Esempio n. 1
0
    def _create_architecture(self, data_X, data_y):
        self.model = MobileNet(include_top=False,
                               weights=None,
                               input_tensor=None,
                               input_shape=list(
                                   [int(_) for _ in data_X.shape[-3:]]),
                               pooling=None)
        self.model.load_weights('./weights/mobilenet_1_0_224_tf_no_top.h5')
        """ Freeze the previous layers """
        for layer in self.model.layers:
            layer.trainable = False
        """ By Setting top to False, we need to add our own classification layers """
        # The model documentation notes that this is the size of the classification block
        x = GlobalAveragePooling2D()(self.model.output)
        # let's add a fully-connected layer
        x = Dense(1024, activation='relu')(x)
        x = Dropout(x, rate=0.5)
        # and a logistic layer -- let's say we have 200 classes
        x = Dense(int(data_y.shape[1]),
                  activation='softmax',
                  name='predictions')(x)
        # create graph of your new model
        self.model = Model(inputs=self.model.inputs,
                           outputs=x,
                           name='MobileNet')

        self.model.compile(optimizer=tf.train.AdamOptimizer(),
                           loss='categorical_crossentropy',
                           metrics=['accuracy', 'mean_squared_error'])
Esempio n. 2
0
def backbone(input_shape=(512, 512, 3)):
    image = Input(shape=input_shape, name="image")
    base_model = MobileNet(input_tensor=image,
                           include_top=False,
                           weights="imagenet")
    x = base_model.output
    x = _deconv_block(x, 512, kernel_size=3)
    y = base_model.layers[81].output
    x = Add()([x, y])
    x = _deconv_block(x, 256, kernel_size=3)
    y = base_model.layers[39].output
    x = Add()([x, y])
    model = Model(image, x)
    return model, 8
    def __init__(self, recent_log=None):
        # Init constants
        # Init classification buffer. Designed to smooth the classification
        self.name_to_load = [Config.DATA_DIR_NAMES[0]] * 5
        self.name = 'MobileNetBayesian'

        tf.keras.backend.clear_session()
        self.STANDARD_IMAGE_SIZE = (224, 224, 3)
        model = MobileNet(include_top=False,
                          weights=None,
                          input_tensor=None,
                          input_shape=self.STANDARD_IMAGE_SIZE,
                          pooling=None)
        x = GlobalAveragePooling2D()(model.output)
        # let's add a fully-connected layer
        x = Dense(1024, activation='relu')(x)
        # and a logistic layer -- let's say we have 200 classes
        x = Dense(len(Config.DATA_DIR_NAMES),
                  activation='softmax',
                  name='predictions')(x)

        # create graph of your new model
        self.model = Model(inputs=model.inputs, outputs=x, name='MobileNet')
        # print(model.summary())

        weights_path = os.path.join(get_absolute_data_path()[:-5],
                                    'josiah_testing', 'run_logs')
        if recent_log is None:
            recent_log_dir = [
                _ for _ in os.listdir(weights_path)
                if str(_).lower().__contains__(self.name.lower())
            ]
            recent_log_dir.sort(reverse=True)
        else:
            recent_log_dir = [recent_log]

        weights_path = os.path.join(weights_path, recent_log_dir[0],
                                    'model.h5')
        print(f'Loading final weight path: {weights_path}')

        # If we want to use weights, then try to load them
        self.model.load_weights(weights_path)
        global graph
        graph = tf.get_default_graph()
import os

from tensorflow.python.keras.applications import MobileNet
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from tensorflow.python.keras.callbacks import TensorBoard

# MobileNet is designed to work with images of dim 224,224
img_rows, img_cols = 224, 224

MobileNet = MobileNet(weights='imagenet',
                      include_top=False,
                      input_shape=(img_rows, img_cols, 3))

# Here we freeze the last 4 layers
# Layers are set to trainable as True by default

for layer in MobileNet.layers:
    layer.trainable = True

# Let's print our layers
for (i, layer) in enumerate(MobileNet.layers):
    print(str(i), layer.__class__.__name__, layer.trainable)


def add_top_model_mobile_net(bottom_model, num_class):
    """creates the top or head of the model that will be
def train(hyper_params, reset_dataset=False):
    # Define upper level settings InceptionResNetV2
    global DATASET_LOADED, X, Y
    model_dir = f'./run_logs/{time()}_{"_".join("{!s}.{!r}".format(key,val) for (key,val) in hyper_params.items())}'

