Esempio n. 1
0
 def save_models_to_disk_static(top_model, root, new_name):
     top_model.model = lm(root + '{}.h5'.format(new_name))
     top_model.inf_encoder_model = lm(root +
                                      '{}_inf_encoder.h5'.format(new_name))
     top_model.inf_intent_classifier = lm(
         root + '{}_inf_intent.h5'.format(new_name))
     top_model.inf_decoder_model = lm(root +
                                      '{}_inf_decoder.h5'.format(new_name))
Esempio n. 2
0
 def load_models_from_disk(self, root, new_name):
     # self.model = lm(root + '{}.h5'.format(new_name))
     self.inf_encoder_model = lm(root +
                                 '{}_inf_encoder.h5'.format(new_name))
     self.inf_intent_classifier = lm(root +
                                     '{}_inf_intent.h5'.format(new_name))
     self.inf_decoder_model = lm(root +
                                 '{}_inf_decoder.h5'.format(new_name))
Esempio n. 3
0
def load_model(model_path):
    """Loads the model using a json description of the model and a hdf file containing the weights.

    Args:
        model_path: path to the model.h5 file.

    Returns:
        model: model object
    """
    return lm(model_path)
Esempio n. 4
0
from PIL import Image as im


def open(p: str) -> np.ndarray:
    img = im.open(os.path.join(path, p)).convert('L')
    (width, height) = img.size
    if width > 28 and height > 28:
        img = img.resize((28, 28), im.ANTIALIAS)
    else:
        pass
    (width, height) = img.size
    img = list(img.getdata())
    img = np.array(img)
    img = img.reshape((height, width))
    return img


def norm(x: np.ndarray):
    ret = x / 255
    ret = np.expand_dims(ret, axis=0)
    ret = np.expand_dims(ret, axis=3)
    return ret


model = lm('IRC_MNIST.h5')

img = open('MyTestNum1.png')
img = norm(img)
res = model.predict(img)
print(f"Розпізнана цифра: {np.argmax(res)}")
Esempio n. 5
0
 def load_model_2(self, path):
     # self.sess = tf.Session()
     # with self.sess.as_default():
      # # backend.set_session(self.sess)
     with CustomObjectScope({'GlorotUniform': glorot_uniform()}):
         return lm(path)
Esempio n. 6
0
#	frame['eventid'] = dataclasses.I3VectorDouble(eventid)
#	frame['TCN'] = dataclasses.I3VectorDouble(prediction_vector)
#	frame['truth'] = dataclasses.I3VectorDouble(truth_vector)


def savefeatures(frame, fin=None, names=None):
    for i, name in enumerate(names):
        fin[i].append(frame[name])


use_truth = 1
#Tensorflow stuff
if use_truth == 0:
    from tensorflow.keras.models import load_model as lm
    model = lm(
        '/home/sstray/test/condor/corsikafiles/corsika_model_test/classification_model'
    )
#
import os
from I3Tray import *
from icecube import dataio
from icecube import dataclasses
from icecube import simclasses
from icecube import recclasses
import numpy as np
#import cProfile, pstats, StringIO
import argparse
import matplotlib.path as mpath
bordercoords = np.array([(-256.1400146484375, -521.0800170898438),
                         (-132.8000030517578, -501.45001220703125),
                         (-9.13000011444092, -481.739990234375),
Esempio n. 7
0
parser.add_argument('-rad','--radius')
parser.add_argument('-th','--threshold')
args = parser.parse_args()

if args.radius:
	rad = args.radius
else:
	rad = 75
	print('No radius supplied. Will default to 75')
if args.threshold:
	th = args.threshold
else:
	th = 0.9
	print('No threshold supplied. Will default to 0.9')
meanstd = np.loadtxt('/home/sstray/test/condor/singu/meanstd.txt')
model = lm('/home/sstray/test/condor/singu/my_model/classification_model')

def get_groups(features_in,event_in):
  features = features_in
  eventnum = event_in
  grouped_features = ([features[np.isin(eventnum,[i])] for i in np.unique(eventnum)])
  grouped_features = [np.vstack((np.array(i),np.zeros((100,features.shape[1]))))[:100] for i in grouped_features if len(i)<100 if len(i)>10]
  grouped_features = np.dstack(grouped_features)
  grouped_features = np.rollaxis(grouped_features,2,0)
  return grouped_features


filelist = args.infiles.split(',')
print(filelist)
for nums in range(len(filelist)):
	hf = h5py.File(filelist[nums],'r')