Esempio n. 1
0
def convert_all_kernels_in_model(model):
  """Converts all convolution kernels in a model from Theano to TensorFlow.

  Also works from TensorFlow to Theano.

  Arguments:
      model: target model for the conversion.
  """
  # Note: SeparableConvolution not included
  # since only supported by TF.
  conv_classes = {
      'Conv1D',
      'Conv2D',
      'Conv3D',
      'Conv2DTranspose',
  }
  to_assign = []
  for layer in model.layers:
    if layer.__class__.__name__ in conv_classes:
      original_kernel = K.get_value(layer.kernel)
      converted_kernel = convert_kernel(original_kernel)
      to_assign.append((layer.kernel, converted_kernel))
  K.batch_set_value(to_assign)
def convert_all_kernels_in_model(model):
    """Converts all convolution kernels in a model from Theano to TensorFlow.

  Also works from TensorFlow to Theano.

  Arguments:
      model: target model for the conversion.
  """
    # Note: SeparableConvolution not included
    # since only supported by TF.
    conv_classes = {
        'Conv1D',
        'Conv2D',
        'Conv3D',
        'Conv2DTranspose',
    }
    to_assign = []
    for layer in model.layers:
        if layer.__class__.__name__ in conv_classes:
            original_kernel = K.get_value(layer.kernel)
            converted_kernel = convert_kernel(original_kernel)
            to_assign.append((layer.kernel, converted_kernel))
    K.batch_set_value(to_assign)
Esempio n. 3
0
def preprocess_weights_for_loading(layer,
                                   weights,
                                   original_keras_version=None,
                                   original_backend=None):
  """Converts layers weights from Keras 1 format to Keras 2.

  Arguments:
      layer: Layer instance.
      weights: List of weights values (Numpy arrays).
      original_keras_version: Keras version for the weights, as a string.
      original_backend: Keras backend the weights were trained with,
          as a string.

  Returns:
      A list of weights values (Numpy arrays).
  """
  if layer.__class__.__name__ == 'Bidirectional':
    num_weights_per_layer = len(weights) // 2
    forward_weights = preprocess_weights_for_loading(
        layer.forward_layer, weights[:num_weights_per_layer],
        original_keras_version, original_backend)
    backward_weights = preprocess_weights_for_loading(
        layer.backward_layer, weights[num_weights_per_layer:],
        original_keras_version, original_backend)
    weights = forward_weights + backward_weights

  if original_keras_version == '1':
    if layer.__class__.__name__ == 'TimeDistributed':
      weights = preprocess_weights_for_loading(
          layer.layer, weights, original_keras_version, original_backend)

    if layer.__class__.__name__ == 'Conv1D':
      shape = weights[0].shape
      # Handle Keras 1.1 format
      if shape[:2] != (layer.kernel_size[0], 1) or shape[3] != layer.filters:
        # Legacy shape:
        # (filters, input_dim, filter_length, 1)
        assert shape[0] == layer.filters and shape[2:] == (layer.kernel_size[0],
                                                           1)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
      weights[0] = weights[0][:, 0, :, :]

    if layer.__class__.__name__ == 'Conv2D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))

    if layer.__class__.__name__ == 'Conv2DTranspose':
      if layer.data_format == 'channels_last':
        # old: (kernel_rows, kernel_cols, stack_size, filters)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (0, 1, 3, 2))
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (2, 3, 0, 1))

    if layer.__class__.__name__ == 'Conv3D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, ...)
        # new: (..., stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0))

    if layer.__class__.__name__ == 'GRU':
      if len(weights) == 9:
        kernel = np.concatenate([weights[0], weights[3], weights[6]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[4], weights[7]], axis=-1)
        bias = np.concatenate([weights[2], weights[5], weights[8]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'LSTM':
      if len(weights) == 12:
        # old: i, c, f, o
        # new: i, f, c, o
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'ConvLSTM2D':
      if len(weights) == 12:
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        if layer.data_format == 'channels_first':
          # old: (filters, stack_size, kernel_rows, kernel_cols)
          # new: (kernel_rows, kernel_cols, stack_size, filters)
          kernel = np.transpose(kernel, (2, 3, 1, 0))
          recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0))
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ in ['Model', 'Sequential']:
      new_weights = []
      # trainable weights
      for sublayer in layer.layers:
        num_weights = len(sublayer.trainable_weights)
        if num_weights > 0:
          new_weights.extend(
              preprocess_weights_for_loading(
                  layer=sublayer,
                  weights=weights[:num_weights],
                  original_keras_version=original_keras_version,
                  original_backend=original_backend))
          weights = weights[num_weights:]

