Esempio n. 1
0
    def testActivation(self):
        fc = core_layers.FullyConnected(2, activation=tf.nn.relu, name='fc1')
        inputs = tf.random_uniform((5, 3), seed=1)
        outputs = fc(inputs)
        self.assertEqual(outputs.op.name, 'fc1/Relu')

        fc = core_layers.FullyConnected(2, name='fc2')
        inputs = tf.random_uniform((5, 3), seed=1)
        outputs = fc(inputs)
        self.assertEqual(outputs.op.name, 'fc2/BiasAdd')
Esempio n. 2
0
    def testFCProperties(self):
        fc = core_layers.FullyConnected(2, activation=tf.nn.relu, name='fc')
        self.assertEqual(fc.output_dim, 2)
        self.assertEqual(fc.activation, tf.nn.relu)
        self.assertEqual(fc.w_regularizer, None)
        self.assertEqual(fc.bias_regularizer, None)
        self.assertEqual(fc.activity_regularizer, None)
        self.assertEqual(fc.use_bias, True)
        self.assertEqual(fc.name, 'fc')

        # Test auto-naming
        fc = core_layers.FullyConnected(2, activation=tf.nn.relu)
        self.assertEqual(fc.name, 'fully_connected')
        fc = core_layers.FullyConnected(2, activation=tf.nn.relu)
        self.assertEqual(fc.name, 'fully_connected_1')
Esempio n. 3
0
 def testBiasRegularizer(self):
     regularizer = lambda x: tf.reduce_sum(x) * 1e-3
     fc = core_layers.FullyConnected(2,
                                     name='fc',
                                     bias_regularizer=regularizer)
     inputs = tf.random_uniform((5, 3), seed=1)
     _ = fc(inputs)
     loss_keys = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
     self.assertEqual(len(loss_keys), 1)
     self.assertListEqual(fc.losses, loss_keys)
Esempio n. 4
0
 def testNonTrainable(self):
     fc = core_layers.FullyConnected(2, trainable=False, name='fc')
     inputs = tf.random_uniform((5, 2), seed=1)
     _ = fc(inputs)
     self.assertListEqual(fc.weights, [fc.w, fc.bias])
     self.assertListEqual(fc.non_trainable_weights, [fc.w, fc.bias])
     self.assertListEqual(fc.trainable_weights, [])
     self.assertListEqual(fc._trainable_weights, [fc.w, fc.bias])
     self.assertListEqual(fc._non_trainable_weights, [])
     self.assertEqual(
         len(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)), 0)
Esempio n. 5
0
 def testNoBias(self):
     fc = core_layers.FullyConnected(2, use_bias=False, name='fc')
     inputs = tf.random_uniform((5, 2), seed=1)
     _ = fc(inputs)
     self.assertListEqual(fc.weights, [fc.w])
     self.assertListEqual(fc.trainable_weights, [fc.w])
     self.assertListEqual(fc.non_trainable_weights, [])
     self.assertEqual(
         len(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)), 1)
     self.assertEqual(fc.w.name, 'fc/weights:0')
     self.assertEqual(fc.bias, None)
Esempio n. 6
0
    def testOutputShape(self):
        fc = core_layers.FullyConnected(7, activation=tf.nn.relu, name='fc')
        inputs = tf.random_uniform((5, 3), seed=1)
        outputs = fc.apply(inputs)
        self.assertEqual(outputs.get_shape().as_list(), [5, 7])

        inputs = tf.random_uniform((5, 2, 3), seed=1)
        outputs = fc(inputs)
        self.assertEqual(outputs.get_shape().as_list(), [5, 2, 7])

        inputs = tf.random_uniform((1, 2, 4, 3), seed=1)
        outputs = fc.apply(inputs)
        self.assertEqual(outputs.get_shape().as_list(), [1, 2, 4, 7])
Esempio n. 7
0
 def testCall(self):
     fc = core_layers.FullyConnected(2, activation=tf.nn.relu, name='fc')
     inputs = tf.random_uniform((5, 2), seed=1)
     _ = fc(inputs)
     self.assertListEqual(fc.weights, [fc.w, fc.bias])
     self.assertListEqual(fc.trainable_weights, [fc.w, fc.bias])
     self.assertListEqual(fc.non_trainable_weights, [])
     self.assertListEqual(fc._trainable_weights, [fc.w, fc.bias])
     self.assertListEqual(fc._non_trainable_weights, [])
     self.assertEqual(
         len(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)), 2)
     self.assertEqual(fc.w.name, 'fc/weights:0')
     self.assertEqual(fc.bias.name, 'fc/biases:0')
Esempio n. 8
0
    def testCallOnPlaceHolder(self):
        inputs = tf.placeholder(dtype=tf.float32)
        fc = core_layers.FullyConnected(4, name='fc')
        with self.assertRaises(ValueError):
            fc(inputs)

        inputs = tf.placeholder(dtype=tf.float32, shape=[None, None])
        fc = core_layers.FullyConnected(4, name='fc')
        with self.assertRaises(ValueError):
            fc(inputs)

        inputs = tf.placeholder(dtype=tf.float32, shape=[None, None, None])
        fc = core_layers.FullyConnected(4, name='fc')
        with self.assertRaises(ValueError):
            fc(inputs)

        inputs = tf.placeholder(dtype=tf.float32, shape=[None, 3])
        fc = core_layers.FullyConnected(4, name='fc')
        fc(inputs)

        inputs = tf.placeholder(dtype=tf.float32, shape=[None, None, 3])
        fc = core_layers.FullyConnected(4, name='fc')
        fc(inputs)