open(options['file_arch'], 'w').write(json_string) model.save_weights(options['file_weight']) save(self.generator, "generator") save(self.discriminator, "discriminator") if __name__ == '__main__': cgan = CGAN() #cgan.discriminator.load_weights("C:/Users/ZhenjuYin/Documents/Python Scripts/emotic/class/cgan/discriminatornew_weights.h5") #cgan.generator.load_weights("C:/Users/ZhenjuYin/Documents/Python Scripts/emotic/class/cgan/generatornew_weights.h5") cgan.classifier.load_weights("C:/Users/ZhenjuYin/Documents/Python Scripts/emotic/class/saved/model4_weights.h5") cgan.train(epochs=500, batch_size=16, sample_interval=20) data = np.load('C:/Users/ZhenjuYin/Documents/Python Scripts/emotic/test_image_data.npy',allow_pickle=True) image = (data[0:1].astype(np.float32)- 127.5) / 127.5 f = Model(inputs=cgan.classifier.input,outputs=cgan.classifier.get_layer('seq').get_layer('m').output)(image) with tf.Session() as sess: f = f.eval() f = 0.5*f+0.5 r, c = 4,4 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(f[0,:,:,cnt]) axs[i,j].axis('off') cnt += 1 fig.savefig("C:/Users/ZhenjuYin/Documents/Python Scripts/emotic/class/cgan/imagesnew/c.png" )
x = x.unsqueeze(0) x.shape preds = model(x) preds.flatten().argsort()[:5] # lets look at the model model model.conv_head model.conv_head.weight # How do we freeze weights model.eval() for parameter in model.parameters(): print(f'{parameter.shape}\t\t\t\t\tTrainable {parameter.requires_grad}') model # Change the number of output classes model.classifier = torch.nn.Linear(1536, 5) out = model(x) out.shape out dir(model) # Make the conv_stem kernel_size 1 and stride 1 model.conv_stem