      # non-trainable weights
      for sublayer in layer.layers:
        num_weights = len([
            l for l in sublayer.weights if l not in sublayer.trainable_weights
        ])
        if num_weights > 0:
          new_weights.extend(
              preprocess_weights_for_loading(
                  layer=sublayer,
                  weights=weights[:num_weights],
                  original_keras_version=original_keras_version,
                  original_backend=original_backend))
          weights = weights[num_weights:]
      weights = new_weights

  conv_layers = ['Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D']
  if layer.__class__.__name__ in conv_layers:
    if original_backend == 'theano':
      weights[0] = conv_utils.convert_kernel(weights[0])
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = conv_utils.convert_kernel(weights[1])
    if K.int_shape(layer.weights[0]) != weights[0].shape:
      weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = np.transpose(weights[1], (3, 2, 0, 1))

  return _convert_rnn_weights(layer, weights)
Esempio n. 4
0
def preprocess_weights_for_loading(layer,
                                   weights,
                                   original_keras_version=None,
                                   original_backend=None):
    """Converts layers weights from Keras 1 format to Keras 2.

  Arguments:
      layer: Layer instance.
      weights: List of weights values (Numpy arrays).
      original_keras_version: Keras version for the weights, as a string.
      original_backend: Keras backend the weights were trained with,
          as a string.

  Returns:
      A list of weights values (Numpy arrays).
  """
    if layer.__class__.__name__ == 'Bidirectional':
        num_weights_per_layer = len(weights) // 2
        forward_weights = preprocess_weights_for_loading(
            layer.forward_layer, weights[:num_weights_per_layer],
            original_keras_version, original_backend)
        backward_weights = preprocess_weights_for_loading(
            layer.backward_layer, weights[num_weights_per_layer:],
            original_keras_version, original_backend)
        weights = forward_weights + backward_weights

    if original_keras_version == '1':
        if layer.__class__.__name__ == 'TimeDistributed':
            weights = preprocess_weights_for_loading(layer.layer, weights,
                                                     original_keras_version,
                                                     original_backend)

        if layer.__class__.__name__ == 'Conv1D':
            shape = weights[0].shape
            # Handle Keras 1.1 format
            if shape[:2] != (layer.kernel_size[0],
                             1) or shape[3] != layer.filters:
                # Legacy shape:
                # (filters, input_dim, filter_length, 1)
                assert shape[0] == layer.filters and shape[2:] == (
                    layer.kernel_size[0], 1)
                weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
            weights[0] = weights[0][:, 0, :, :]

        if layer.__class__.__name__ == 'Conv2D':
            if layer.data_format == 'channels_first':
                # old: (filters, stack_size, kernel_rows, kernel_cols)
                # new: (kernel_rows, kernel_cols, stack_size, filters)
                weights[0] = np.transpose(weights[0], (2, 3, 1, 0))

        if layer.__class__.__name__ == 'Conv2DTranspose':
            if layer.data_format == 'channels_last':
                # old: (kernel_rows, kernel_cols, stack_size, filters)
                # new: (kernel_rows, kernel_cols, filters, stack_size)
                weights[0] = np.transpose(weights[0], (0, 1, 3, 2))
            if layer.data_format == 'channels_first':
                # old: (filters, stack_size, kernel_rows, kernel_cols)
                # new: (kernel_rows, kernel_cols, filters, stack_size)
                weights[0] = np.transpose(weights[0], (2, 3, 0, 1))

        if layer.__class__.__name__ == 'Conv3D':
            if layer.data_format == 'channels_first':
                # old: (filters, stack_size, ...)
                # new: (..., stack_size, filters)
                weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0))

        if layer.__class__.__name__ == 'GRU':
            if len(weights) == 9:
                kernel = np.concatenate([weights[0], weights[3], weights[6]],
                                        axis=-1)
                recurrent_kernel = np.concatenate(
                    [weights[1], weights[4], weights[7]], axis=-1)
                bias = np.concatenate([weights[2], weights[5], weights[8]],
                                      axis=-1)
                weights = [kernel, recurrent_kernel, bias]

