Esempio n. 1
0
 def _run_test(self,
               flip_horizontal,
               flip_vertical,
               expected_output=None,
               mock_random=None):
     np.random.seed(1337)
     num_samples = 2
     orig_height = 5
     orig_width = 8
     channels = 3
     if mock_random is None:
         mock_random = [1 for _ in range(num_samples)]
         mock_random = np.reshape(mock_random, [2, 1, 1, 1])
     inp = np.random.random(
         (num_samples, orig_height, orig_width, channels))
     if expected_output is None:
         expected_output = inp
         if flip_horizontal:
             expected_output = np.flip(expected_output, axis=1)
         if flip_vertical:
             expected_output = np.flip(expected_output, axis=2)
     with test.mock.patch.object(random_ops,
                                 'random_uniform',
                                 return_value=mock_random):
         with tf_test_util.use_gpu():
             layer = image_preprocessing.RandomFlip(flip_horizontal,
                                                    flip_vertical)
             actual_output = layer(inp, training=1)
             self.assertAllClose(expected_output, actual_output)
    def test_distribution(self, distribution):
        if "CentralStorage" in type(distribution).__name__:
            self.skipTest("Does not work with CentralStorageStrategy yet.")
        # TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
        np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
        image_dataset = dataset_ops.Dataset.from_tensor_slices(
            np_images).batch(16, drop_remainder=True)

        with distribution.scope():
            input_data = keras.Input(shape=(32, 32, 3), dtype=dtypes.float32)
            image_preprocessor = keras.Sequential([
                image_preprocessing.Resizing(height=256, width=256),
                image_preprocessing.RandomCrop(height=224, width=224),
                image_preprocessing.RandomTranslation(.1, .1),
                image_preprocessing.RandomRotation(.2),
                image_preprocessing.RandomFlip(),
                image_preprocessing.RandomZoom(.2, .2)
            ])
            preprocessed_image = image_preprocessor(input_data)
            flatten_layer = keras.layers.Flatten(data_format="channels_last")
            output = flatten_layer(preprocessed_image)
            cls_layer = keras.layers.Dense(units=1, activation="sigmoid")
            output = cls_layer(output)
            model = keras.Model(inputs=input_data, outputs=output)
        model.compile(loss="binary_crossentropy")
        _ = model.predict(image_dataset)
Esempio n. 3
0
 def test_random_flip_inference(self):
   with CustomObjectScope({'RandomFlip': image_preprocessing.RandomFlip}):
     input_images = np.random.random((2, 5, 8, 3)).astype(np.float32)
     expected_output = input_images
     with tf_test_util.use_gpu():
       layer = image_preprocessing.RandomFlip()
       actual_output = layer(input_images, training=0)
       self.assertAllClose(expected_output, actual_output)
Esempio n. 4
0
 def test_random_flip_default(self):
   with CustomObjectScope({'RandomFlip': image_preprocessing.RandomFlip}):
     input_images = np.random.random((2, 5, 8, 3)).astype(np.float32)
     expected_output = np.flip(np.flip(input_images, axis=1), axis=2)
     mock_random = [1, 1]
     mock_random = np.reshape(mock_random, [2, 1, 1, 1])
     with test.mock.patch.object(
         random_ops, 'random_uniform', return_value=mock_random):
       with self.cached_session(use_gpu=True):
         layer = image_preprocessing.RandomFlip()
         actual_output = layer(input_images, training=1)
         self.assertAllClose(expected_output, actual_output)
    def bm_layer_implementation(self, batch_size):
        with ops.device_v2("/gpu:0"):
            img = keras.Input(shape=(256, 256, 3), dtype=dtypes.float32)
            preprocessor = keras.Sequential([
                image_preprocessing.Resizing(224, 224),
                image_preprocessing.RandomCrop(height=224, width=224),
                image_preprocessing.RandomRotation(factor=(.2, .4)),
                image_preprocessing.RandomFlip(mode="horizontal"),
                image_preprocessing.RandomZoom(.2, .2)
            ])
            _ = preprocessor(img)

