Esempio n. 1
0
  def testPostTrainingQuantize16x8(self):
    """Test for post-training quantization mode: activations/weights - int16/int8."""
    saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel')

    input_size = [5, 5, 3]
    kernel_size = [3, 3, 1]
    layer_name = 'test_conv2d'
    input_0 = keras.layers.Input(shape=input_size)
    layer_0 = keras.layers.Conv2D(
        filters=kernel_size[-1],
        kernel_size=kernel_size[0:2],
        use_bias=False,
        name=layer_name)(
            input_0)
    model = keras.models.Model(inputs=[input_0], outputs=[layer_0])
    keras_layer = [layer for layer in model.layers if layer.name == layer_name
                  ][0]
    keras_layer.set_weights([
        np.random.rand(
            input_size[-1],
            kernel_size[0],
            kernel_size[1],
            kernel_size[2],
        ).astype(np.float32)
    ])

    saved_model.save(model, saved_model_dir)

    model_coverage.test_saved_model(
        saved_model_dir,
        post_training_quantize_16x8=True,
        model_input_size=input_size)
  def testFloat(self):
    saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel')
    with session.Session().as_default() as sess:
      in_tensor_1 = array_ops.placeholder(
          shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputB')
      in_tensor_2 = array_ops.placeholder(
          shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA')
      out_tensor = in_tensor_1 + in_tensor_2

      inputs = {'x': in_tensor_1, 'y': in_tensor_2}
      outputs = {'z': out_tensor}
      saved_model.simple_save(sess, saved_model_dir, inputs, outputs)
    model_coverage.test_saved_model(saved_model_dir)
Esempio n. 3
0
  def testFloat(self):
    saved_model_dir = os.path.join(self.get_temp_dir(), 'simple_savedmodel')
    with ops.Graph().as_default():
      with session.Session().as_default() as sess:
        in_tensor_1 = array_ops.placeholder(
            shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputB')
        in_tensor_2 = array_ops.placeholder(
            shape=[1, 16, 16, 3], dtype=dtypes.float32, name='inputA')
        out_tensor = in_tensor_1 + in_tensor_2

        inputs = {'x': in_tensor_1, 'y': in_tensor_2}
        outputs = {'z': out_tensor}
        saved_model.simple_save(sess, saved_model_dir, inputs, outputs)
    model_coverage.test_saved_model(saved_model_dir)