    # Get the directory path
    data_dir = get_absolute_data_path()
    target_dict = {name: i for i, name in enumerate(Config.DATA_DIR_NAMES)}

    if reset_dataset or not DATASET_LOADED:
        X, Y = load_images(hyper_params['n_classes'], data_dir, target_dict)
        DATASET_LOADED = True

    if hyper_params['sanity_test']:
        X_train, X_test, y_train, y_test = (X, X, Y, Y)
    else:
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            Y,
                                                            test_size=0.10)

    print("Done building data set")
    model = None
    x = None
    if hyper_params['name'] == 'VGG19':
        model = VGG19(include_top=False,
                      weights=None,
                      input_tensor=None,
                      input_shape=STANDARD_IMAGE_SIZE,
                      pooling=None)
        # If we want to use weights, then try to load them
        if hyper_params['use_weights']:
            model.load_weights(
                './weights/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5')

    elif hyper_params['name'] == 'InceptionResNetV2':
        model = InceptionResNetV2(include_top=False,
                                  weights=None,
                                  input_tensor=None,
                                  input_shape=STANDARD_IMAGE_SIZE,
                                  pooling=None)
        # If we want to use weights, then try to load them
        if hyper_params['use_weights']:
            model.load_weights(
                './weights/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
            )
    elif hyper_params['name'] == 'NASNetMobile':
        model = NASNetMobile(include_top=False,
                             weights=None,
                             input_tensor=None,
                             input_shape=STANDARD_IMAGE_SIZE,
                             pooling=None)
        # If we want to use weights, then try to load them
        if hyper_params['use_weights']:
            model.load_weights('./weights/NASNet-mobile-no-top.h5')
    elif hyper_params['name'] == 'MobileNet':
        model = MobileNet(include_top=False,
                          weights=None,
                          input_tensor=None,
                          input_shape=STANDARD_IMAGE_SIZE,
                          pooling=None)
        # If we want to use weights, then try to load them
        if hyper_params['use_weights']:
            model.load_weights('./weights/mobilenet_1_0_224_tf_no_top.h5')
    elif hyper_params['name'] == 'MobileNetBayesian':
        model = MobileNet(include_top=False,
                          weights=None,
                          input_tensor=None,
                          input_shape=STANDARD_IMAGE_SIZE,
                          pooling=None)
        # If we want to use weights, then try to load them
        if hyper_params['use_weights']:
            model.load_weights('./weights/mobilenet_1_0_224_tf_no_top.h5')
    """ Freeze the previous layers """
    for layer in model.layers:
        layer.trainable = False
    """ By Setting top to False, we need to add our own classification layers """
    # The model documentation notes that this is the size of the classification block
    x = GlobalAveragePooling2D()(model.output)
    # let's add a fully-connected layer
    x = Dense(16, activation='relu')(x)
    # and a logistic layer -- let's say we have 200 classes
    x = Dense(hyper_params['n_classes'],
              activation='softmax',
              name='predictions')(x)

    # create graph of your new model
    model = Model(inputs=model.inputs, outputs=x, name=hyper_params['name'])

    if hyper_params['opt'] == 'sgd':
        opt = SGD(lr=0.01)
    else:
        opt = 'adam'

    model.compile(optimizer=opt,
                  loss='categorical_crossentropy',
                  metrics=['accuracy', 'mean_squared_error'])

    tensorboard = TrainValTensorBoard(log_dir=model_dir,
                                      histogram_freq=0,
                                      X_train=X_train,
                                      X_test=X_test,
                                      y_train=y_train,
                                      y_test=y_test,
                                      write_graph=True,
                                      write_images=False)
    """ Classes are going to be very imbalanced. Weight them """
    class_weights = class_weight.compute_class_weight(
        'balanced', np.unique([y.argmax() for y in y_train]),
        [y.argmax() for y in y_train])
    """ Add image augmentation """
    if hyper_params['use_aug']:
        datagen = tf.keras.preprocessing.image.ImageDataGenerator(
            featurewise_center=True,
            featurewise_std_normalization=True,
            channel_shift_range=0.5,
            rotation_range=180,
            width_shift_range=0.1,
            height_shift_range=0.1,
            brightness_range=[0.5, 1.0],
            horizontal_flip=True,
            vertical_flip=True,
            zoom_range=0.1)
        # compute quantities required for featurewise normalization
        # (std, mean, and principal components if ZCA whitening is applied)
        datagen.fit(X_train)

