def embedding_varlen(batch_size, max_length):
    """Benchmark a variable-length embedding."""
    # Data and constants.

    num_buckets = 10000
    vocab = fc_bm.create_vocabulary(32768)
    data_a = fc_bm.create_string_data(max_length,
                                      batch_size * NUM_REPEATS,
                                      vocab,
                                      pct_oov=0.0)
    data_b = fc_bm.create_string_data(max_length,
                                      batch_size * NUM_REPEATS,
                                      vocab,
                                      pct_oov=0.0)

    # Keras implementation
    input_1 = keras.Input(shape=(None, ), name="data_a", dtype=dt.string)
    input_2 = keras.Input(shape=(None, ), name="data_b", dtype=dt.string)
    crossed_data = category_crossing.CategoryCrossing()([input_1, input_2])
    hashed_data = hashing.Hashing(num_buckets)(crossed_data)
    model = keras.Model([input_1, input_2], hashed_data)

    # FC implementation
    fc = fcv2.crossed_column(["data_a", "data_b"], num_buckets)

    # Wrap the FC implementation in a tf.function for a fair comparison
    @tf_function()
    def fc_fn(tensors):
        fc.transform_feature(fcv2.FeatureTransformationCache(tensors), None)

    # Benchmark runs
    keras_data = {
        "data_a":
        data_a.to_tensor(default_value="", shape=(batch_size, max_length)),
        "data_b":
        data_b.to_tensor(default_value="", shape=(batch_size, max_length)),
    }
    k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)

    fc_data = {
        "data_a":
        data_a.to_tensor(default_value="", shape=(batch_size, max_length)),
        "data_b":
        data_b.to_tensor(default_value="", shape=(batch_size, max_length)),
    }
    fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)

    return k_avg_time, fc_avg_time
  def embedding_varlen(self, batch_size, max_length):
    """Benchmark a variable-length embedding."""
    # Data and constants.
    vocab = fc_bm.create_vocabulary(32768)
    path = self._write_to_temp_file("tmp", vocab)

    data = fc_bm.create_string_data(
        max_length, batch_size * NUM_REPEATS, vocab, pct_oov=0.15)

    # Keras implementation
    model = keras.Sequential()
    model.add(
        keras.Input(
            shape=(max_length,), name="data", ragged=True, dtype=dt.string))
    model.add(string_lookup.StringLookup(vocabulary=path, mask_token=None))

    # FC implementation
    fc = sfc.sequence_categorical_column_with_vocabulary_list(
        key="data", vocabulary_list=vocab, num_oov_buckets=1)

    # Wrap the FC implementation in a tf.function for a fair comparison
    @tf_function()
    def fc_fn(tensors):
      fc.transform_feature(fcv2.FeatureTransformationCache(tensors), None)

    # Benchmark runs
    keras_data = {"data": data}
    k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)

    fc_data = {"data": data.to_sparse()}
    fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)

    return k_avg_time, fc_avg_time
def embedding_varlen(batch_size, max_length):
    """Benchmark a variable-length embedding."""
    # Data and constants.
    vocab_size = 32768
    vocab = fc_bm.create_vocabulary(vocab_size)
    data = fc_bm.create_string_data(max_length,
                                    batch_size * NUM_REPEATS,
                                    vocab,
                                    pct_oov=0.15)

    # Keras implementation
    model = keras.Sequential()
    model.add(keras.Input(shape=(max_length, ), name="data", dtype=dt.string))
    model.add(string_lookup.StringLookup(vocabulary=vocab, mask_token=None))
    model.add(
        category_encoding.CategoryEncoding(num_tokens=vocab_size + 1,
                                           output_mode="count"))

    # FC implementation
    fc = fcv2.indicator_column(
        fcv2.categorical_column_with_vocabulary_list(key="data",
                                                     vocabulary_list=vocab,
                                                     num_oov_buckets=1))

    # Wrap the FC implementation in a tf.function for a fair comparison
    @tf_function()
    def fc_fn(tensors):
        fc.transform_feature(fcv2.FeatureTransformationCache(tensors), None)

    # Benchmark runs
    keras_data = {
        "data": data.to_tensor(default_value="",
                               shape=(batch_size, max_length))
    }
    k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)

    fc_data = {
        "data": data.to_tensor(default_value="",
                               shape=(batch_size, max_length))
    }
    fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)

    return k_avg_time, fc_avg_time
Esempio n. 4
0
def embedding_varlen(batch_size, max_length):
    """Benchmark a variable-length embedding."""
    # Data and constants.

    num_buckets = 10000
    vocab = fc_bm.create_vocabulary(32768)
    data = fc_bm.create_string_data(max_length,
                                    batch_size * NUM_REPEATS,
                                    vocab,
                                    pct_oov=0.0)

    # Keras implementation
    model = keras.Sequential()
    model.add(keras.Input(shape=(max_length, ), name="data", dtype=dt.string))
    model.add(hashing.Hashing(num_buckets))

    # FC implementation
    fc = sfc.sequence_categorical_column_with_hash_bucket("data", num_buckets)

    # Wrap the FC implementation in a tf.function for a fair comparison
    @tf_function()
    def fc_fn(tensors):
        fc.transform_feature(fcv2.FeatureTransformationCache(tensors), None)

    # Benchmark runs
    keras_data = {
        "data": data.to_tensor(default_value="",
                               shape=(batch_size, max_length))
    }
    k_avg_time = fc_bm.run_keras(keras_data, model, batch_size, NUM_REPEATS)

    fc_data = {
        "data": data.to_tensor(default_value="",
                               shape=(batch_size, max_length))
    }
    fc_avg_time = fc_bm.run_fc(fc_data, fc_fn, batch_size, NUM_REPEATS)

    return k_avg_time, fc_avg_time