        if layer.__class__.__name__ == 'LSTM':
            if len(weights) == 12:
                # old: i, c, f, o
                # new: i, f, c, o
                kernel = np.concatenate(
                    [weights[0], weights[6], weights[3], weights[9]], axis=-1)
                recurrent_kernel = np.concatenate(
                    [weights[1], weights[7], weights[4], weights[10]], axis=-1)
                bias = np.concatenate(
                    [weights[2], weights[8], weights[5], weights[11]], axis=-1)
                weights = [kernel, recurrent_kernel, bias]

        if layer.__class__.__name__ == 'ConvLSTM2D':
            if len(weights) == 12:
                kernel = np.concatenate(
                    [weights[0], weights[6], weights[3], weights[9]], axis=-1)
                recurrent_kernel = np.concatenate(
                    [weights[1], weights[7], weights[4], weights[10]], axis=-1)
                bias = np.concatenate(
                    [weights[2], weights[8], weights[5], weights[11]], axis=-1)
                if layer.data_format == 'channels_first':
                    # old: (filters, stack_size, kernel_rows, kernel_cols)
                    # new: (kernel_rows, kernel_cols, stack_size, filters)
                    kernel = np.transpose(kernel, (2, 3, 1, 0))
                    recurrent_kernel = np.transpose(recurrent_kernel,
                                                    (2, 3, 1, 0))
                weights = [kernel, recurrent_kernel, bias]

        if layer.__class__.__name__ in ['Model', 'Sequential']:
            new_weights = []
            # trainable weights
            for sublayer in layer.layers:
                num_weights = len(sublayer.trainable_weights)
                if num_weights > 0:
                    new_weights.extend(
                        preprocess_weights_for_loading(
                            layer=sublayer,
                            weights=weights[:num_weights],
                            original_keras_version=original_keras_version,
                            original_backend=original_backend))
                    weights = weights[num_weights:]

            # non-trainable weights
            for sublayer in layer.layers:
                num_weights = len([
                    l for l in sublayer.weights
                    if l not in sublayer.trainable_weights
                ])
                if num_weights > 0:
                    new_weights.extend(
                        preprocess_weights_for_loading(
                            layer=sublayer,
                            weights=weights[:num_weights],
                            original_keras_version=original_keras_version,
                            original_backend=original_backend))
                    weights = weights[num_weights:]
            weights = new_weights

    conv_layers = [
        'Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D'
    ]
    if layer.__class__.__name__ in conv_layers:
        if original_backend == 'theano':
            weights[0] = conv_utils.convert_kernel(weights[0])
            if layer.__class__.__name__ == 'ConvLSTM2D':
                weights[1] = conv_utils.convert_kernel(weights[1])
        if K.int_shape(layer.weights[0]) != weights[0].shape:
            weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
            if layer.__class__.__name__ == 'ConvLSTM2D':
                weights[1] = np.transpose(weights[1], (3, 2, 0, 1))

    # Convert the weights of CuDNNLSTM so that they could be loaded into LSTM
    if layer.__class__.__name__ == 'LSTM' and len(weights) == 3:
        # Determine if loading a CuDNNLSTM layer from the number of bias weights:
        # CuDNNLSTM has (units * 8) weights; while LSTM has (units * 4)
        # if there's no bias weight in the file, skip this conversion
        units = weights[1].shape[0]
        bias = weights[2]
        if len(bias) == units * 8:
            # reshape the kernels
            kernels = np.split(weights[0], 4, axis=1)
            kernels = [
                kernel.reshape(-1).reshape(kernel.shape, order='F')
                for kernel in kernels
            ]
            weights[0] = np.concatenate(kernels, axis=1)

            # transpose the recurrent kernels
            recurrent_kernels = np.split(weights[1], 4, axis=1)
            recurrent_kernels = [kernel.T for kernel in recurrent_kernels]
            weights[1] = np.concatenate(recurrent_kernels, axis=1)

            # split the bias into half and merge
            weights[2] = bias[:units * 4] + bias[units * 4:]

    return convert_rnn_weights(layer, weights)
Esempio n. 5
0
def preprocess_weights_for_loading(layer,
                                   weights,
                                   original_keras_version=None,
                                   original_backend=None):
  """Converts layers weights from Keras 1 format to Keras 2.

  Arguments:
      layer: Layer instance.
      weights: List of weights values (Numpy arrays).
      original_keras_version: Keras version for the weights, as a string.
      original_backend: Keras backend the weights were trained with,
          as a string.

