Esempio n. 1
0
    def testAggregate(self):
        a = array_ops.constant([3., 4.])
        b = array_ops.constant([5., 6.])
        hint = op_hint.OpHint("agg")
        a0, a1 = array_ops.unstack(a)
        b0, b1 = array_ops.unstack(b)

        a0 = hint.add_input(a0,
                            tag="c",
                            aggregate=op_hint.OpHint.AGGREGATE_STACK)
        b0 = hint.add_input(b0,
                            tag="n",
                            aggregate=op_hint.OpHint.AGGREGATE_STACK)
        a1 = hint.add_input(a1,
                            tag="c",
                            aggregate=op_hint.OpHint.AGGREGATE_STACK)
        b1 = hint.add_input(b1,
                            tag="n",
                            aggregate=op_hint.OpHint.AGGREGATE_STACK)

        c0 = math_ops.add(a0, b0, name="addleft")
        c1 = math_ops.add(a1, b1, name="addright")
        c0 = hint.add_output(c0,
                             tag="out",
                             aggregate=op_hint.OpHint.AGGREGATE_STACK)
        c1 = hint.add_output(c1,
                             tag="out",
                             aggregate=op_hint.OpHint.AGGREGATE_STACK)

        curr = array_ops.stack([c0, c1])
        output = array_ops.identity(curr, name="FINAL_OUTPUT")
        with self.cached_session() as sess:
            stubbed_graphdef = op_hint.convert_op_hints_to_stubs(
                graph_def=sess.graph_def)
            self.assertEqual(
                self._getGraphOpTypes(
                    stubbed_graphdef,
                    output_nodes=[op_hint._tensor_name_base(output.name)]),
                set(["agg", "Const", "Identity"]))
Esempio n. 2
0
 def testTags(self):
   """Test if multiple args with the same tag are grouped."""
   a = array_ops.constant([1.])
   b = array_ops.constant([2.])
   c = array_ops.constant([3.])
   d = array_ops.constant([4.])
   custom = op_hint.OpHint("test_tag")
   a = custom.add_input(a, tag="mytag",
                        aggregate=op_hint.OpHint.AGGREGATE_STACK)
   b, = custom.add_inputs(b)
   c = custom.add_input(c, tag="mytag",
                        aggregate=op_hint.OpHint.AGGREGATE_STACK)
   d = custom.add_input(d, tag="mytag2",
                        aggregate=op_hint.OpHint.AGGREGATE_STACK)
   res = math_ops.add(math_ops.mul(a, b), math_ops.mul(c, b))
   custom.add_outputs([res])
   with self.cached_session():
     self.assertEqual(self._get_input_index(a), 0)
     self.assertEqual(self._get_sort_index(a), 0)
     self.assertEqual(self._get_input_index(b), 1)
     self.assertEqual(self._get_input_index(c), 0)
     self.assertEqual(self._get_sort_index(c), 1)
Esempio n. 3
0
  def __init__(self,
               num_units,
               activation=None,
               reuse=None,
               name=None,
               dtype=None,
               **kwargs):
    """Initializes the parameters for an RNN cell.

    Args:
      num_units: int, The number of units in the RNN cell.
      activation: Nonlinearity to use.  Default: `tanh`. It could also be string
        that is within Keras activation function names.
      reuse: (optional) Python boolean describing whether to reuse variables in
        an existing scope. Raises an error if not `True` and the existing scope
        already has the given variables.
      name: String, the name of the layer. Layers with the same name will share
        weights, but to avoid mistakes we require reuse=True in such cases.
      dtype: Default dtype of the layer (default of `None` means use the type of
        the first input). Required when `build` is called before `call`.
      **kwargs: Dict, keyword named properties for common layer attributes, like
        `trainable` etc when constructing the cell from configs of get_config().

    Raises:
      ValueError: If the existing scope already has the given variables.
    """
    super(TfLiteRNNCell, self).__init__(
        _reuse=reuse, name=name, dtype=dtype, **kwargs)

