def _pyramid_ensemble_adaptation(teacher: Model) -> Tuple[Model, int]:
    """
    Adapt pyramid ensemble by changing its output to contain each of its submodels outputs.

    :param teacher: the pyramid ensemble.
    :return: the selective_learning pyramid ensemble and the submodels number.
    """
    # Get each submodel's outputs.
    output1 = teacher.get_layer('submodel_strong_output').output
    weak_1_output = teacher.get_layer('submodel_weak_1_output').output
    weak_2_output = teacher.get_layer('submodel_weak_2_output').output
    # Create zeros.
    weak_1_zeros = ZerosLike(name='weak_1_zeros')(weak_1_output)
    weak_2_zeros = ZerosLike(name='weak_2_zeros')(weak_2_output)
    # Append zeros to the model outputs which do not predict all the classes.
    output2 = Concatenate(name='submodel_weak_1_output_fixed')(
        [weak_1_output, weak_1_zeros])
    output3 = Concatenate(name='submodel_weak_2_output_fixed')(
        [weak_2_zeros, weak_2_output])
    # Add activations to the outputs.
    output1 = Activation('softmax', name='softmax1')(output1)
    output2 = Activation('softmax', name='softmax2')(output2)
    output3 = Activation('softmax', name='softmax3')(output3)
    # Stack submodels outputs.
    outputs = Stack(
        axis=1, name='stacked_submodels_outputs')([output1, output2, output3])

    # Create selective_learning teacher.
    selective_learning_teacher = Model(teacher.input,
                                       outputs,
                                       name='selective_learning_' +
                                       teacher.name)
    return selective_learning_teacher, 3
Esempio n. 2
0
    def _load_saved_instance(cls, config_dict: Dict, model_path: str,
                             tf_model: keras.Model):
        from kashgari import utils
        embeddings = []
        for embed_info in config_dict['embeddings']:
            embed_class = pydoc.locate(
                f"{embed_info['module']}.{embed_info['class_name']}")
            embedding: Embedding = embed_class._load_saved_instance(
                embed_info, model_path, tf_model)
            embeddings.append(embedding)
        instance = cls(embeddings=embeddings, from_saved_model=True)

        embed_model_json_str = json.dumps(config_dict['embed_model'])
        instance.embed_model = utils._custom_load_keras_model_from_json(
            embed_model_json_str)
        # Load Weights from model
        for layer in instance.embed_model.layers:
            layer.set_weights(tf_model.get_layer(layer.name).get_weights())
        return instance
Esempio n. 3
0
class SSD(BaseSSD):
    def __init__(self, aspect_ratios=None, image_size=None):
        self.model = None
        if aspect_ratios is None:
            aspect_ratios = [1.]
        self.aspect_ratios = aspect_ratios
        self.num_boxes = len(aspect_ratios) + 1 if 1. in aspect_ratios else 0
        self.create_head_layers()
        self.build(input_shape=(image_size, image_size, 3))

    def build(self, input_shape):
        input_tensor = Input(shape=input_shape)
        # vgg block 1
        x = Conv2D(64,
                   3,
                   padding='same',
                   activation='relu',
                   name='block1_conv1')(input_tensor)
        x = Conv2D(64,
                   3,
                   padding='same',
                   activation='relu',
                   name='block1_conv2')(x)
        x = MaxPooling2D(2, 2, padding='same', name='block1_pool')(x)

        # vgg block 2
        x = Conv2D(128,
                   3,
                   padding='same',
                   activation='relu',
                   name='block2_conv1')(x)
        x = Conv2D(128,
                   3,
                   padding='same',
                   activation='relu',
                   name='block2_conv2')(x)
        x = MaxPooling2D(2, 2, padding='same', name='block2_pool')(x)

        # vgg block 3
        x = Conv2D(256,
                   3,
                   padding='same',
                   activation='relu',
                   name='block3_conv1')(x)
        x = Conv2D(256,
                   3,
                   padding='same',
                   activation='relu',
                   name='block3_conv2')(x)
        x = Conv2D(256,
                   3,
                   padding='same',
                   activation='relu',
                   name='block3_conv3')(x)
        x = MaxPooling2D(2, 2, padding='same', name='block3_pool')(x)

