel_size=layer_lst[ii].kernel_size, padding='same', activation='linear', use_bias=False, weights=[D])(layer_mid) layer_temp = Conv2D(filters=settings.options.filters, kernel_size=(1, 1), padding='same', activation=settings.options.activation, name='conv2Dweight_' + str(ii), weights=[W, bias])(layer_temp) layer_mid = Add()([layer_mid, layer_temp]) else: layer_mid = DepthwiseConv2D( kernel_size=layer_lst[ii].kernel_size, padding='same', activation='linear', use_bias=False, weights=[D])(layer_mid) layer_mid = Conv2D(filters=settings.options.filters, kernel_size=(1, 1), padding='same', activation=settings.options.activation, name='conv2dweight_' + str(ii), weights=[W, bias])(layer_mid) elif layer_type == "Add": continue else: if layer_type == "Conv2D": layer_config = Conv2D.get_config(layer_lst[ii]) layer_temp = Conv2D.from_config(layer_config) elif layer_type == "MaxPooling2D": layer_config = MaxPooling2D.get_config(layer_lst[ii]) layer_temp = MaxPooling2D.from_config(layer_config) elif layer_type == "AveragePooling2D": layer_config = AveragePooling2D.get_config(layer_lst[ii]) layer_temp = AveragePooling2D.from_config(layer_config) elif layer_type == "UpSampling2D": layer_config = UpSampling2D.get_config(layer_lst[ii]) layer_temp = UpSampling2D.from_config(layer_config) elif layer_type == "SpatialDropout2D": layer_config = SpatialDropout2D.get_config(layer_lst[ii]) layer_temp = SpatialDropout2D.from_config(layer_config) elif layer_type == "Dense": layer_config = Dense.get_config(layer_lst[ii]) layer_temp = Dense.from_config(layer_config) else: layer_config = keras.layers.Layer.get_config(layer_lst[ii]) layer_temp = keras.layers.Layer.from_config(layer_config) layer_weight = layer_lst[ii].get_weights() layer_temp.build(layer_lst[ii].input_shape) if layer_weight: layer_temp.set_weights(layer_weight) if layer_next == "Add": layer_temp = layer_temp(layer_mid) layer_mid = Add()([layer_mid, layer_temp]) else: layer_mid = layer_temp(layer_mid) # final layer if layer_type == "Conv2D": layer_config = Conv2D.get_config(layer_lst[-1]) layer_temp = Conv2D.from_config(layer_config) elif layer_type == "Dense": layer_config = Dense.get_config(layer_lst[-1]) layer_temp = Dense.from_config(layer_config) layer_weight = layer_lst[-1].get_weights() layer_temp.build(layer_lst[-1].input_shape) if layer_weight: layer_temp.set_weights(layer_weight) layer_out = layer_temp(layer_mid) new_model = Model(inputs=layer_in, outputs=layer_out) new_model.summary() tf.keras.models.save_model(new_model, filepath) return new_model