    # Inputs must be Rank-2.
    self.input_spec = base_layer.InputSpec(ndim=2)

    self._tflite_wrapper = op_hint.OpHint("UnidirectionalSequenceRnn")
    self._num_units = num_units
    if activation:
      self._activation = activations.get(activation)
    else:
      self._activation = math_ops.tanh
Esempio n. 4
0
 def _build_ophinted_op(name, input1, input2):
     custom_op = op_hint.OpHint(name)
     input1 = custom_op.add_input(input1)
     input2 = custom_op.add_input(input2)
     output = math_ops.mul(input1, input2)
     return custom_op.add_output(output)
Esempio n. 5
0
 def _double_values(x):
     custom = op_hint.OpHint("add_test")
     x, = custom.add_inputs(x)
     output = math_ops.multiply(x, x)
     output, = custom.add_outputs(output)
     return output
Esempio n. 6
0
 def _scaled_and_bias_and_identity(a, x, b):
     custom = op_hint.OpHint("scale_and_bias_and_identity")
     a, x, b = custom.add_inputs(a, x, b)
     return custom.add_outputs(a * x + b, x)
Esempio n. 7
0
 def _swish(input_tensor, scale):
     custom = op_hint.OpHint("cool_activation")
     input_tensor, scale = custom.add_inputs(input_tensor, scale)
     output = math_ops.sigmoid(input_tensor) * input_tensor * scale
     output, = custom.add_outputs(output)
     return output
Esempio n. 8
0
def dynamic_rnn(cell,
                inputs,
                sequence_length=None,
                initial_state=None,
                dtype=None,
                parallel_iterations=None,
                swap_memory=False,
                time_major=True,
                scope=None):
    """Creates a recurrent neural network specified by RNNCell `cell`.

  Performs fully dynamic unrolling of `inputs`.

  Example:

  ```python
  # create a BasicRNNCell
  rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)

  # 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]

  # defining initial state
  initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32)

  # 'state' is a tensor of shape [batch_size, cell_state_size]
  outputs, state = tf.nn.dynamic_rnn(rnn_cell, input_data,
                                     initial_state=initial_state,
                                     dtype=tf.float32)
  ```

  ```python
  # create 2 LSTMCells
  rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]

  # create a RNN cell composed sequentially of a number of RNNCells
  multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers)

  # 'outputs' is a tensor of shape [batch_size, max_time, 256]
  # 'state' is a N-tuple where N is the number of LSTMCells containing a
  # tf.contrib.rnn.LSTMStateTuple for each cell
  outputs, state = tf.nn.dynamic_rnn(cell=multi_rnn_cell,
                                     inputs=data,
                                     dtype=tf.float32)
  ```


  Args:
    cell: An instance of RNNCell.
    inputs: The RNN inputs.
      If `time_major == False` (default), this must be a `Tensor` of shape:
        `[batch_size, max_time, ...]`, or a nested tuple of such elements.
      If `time_major == True`, this must be a `Tensor` of shape: `[max_time,
        batch_size, ...]`, or a nested tuple of such elements. This may also be
        a (possibly nested) tuple of Tensors satisfying this property.  The
        first two dimensions must match across all the inputs, but otherwise the
        ranks and other shape components may differ. In this case, input to
        `cell` at each time-step will replicate the structure of these tuples,
        except for the time dimension (from which the time is taken). The input
        to `cell` at each time step will be a `Tensor` or (possibly nested)
        tuple of Tensors each with dimensions `[batch_size, ...]`.
    sequence_length: (optional) An int32/int64 vector sized `[batch_size]`. Used
      to copy-through state and zero-out outputs when past a batch element's
      sequence length.  So it's more for performance than correctness.
    initial_state: (optional) An initial state for the RNN. If `cell.state_size`
      is an integer, this must be a `Tensor` of appropriate type and shape
      `[batch_size, cell.state_size]`. If `cell.state_size` is a tuple, this
      should be a tuple of tensors having shapes `[batch_size, s] for s in
      cell.state_size`.
    dtype: (optional) The data type for the initial state and expected output.
      Required if initial_state is not provided or RNN state has a heterogeneous
      dtype.
    parallel_iterations: (Default: 32).  The number of iterations to run in
      parallel.  Those operations which do not have any temporal dependency and
      can be run in parallel, will be.  This parameter trades off time for
      space.  Values >> 1 use more memory but take less time, while smaller
      values use less memory but computations take longer.
    swap_memory: Transparently swap the tensors produced in forward inference
      but needed for back prop from GPU to CPU.  This allows training RNNs which
      would typically not fit on a single GPU, with very minimal (or no)
      performance penalty.
    time_major: The shape format of the `inputs` and `outputs` Tensors. If true,
      these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false,
      these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using
      `time_major = True` is a bit more efficient because it avoids transposes
      at the beginning and end of the RNN calculation.  However, most TensorFlow
      data is batch-major, so by default this function accepts input and emits
      output in batch-major form.
    scope: VariableScope for the created subgraph; defaults to "rnn".

  Returns:
    A pair (outputs, state) where:

    outputs: The RNN output `Tensor`.