  Returns:
      A list of weights values (Numpy arrays).
  """
  if layer.__class__.__name__ == 'Bidirectional':
    num_weights_per_layer = len(weights) // 2
    forward_weights = preprocess_weights_for_loading(
        layer.forward_layer, weights[:num_weights_per_layer],
        original_keras_version, original_backend)
    backward_weights = preprocess_weights_for_loading(
        layer.backward_layer, weights[num_weights_per_layer:],
        original_keras_version, original_backend)
    weights = forward_weights + backward_weights

  if original_keras_version == '1':
    if layer.__class__.__name__ == 'TimeDistributed':
      weights = preprocess_weights_for_loading(
          layer.layer, weights, original_keras_version, original_backend)

    if layer.__class__.__name__ == 'Conv1D':
      shape = weights[0].shape
      # Handle Keras 1.1 format
      if shape[:2] != (layer.kernel_size[0], 1) or shape[3] != layer.filters:
        # Legacy shape:
        # (filters, input_dim, filter_length, 1)
        assert shape[0] == layer.filters and shape[2:] == (layer.kernel_size[0],
                                                           1)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
      weights[0] = weights[0][:, 0, :, :]

    if layer.__class__.__name__ == 'Conv2D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))

    if layer.__class__.__name__ == 'Conv2DTranspose':
      if layer.data_format == 'channels_last':
        # old: (kernel_rows, kernel_cols, stack_size, filters)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (0, 1, 3, 2))
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (2, 3, 0, 1))

    if layer.__class__.__name__ == 'Conv3D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, ...)
        # new: (..., stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0))

    if layer.__class__.__name__ == 'GRU':
      if len(weights) == 9:
        kernel = np.concatenate([weights[0], weights[3], weights[6]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[4], weights[7]], axis=-1)
        bias = np.concatenate([weights[2], weights[5], weights[8]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'LSTM':
      if len(weights) == 12:
        # old: i, c, f, o
        # new: i, f, c, o
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'ConvLSTM2D':
      if len(weights) == 12:
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        if layer.data_format == 'channels_first':
          # old: (filters, stack_size, kernel_rows, kernel_cols)
          # new: (kernel_rows, kernel_cols, stack_size, filters)
          kernel = np.transpose(kernel, (2, 3, 1, 0))
          recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0))
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ in ['Model', 'Sequential']:
      new_weights = []
      # trainable weights
      for sublayer in layer.layers:
        num_weights = len(sublayer.trainable_weights)
        if num_weights > 0:
          new_weights.extend(
              preprocess_weights_for_loading(
                  layer=sublayer,
                  weights=weights[:num_weights],
                  original_keras_version=original_keras_version,
                  original_backend=original_backend))
          weights = weights[num_weights:]

      # non-trainable weights
      for sublayer in layer.layers:
        num_weights = len([
            l for l in sublayer.weights if l not in sublayer.trainable_weights
        ])
        if num_weights > 0:
          new_weights.extend(
              preprocess_weights_for_loading(
                  layer=sublayer,
                  weights=weights[:num_weights],
                  original_keras_version=original_keras_version,
                  original_backend=original_backend))
          weights = weights[num_weights:]
      weights = new_weights

  conv_layers = ['Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D']
  if layer.__class__.__name__ in conv_layers:
    if original_backend == 'theano':
      weights[0] = conv_utils.convert_kernel(weights[0])
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = conv_utils.convert_kernel(weights[1])
    if K.int_shape(layer.weights[0]) != weights[0].shape:
      weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = np.transpose(weights[1], (3, 2, 0, 1))

  # Convert the weights of CuDNNLSTM so that they could be loaded into LSTM
  if layer.__class__.__name__ == 'LSTM' and len(weights) == 3:
    # Determine if loading a CuDNNLSTM layer from the number of bias weights:
    # CuDNNLSTM has (units * 8) weights; while LSTM has (units * 4)
    # if there's no bias weight in the file, skip this conversion
    units = weights[1].shape[0]
    bias = weights[2]
    if len(bias) == units * 8:
      # reshape the kernels
      kernels = np.split(weights[0], 4, axis=1)
      kernels = [
          kernel.reshape(-1).reshape(kernel.shape, order='F')
          for kernel in kernels
      ]
      weights[0] = np.concatenate(kernels, axis=1)

      # transpose the recurrent kernels
      recurrent_kernels = np.split(weights[1], 4, axis=1)
      recurrent_kernels = [kernel.T for kernel in recurrent_kernels]
      weights[1] = np.concatenate(recurrent_kernels, axis=1)

      # split the bias into half and merge
      weights[2] = bias[:units * 4] + bias[units * 4:]

  return weights
Esempio n. 6
0
def preprocess_weights_for_loading(layer,
                                   weights,
                                   original_keras_version=None,
                                   original_backend=None):
  """Converts layers weights from Keras 1 format to Keras 2.