            num_repeats = 5
            starts = []
            ends = []
            for _ in range(num_repeats):
                ds = dataset_ops.Dataset.from_tensor_slices(
                    np.random.random((batch_size, 256, 256, 3)))
                ds = ds.shuffle(batch_size * 100)
                ds = ds.batch(batch_size)
                ds = ds.prefetch(batch_size)
                starts.append(time.time())
                count = 0
                # Benchmarked code begins here.
                for i in ds:
                    _ = preprocessor(i)
                    count += 1
                # Benchmarked code ends here.
                ends.append(time.time())

        avg_time = np.mean(np.array(ends) - np.array(starts)) / count
        name = "image_preprocessing|batch_%s" % batch_size
        baseline = self.run_dataset_implementation(batch_size)
        extras = {
            "dataset implementation baseline": baseline,
            "delta seconds": (baseline - avg_time),
            "delta percent": ((baseline - avg_time) / baseline) * 100
        }
        self.report_benchmark(iters=num_repeats,
                              wall_time=avg_time,
                              extras=extras,
                              name=name)
    def test_distribution(self, distribution):
        np_images = np.random.random((1000, 32, 32, 3)).astype(np.float32)
        image_dataset = dataset_ops.Dataset.from_tensor_slices(
            np_images).batch(32, drop_remainder=True)

        with distribution.scope():
            input_data = keras.Input(shape=(32, 32, 3), dtype=dtypes.float32)
            image_preprocessor = keras.Sequential([
                image_preprocessing.Resizing(height=256, width=256),
                image_preprocessing.RandomCrop(height=224, width=224),
                image_preprocessing.RandomTranslation(.1, .1),
                image_preprocessing.RandomRotation(.2),
                image_preprocessing.RandomFlip(),
                image_preprocessing.RandomZoom(.2, .2)
            ])
            preprocessed_image = image_preprocessor(input_data)
            flatten_layer = keras.layers.Flatten(data_format="channels_last")
            output = flatten_layer(preprocessed_image)
            cls_layer = keras.layers.Dense(units=1, activation="sigmoid")
            output = cls_layer(output)
            model = keras.Model(inputs=input_data, outputs=preprocessed_image)
        model.compile(loss="binary_crossentropy")
        _ = model.predict(image_dataset)
Esempio n. 7
0
def test_data_augment():
    main_path = '../-test/download'
    ds_train, ds_val = create_data_set(main_path)
    # rt = image_preprocessing.RandomTranslation(height_factor=0.1, width_factor=0.1)
    rt = image_preprocessing.RandomFlip()
    # rt = image_preprocessing.RandomRotation(factor=0.1)

    # ds_train.map(rt)

    import matplotlib.pyplot as plt

    plt.figure(figsize=(10, 10))
    for images, labels in ds_train.take(1):
        images = rt(images)
        n = tf.shape(images)[0]
        n = 9 if n > 9 else n
        for i in range(n):
            plt.subplot(3, 3, i + 1)
            plt.imshow(images[i].numpy().astype("uint8"))
            # plt.title(int(labels[i]))
            plt.axis("off")

    plt.show()
Esempio n. 8
0
 def test_config_with_custom_name(self):
   layer = image_preprocessing.RandomFlip(name='image_preproc')
   config = layer.get_config()
   layer_1 = image_preprocessing.RandomFlip.from_config(config)
   self.assertEqual(layer_1.name, layer.name)
Esempio n. 9
0
import tensorflow as tf  # 2.4

from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.python.keras.layers.preprocessing import image_preprocessing

from tensorflow.keras.applications import EfficientNetB1, Xception

# 数据增强
image_augmentation = Sequential(
    [
        image_preprocessing.RandomRotation(factor=0.1),  # 随机旋转
        image_preprocessing.RandomTranslation(height_factor=0.1,
                                              width_factor=0.1),  # 随机平移
        image_preprocessing.RandomFlip(),  # 随机翻转
        image_preprocessing.RandomContrast(factor=0.1),  # 随机改变对比度
        image_preprocessing.RandomZoom(height_factor=0.1,
                                       width_factor=0.1),  # 随机缩放
        # image_preprocessing.RandomHeight(factor=0.1),  # 随机改变高度
        # image_preprocessing.RandomWidth(factor=0.1),  # 随机改变宽度
        # image_preprocessing.RandomCrop(height, width),  # 随机裁剪
        # image_preprocessing.CenterCrop(height, width),  # 中心裁剪
    ],
    name="img_augmentation",
)


def get_time_suffix(suffix_len=15):
    """获取一个时间后缀"""
    import time