      If time_major == False (default), this will be a `Tensor` shaped:
        `[batch_size, max_time, cell.output_size]`.

      If time_major == True, this will be a `Tensor` shaped:
        `[max_time, batch_size, cell.output_size]`.

      Note, if `cell.output_size` is a (possibly nested) tuple of integers
      or `TensorShape` objects, then `outputs` will be a tuple having the
      same structure as `cell.output_size`, containing Tensors having shapes
      corresponding to the shape data in `cell.output_size`.

    state: The final state.  If `cell.state_size` is an int, this
      will be shaped `[batch_size, cell.state_size]`.  If it is a
      `TensorShape`, this will be shaped `[batch_size] + cell.state_size`.
      If it is a (possibly nested) tuple of ints or `TensorShape`, this will
      be a tuple having the corresponding shapes. If cells are `LSTMCells`
      `state` will be a tuple containing a `LSTMStateTuple` for each cell.

  Raises:
    TypeError: If `cell` is not an instance of RNNCell.
    ValueError: If inputs is None or an empty list.
    RuntimeError: If not using control flow v2.
  """

    # Currently only support time_major == True case.
    assert time_major

    # TODO(b/123051275): We need to check if the cells are TfLiteLSTMCells or
    # TfLiteRNNCells.
    rnn_cell_impl.assert_like_rnncell("cell", cell)

    if not control_flow_util.ENABLE_CONTROL_FLOW_V2:
        raise RuntimeError("OpHint dynamic rnn only supports control flow v2.")

    parent_first_child_input = [{
        "parent_ophint_input_index": 0,
        "first_child_ophint_input_index": 0
    }]
    parent_last_child_output = [{
        "parent_output_index": 0,
        # For LstmCell, the index is 2.
        # For RnnCell, the index is 1.
        # So we use -1 meaning it's the last one.
        "child_output_index": -1
    }]
    internal_children_input_output = [{
        "child_input_index": 0,
        # For LstmCell, the index is 2.
        # For RnnCell, the index is 1.
        # So we use -1 meaning it's the last one.
        "child_output_index": -1
    }]
    inputs_outputs_mappings = {
        "parent_first_child_input": parent_first_child_input,
        "parent_last_child_output": parent_last_child_output,
        "internal_children_input_output": internal_children_input_output
    }
    tflite_wrapper = op_hint.OpHint(
        "TfLiteDynamicRnn",
        level=2,
        children_inputs_mappings=inputs_outputs_mappings)
    with vs.variable_scope(scope or "rnn") as varscope:
        # Create a new scope in which the caching device is either
        # determined by the parent scope, or is set to place the cached
        # Variable using the same placement as for the rest of the RNN.
        if _should_cache():
            if varscope.caching_device is None:
                varscope.set_caching_device(lambda op: op.device)

        inputs = tflite_wrapper.add_input(inputs,
                                          name="input",
                                          index_override=0)

        # By default, time_major==False and inputs are batch-major: shaped
        #   [batch, time, depth]
        # For internal calculations, we transpose to [time, batch, depth]
        flat_input = nest.flatten(inputs)

        if not time_major:
            # (batch, time, depth) => (time, batch, depth)
            flat_input = [
                ops.convert_to_tensor(input_) for input_ in flat_input
            ]
            flat_input = tuple(
                _transpose_batch_time(input_) for input_ in flat_input)

        parallel_iterations = parallel_iterations or 32
        if sequence_length is not None:
            sequence_length = math_ops.cast(sequence_length, dtypes.int32)
            if sequence_length.shape.rank not in (None, 1):
                raise ValueError(
                    "sequence_length must be a vector of length batch_size, "
                    "but saw shape: %s" % sequence_length.shape)
            sequence_length = array_ops.identity(  # Just to find it in the graph.
                sequence_length,
                name="sequence_length")

        batch_size = _best_effort_input_batch_size(flat_input)

        if initial_state is not None:
            state = initial_state
        else:
            if not dtype:
                raise ValueError(
                    "If there is no initial_state, you must give a dtype.")
            if getattr(cell, "get_initial_state", None) is not None:
                state = cell.get_initial_state(inputs=None,
                                               batch_size=batch_size,
                                               dtype=dtype)
            else:
                state = cell.zero_state(batch_size, dtype)

        def _assert_has_shape(x, shape):
            x_shape = array_ops.shape(x)
            packed_shape = array_ops.stack(shape)
            return control_flow_ops.Assert(
                math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)), [
                    "Expected shape for Tensor %s is " % x.name, packed_shape,
                    " but saw shape: ", x_shape
                ])

        if not context.executing_eagerly() and sequence_length is not None:
            # Perform some shape validation
            with ops.control_dependencies(
                [_assert_has_shape(sequence_length, [batch_size])]):
                sequence_length = array_ops.identity(sequence_length,
                                                     name="CheckSeqLen")

        inputs = nest.pack_sequence_as(structure=inputs,
                                       flat_sequence=flat_input)

        outputs, final_state = _dynamic_rnn_loop(
            cell,
            inputs,
            state,
            parallel_iterations=parallel_iterations,
            swap_memory=swap_memory,
            sequence_length=sequence_length,
            dtype=dtype)

        # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth].
        # If we are performing batch-major calculations, transpose output back
        # to shape [batch, time, depth]
        if not time_major:
            # (time, batch, depth) => (batch, time, depth)
            outputs = nest.map_structure(_transpose_batch_time, outputs)
        outputs = tflite_wrapper.add_output(outputs, name="outputs")

        return outputs, final_state
Esempio n. 9
0
    def __init__(self,
                 num_units,
                 use_peepholes=False,
                 cell_clip=None,
                 initializer=None,
                 num_proj=None,
                 proj_clip=None,
                 num_unit_shards=None,
                 num_proj_shards=None,
                 forget_bias=1.0,
                 state_is_tuple=True,
                 activation=None,
                 reuse=None,
                 name=None,
                 dtype=None):
        """Initialize the parameters for an LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      use_peepholes: bool, set True to enable diagonal/peephole connections.
      cell_clip: (optional) A float value, if provided the cell state is clipped
        by this value prior to the cell output activation.
      initializer: (optional) The initializer to use for the weight and
        projection matrices.
      num_proj: (optional) int, The output dimensionality for the projection
        matrices.  If None, no projection is performed.
      proj_clip: (optional) A float value.  If `num_proj > 0` and `proj_clip` is
        provided, then the projected values are clipped elementwise to within
        `[-proj_clip, proj_clip]`.
      num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a
        variable_scope partitioner instead.
      num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a
        variable_scope partitioner instead.
      forget_bias: Biases of the forget gate are initialized by default to 1 in
        order to reduce the scale of forgetting at the beginning of the
        training. Must set it manually to `0.0` when restoring from CudnnLSTM
        trained checkpoints.
      state_is_tuple: If True, accepted and returned states are 2-tuples of the
        `c_state` and `m_state`.  If False, they are concatenated along the
        column axis.  This latter behavior will soon be deprecated.
      activation: Activation function of the inner states.  Default: `tanh`.
      reuse: (optional) Python boolean describing whether to reuse variables in
        an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
      name: String, the name of the layer. Layers with the same name will share
        weights, but to avoid mistakes we require reuse=True in such cases.
      dtype: Default dtype of the layer (default of `None` means use the type of
        the first input). Required when `build` is called before `call`.  When
        restoring from CudnnLSTM-trained checkpoints, use
        `CudnnCompatibleLSTMCell` instead.
    """
        super(TFLiteLSTMCell, self).__init__(_reuse=reuse,
                                             name=name,
                                             dtype=dtype)
        # TODO(raziel): decide if we want to just support tuples (yes please!).
        if not state_is_tuple:
            logging.warn(
                "%s: Using a concatenated state is slower and will soon be "
                "deprecated.  Use state_is_tuple=True.", self)
        if num_unit_shards is not None or num_proj_shards is not None:
            logging.warn(
                "%s: The num_unit_shards and proj_unit_shards parameters are "
                "deprecated and will be removed in Jan 2017.  "
                "Use a variable scope with a partitioner instead.", self)

        # Inputs must be 2-dimensional.
        # TODO(raziel): layers stuff -- chop if un-layerizing Op.
        self.input_spec = base_layer.InputSpec(ndim=2)

        self._tflite_wrapper = op_hint.OpHint("UnidirectionalSequenceLstm")

        self._num_units = num_units
        self._use_peepholes = use_peepholes
        self._cell_clip = cell_clip
        self._initializer = initializer
        self._num_proj = num_proj
        self._proj_clip = proj_clip
        self._num_unit_shards = num_unit_shards
        self._num_proj_shards = num_proj_shards
        self._forget_bias = forget_bias
        self._state_is_tuple = state_is_tuple
        self._activation = activation or math_ops.tanh

        self._output_size = num_proj if num_proj else num_units
        self._state_size = (rnn_cell_impl.LSTMStateTuple(
            num_units, self._output_size) if state_is_tuple else num_units +
                            self._output_size)