  Arguments:
      layer: Layer instance.
      weights: List of weights values (Numpy arrays).
      original_keras_version: Keras version for the weights, as a string.
      original_backend: Keras backend the weights were trained with,
          as a string.

  Returns:
      A list of weights values (Numpy arrays).
  """
  if layer.__class__.__name__ == 'Bidirectional':
    num_weights_per_layer = len(weights) // 2
    forward_weights = preprocess_weights_for_loading(
        layer.forward_layer, weights[:num_weights_per_layer],
        original_keras_version, original_backend)
    backward_weights = preprocess_weights_for_loading(
        layer.backward_layer, weights[num_weights_per_layer:],
        original_keras_version, original_backend)
    weights = forward_weights + backward_weights

  if original_keras_version == '1':
    if layer.__class__.__name__ == 'TimeDistributed':
      weights = preprocess_weights_for_loading(
          layer.layer, weights, original_keras_version, original_backend)

    if layer.__class__.__name__ == 'Conv1D':
      shape = weights[0].shape
      # Handle Keras 1.1 format
      if shape[:2] != (layer.kernel_size[0], 1) or shape[3] != layer.filters:
        # Legacy shape:
        # (filters, input_dim, filter_length, 1)
        assert shape[0] == layer.filters and shape[2:] == (layer.kernel_size[0],
                                                           1)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
      weights[0] = weights[0][:, 0, :, :]

    if layer.__class__.__name__ == 'Conv2D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))

    if layer.__class__.__name__ == 'Conv2DTranspose':
      if layer.data_format == 'channels_last':
        # old: (kernel_rows, kernel_cols, stack_size, filters)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (0, 1, 3, 2))
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (2, 3, 0, 1))

    if layer.__class__.__name__ == 'Conv3D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, ...)
        # new: (..., stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0))

    if layer.__class__.__name__ == 'GRU':
      if len(weights) == 9:
        kernel = np.concatenate([weights[0], weights[3], weights[6]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[4], weights[7]], axis=-1)
        bias = np.concatenate([weights[2], weights[5], weights[8]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'LSTM':
      if len(weights) == 12:
        # old: i, c, f, o
        # new: i, f, c, o
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'ConvLSTM2D':
      if len(weights) == 12:
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        if layer.data_format == 'channels_first':
          # old: (filters, stack_size, kernel_rows, kernel_cols)
          # new: (kernel_rows, kernel_cols, stack_size, filters)
          kernel = np.transpose(kernel, (2, 3, 1, 0))
          recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0))
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ in ['Model', 'Sequential']:
      new_weights = []
      # trainable weights
      for sublayer in layer.layers:
        num_weights = len(sublayer.trainable_weights)
        if num_weights > 0:
          new_weights.extend(
              preprocess_weights_for_loading(
                  layer=sublayer,
                  weights=weights[:num_weights],
                  original_keras_version=original_keras_version,
                  original_backend=original_backend))
          weights = weights[num_weights:]

      # non-trainable weights
      for sublayer in layer.layers:
        num_weights = len([
            l for l in sublayer.weights if l not in sublayer.trainable_weights
        ])
        if num_weights > 0:
          new_weights.extend(
              preprocess_weights_for_loading(
                  layer=sublayer,
                  weights=weights[:num_weights],
                  original_keras_version=original_keras_version,
                  original_backend=original_backend))
          weights = weights[num_weights:]
      weights = new_weights

  conv_layers = ['Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D']
  if layer.__class__.__name__ in conv_layers:
    if original_backend == 'theano':
      weights[0] = conv_utils.convert_kernel(weights[0])
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = conv_utils.convert_kernel(weights[1])
    if K.int_shape(layer.weights[0]) != weights[0].shape:
      weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = np.transpose(weights[1], (3, 2, 0, 1))

  return _convert_rnn_weights(layer, weights)