        # vgg block 4
        x = Conv2D(512,
                   3,
                   padding='same',
                   activation='relu',
                   name='block4_conv1')(x)
        x = Conv2D(512,
                   3,
                   padding='same',
                   activation='relu',
                   name='block4_conv2')(x)
        conv43 = Conv2D(512,
                        3,
                        padding='same',
                        activation='relu',
                        name='block4_conv3')(x)
        x = MaxPooling2D(2, 2, padding='same', name='block4_pool')(conv43)

        # vgg block 5
        x = Conv2D(512,
                   3,
                   padding='same',
                   activation='relu',
                   name='block5_conv1')(x)
        x = Conv2D(512,
                   3,
                   padding='same',
                   activation='relu',
                   name='block5_conv2')(x)
        x = Conv2D(512,
                   3,
                   padding='same',
                   activation='relu',
                   name='block5_conv3')(x)
        x = MaxPooling2D(3, 1, padding='same', name='block5_pool')(x)

        # vgg fc modified as conv
        conv6 = Conv2D(1024,
                       3,
                       dilation_rate=6,
                       activation='relu',
                       padding='same',
                       name='conv6')(x)
        conv7 = Conv2D(1024,
                       1,
                       activation='relu',
                       padding='same',
                       name='conv7')(conv6)

        # extra feature map layers
        extra1 = ConvBn(256, 1, name='extra1_shrink')(conv7)
        extra1 = ConvBn(512, 3, strides=2, padding='same',
                        name='extra1')(extra1)

        extra2 = ConvBn(128, 1, name='extra2_shrink')(extra1)
        extra2 = ConvBn(256, 3, strides=2, padding='same',
                        name='extra2')(extra2)

        extra3 = ConvBn(128, 1, name='extra3_shrink')(extra2)
        extra3 = ConvBn(256, 3, name='extra3')(extra3)

        extra4 = ConvBn(128, 1, name='extra4_shrink')(extra3)
        extra4 = ConvBn(256, 3, name='extra4')(extra4)

        extra5 = ConvBn(128, 1, name='extra5_shrink')(extra4)
        extra5 = ConvBn(256, 4, name='extra5')(extra5)

        # heads
        feature_maps = [conv43, conv7, extra1, extra2, extra3, extra4, extra5]
        confs, locs, anchors = [], [], []
        for i in range(len(feature_maps)):
            map = feature_maps[i]
            conf = self.conf_layers[i](map)
            loc = self.loc_layers[i](map)
            anchor = self.anchor_layers[i](map)
            confs.append(conf)
            locs.append(loc)
            anchors.append(anchor)
        confs_reshaped = [Reshape((-1, 1))(conf) for conf in confs]
        locs_reshaped = [Reshape((-1, 4))(loc) for loc in locs]
        anchors_reshaped = [Reshape((-1, 4))(db) for db in anchors]

        conf_concat = Concatenate(axis=1, name='scores')(confs_reshaped)
        loc_concat = Concatenate(axis=1, name='offsets')(locs_reshaped)
        anchor_concat = Concatenate(axis=1,
                                    name='default_boxes')(anchors_reshaped)

        self.model = Model(input_tensor,
                           [conf_concat, loc_concat, anchor_concat],
                           name='ssd_vgg16')

    def init_vgg16(self):
        vgg16 = VGG16(weights='imagenet', include_top=True)
        for i, layer in enumerate(self.model.layers):
            layer_name = layer.name
            if layer_name.startswith('block'):
                layer_weights = vgg16.get_layer(name=layer_name).get_weights()
                layer.set_weights(layer_weights)
        fc1_w, fc1_b = vgg16.get_layer(name='fc1').get_weights()
        fc2_w, fc2_b = vgg16.get_layer(name='fc2').get_weights()
        conv6_w = np.random.choice(np.reshape(fc1_w, (-1, )),
                                   (3, 3, 512, 1024))
        conv6_b = np.random.choice(fc1_b, (1024, ))
        conv7_w = np.random.choice(np.reshape(fc2_w, (-1, )),
                                   (1, 1, 1024, 1024))
        conv7_b = np.random.choice(fc2_b, (1024, ))
        self.model.get_layer(name='conv6').set_weights([conv6_w, conv6_b])
        self.model.get_layer(name='conv7').set_weights([conv7_w, conv7_b])