Esempio n. 1
0
def BiRNN(_X, _istate_fw, _istate_bw, _weights, _biases):

    # input shape: (batch_size, n_steps, n_input)
    _X = tf.transpose(_X, [1, 0, 2])  # permute n_steps and batch_size
    # Reshape to prepare input to hidden activation
    _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
    # Linear activation
    _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']

    # Define lstm cells with tensorflow
    # Forward direction cell
    rnn_fw_cell = rnn_cell.BasicRNNCell(n_hidden)
    # Backward direction cell
    rnn_bw_cell = rnn_cell.BasicRNNCell(n_hidden)

    # Split data because rnn cell needs a list of inputs for the RNN inner loop
    _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
#
    # Get lstm cell output
    outputs, final_fw, final_bw = rnn.bidirectional_rnn(rnn_fw_cell, rnn_bw_cell, _X,
                                            initial_state_fw=_istate_fw,
                                            initial_state_bw=_istate_bw)
#
    # Linear activation
    # Get inner loop last output
    toreturn = []
    for o in outputs:
        toreturn.append(tf.matmul(o, _weights['out']) + _biases['out'])
    return toreturn, final_fw, final_bw
Esempio n. 2
0
 def testBasicRNNCell(self):
     with self.test_session() as sess:
         with tf.variable_scope("root",
                                initializer=tf.constant_initializer(0.5)):
             x = tf.zeros([1, 2])
             m = tf.zeros([1, 2])
             g, _ = rnn_cell.BasicRNNCell(2)(x, m)
             sess.run([tf.variables.initialize_all_variables()])
             res = sess.run([g], {
                 x.name: np.array([[1., 1.]]),
                 m.name: np.array([[0.1, 0.1]])
             })
             self.assertEqual(res[0].shape, (1, 2))
Esempio n. 3
0
    def __init__(self, vocabularySize, config_param):
        self.vocabularySize = vocabularySize
        self.config = config_param

        self._inputX = tf.placeholder(
            tf.int32, [self.config.batch_size, self.config.sequence_size],
            "InputsX")
        self._inputTargetsY = tf.placeholder(
            tf.int32, [self.config.batch_size, self.config.sequence_size],
            "InputTargetsY")

        #Converting Input in an Embedded form
        with tf.device(
                "/cpu:0"):  #Tells Tensorflow what GPU to use specifically
            embedding = tf.get_variable(
                "embedding", [self.vocabularySize, self.config.embeddingSize])
            embeddingLookedUp = tf.nn.embedding_lookup(embedding, self._inputX)
            inputs = tf.split(1, self.config.sequence_size, embeddingLookedUp)
            inputTensorsAsList = [tf.squeeze(input_, [1]) for input_ in inputs]

        #Define Tensor RNN
        singleRNNCell = rnn_cell.BasicRNNCell(self.config.hidden_size)
        self.multilayerRNN = rnn_cell.MultiRNNCell([singleRNNCell] *
                                                   self.config.num_layers)
        self._initial_state = self.multilayerRNN.zero_state(
            self.config.batch_size, tf.float32)

        #Defining Logits
        hidden_layer_output, states = rnn.rnn(
            self.multilayerRNN,
            inputTensorsAsList,
            initial_state=self._initial_state)
        hidden_layer_output = tf.reshape(tf.concat(1, hidden_layer_output),
                                         [-1, self.config.hidden_size])
        self._logits = tf.nn.xw_plus_b(
            hidden_layer_output,
            tf.get_variable("softmax_w",
                            [self.config.hidden_size, self.vocabularySize]),
            tf.get_variable("softmax_b", [self.vocabularySize]))
        self._predictionSoftmax = tf.nn.softmax(self._logits)

        #Define the loss
        loss = seq2seq.sequence_loss_by_example(
            [self._logits], [tf.reshape(self._inputTargetsY, [-1])],
            [tf.ones([self.config.batch_size * self.config.sequence_size])],
            self.vocabularySize)
        self._cost = tf.div(tf.reduce_sum(loss), self.config.batch_size)

        self._final_state = states[-1]
Esempio n. 4
0
x_data = np.array([[1, 0, 0, 0], #h
                  [0, 1, 0, 0], #e
                  [0, 0, 1, 0], #l
                  [0, 0, 1, 0]], #l
                  dtype='f')

sample = [char_dic[c] for c in 'hello'] # to index

#Configuration
char_vocab_size = len(char_dic)
rnn_size = char_vocab_size # 1 hot coding (one of 4)
time_step_size = 4 #'hell' -> predict 'ello'
batch_size = 1

#RNN model
rnn_cell = rnn_cell.BasicRNNCell(rnn_size)
state = tf.zeros([batch_size, rnn_cell.state_size])
X_split = tf.split(0, time_step_size, x_data)
outputs, state = rnn.rnn(rnn_cell, X_split, state)

# logits: list of 2D Tensors of shape [batch_size x num_decoder_symbols]
# targets: list of 1D batch-sized int32 Tensors of the same length as logits
# weights: list of 1D batch-sized float-Tensors of the same length as logits
logits = tf.reshape(tf.concat(1, outputs), [-1, rnn_size])
targets = tf.reshape(sample[1:], [-1])
weights = tf.ones([time_step_size * batch_size])

loss = tf.nn.seq2seq.sequence_loss_by_example([logits], [targets], [weights])
cost = tf.reduce_sum(loss) / batch_size
train_op = tf.train.RMSPropOptimizer(0.01, 0.9).minimize(cost)
#!/usr/bin/python3
# coding: utf-8

# 目前TF的RNN APIs主要集中在tensorflow.models.rnn中的rnn和rnn_cell两个模块。
# 其中,后者定义了一些常用的RNN cells,包括RNN和优化的LSTM、GRU等等;前者则提供了一些helper方法。
# 创建一个基础的RNN很简单:

from tensorflow.models.rnn import rnn_cell

cell = rnn_cell.BasicRNNCell(inputs, state)
# 创建一个LSTM或者GRU的cell?

cell = rnn_cell.BasicLSTMCell(num_units)  #最最基础的,不带peephole。
cell = rnn_cell.LSTMCell(num_units, input_size)  #可以设置peephole等属性。
cell = rnn_cell.GRUCell(num_units)

# 调用呢?
output, state = cell(input, state)
# 这样自己按timestep调用需要设置variable_scope的reuse属性为True,懒人怎么做,TF也给想好了:

state = cell.zero_state(batch_size, dtype=tf.float32)
outputs, states = rnn.rnn(cell, inputs, initial_state=state)

# 再懒一点:
outputs, states = rnn.rnn(cell, inputs, dtype=tf.float32)
# 怕overfit,加个Dropout如何?

cell = rnn_cell.DropoutWrapper(cell, input_keep_prob=0.5, output_keep_prob=0.5)

# 做个三层的带Dropout的网络?
cell = rnn_cell.DropoutWrapper(cell, output_keep_prob=0.5)