        # fits the model on batches with real-time data augmentation:
        model.fit_generator(datagen.flow(X_train, y_train, batch_size=32),
                            steps_per_epoch=len(X_train) / 32,
                            epochs=hyper_params['epochs'],
                            validation_data=(X_test, y_test),
                            callbacks=[tensorboard],
                            class_weight=class_weights)
    else:
        model.fit(X_train,
                  y_train,
                  epochs=hyper_params['epochs'],
                  validation_data=(X_test, y_test),
                  callbacks=[tensorboard],
                  class_weight=class_weights)

    print(f'\nEvaluation: {model.evaluate(X_test, y_test)}'
          )  # So this is currently: loss & accuracy
    prediction_y = model.predict(X_test)
    print(f'\nPrediction: {prediction_y}')
    print(f'\nFor Y targets {y_test}')

    # Save entire model to a HDF5 file
    model.save(model_dir + '/model.h5')

    cnf_matrix = confusion_matrix(np.argmax(y_test, axis=1),
                                  np.argmax(prediction_y, axis=1))
    np.set_printoptions(precision=2)
    print(cnf_matrix)
    # plt.figure()
    # plot_confusion_matrix(cnf_matrix, classes=[c for c in target_dict],
    #                       title='Confusion matrix using ' + hyper_params['name'])

    # print(f'Saving confusion matrix to {model_dir + os.sep + "confusion_matrix.jpg"}')
    # plt.savefig(model_dir + os.sep + 'confusion_matrix.jpg')
    #
    # from sklearn.metrics import precision_recall_fscore_support
    # metrics = precision_recall_fscore_support(np.argmax(y_test, axis=1), np.argmax(prediction_y, axis=1),
    #                                           average='weighted')
    # plot_precision_recall_f1(metrics, ['Precision', 'Recall', 'f Score'],
    #                          title='Metrics for ' + hyper_params['name'])
    # print(f'Saving confusion matrix to {model_dir + os.sep + "prec_recall_fscore.jpg"}')
    # plt.savefig(model_dir + os.sep + 'prec_recall_fscore.jpg')
    tf.keras.backend.clear_session()
Esempio n. 6
0
    plot_confusion_matrix(y, y_pred, classes, normalize=True)
    plt.show()


def vgg16(model, path: Path, classes, size):
    vgg16_feature_list_np, y_real = load(path, classes, size)

    vgg16_feature_list_np = model.predict(vgg16_feature_list_np)

    clusterize(vgg16_feature_list_np, y_real, classes)


if __name__ == "__main__":
    #  model = ResNet50(weights='imagenet')

    model = MobileNet(weights='imagenet')

    # model = VGG16(weights='imagenet')
    classes = load_classes(base_path.joinpath("train"), count=5)

    vgg16(model, base_path.joinpath("test"), classes, (224, 224))

    x, y = load_my_model(base_path.joinpath("test"),
                         classes)  # , (224, 224), flat=False)
    print(x.shape)
    my_model, features = make_model(x.shape[1:], classes, features=True)

    my_model.fit(x, y, epochs=10)

    y_pred = my_model.predict(x)  # .astype(int)
    print(y_pred)
Esempio n. 7
0
"""
we set up a sequential model that we can add layers to
"""
my_new_model = Sequential()
"""
first we add all of pre-trained  model
we've written include_top=False, this is how specify that we want to exlude
the layer that makes prediction into the thousands of categories used in the ImageNet competition
we set the weights to be 'ImageNet' to specify that we use the pre-traind model on ImageNet
pooling equals average says that if we had extra channels in our tensor at the end of this step
we want to collapse them to 1d tensor by taking an average across channels
now we have a pre-trained model that creates the layer before the last layer
that we saw in the slides
"""
my_new_model.add(
    MobileNet(weights='imagenet', include_top=False, pooling='avg'))
"""
we add a dense layer to make predictions,
we specify the number of nodes in this layer which in this case is
the number of classes,
then we want to apply the softmax function to turn it into probabilities 
"""
my_new_model.add(Dense(
    num_classes,
    activation='softmax',
))
"""
we tell tensor flow not to train the first layer which is the  pre-trained model
because that's the model that was already pre-trained with the ImageNet data
"""
my_new_model.layers[0].trainable = False