Esempio n. 1
0
 def testDocstringExample(self):
   with self.test_session():
     exp_gamma_distribution = (
         transformed_distribution_lib.TransformedDistribution(
             distribution=gamma_lib.Gamma(concentration=1., rate=2.),
             bijector=bijectors.Invert(bijectors.Exp())))
     self.assertAllEqual(
         [], array_ops.shape(exp_gamma_distribution.sample()).eval())
Esempio n. 2
0
 def testGammaModeAllowNanStatsIsFalseWorksWhenAllBatchMembersAreDefined(
         self):
     alpha_v = np.array([5.5, 3.0, 2.5])
     beta_v = np.array([1.0, 4.0, 5.0])
     gamma = gamma_lib.Gamma(concentration=alpha_v, rate=beta_v)
     expected_modes = (alpha_v - 1) / beta_v
     self.assertEqual(gamma.mode().get_shape(), (3, ))
     self.assertAllClose(self.evaluate(gamma.mode()), expected_modes)
Esempio n. 3
0
    def testGammaShape(self):
        alpha = constant_op.constant([3.0] * 5)
        beta = constant_op.constant(11.0)
        gamma = gamma_lib.Gamma(concentration=alpha, rate=beta)

        self.assertEqual(self.evaluate(gamma.batch_shape_tensor()), (5, ))
        self.assertEqual(gamma.batch_shape, tensor_shape.TensorShape([5]))
        self.assertAllEqual(self.evaluate(gamma.event_shape_tensor()), [])
        self.assertEqual(gamma.event_shape, tensor_shape.TensorShape([]))
Esempio n. 4
0
 def testGammaEntropy(self):
     alpha_v = np.array([1.0, 3.0, 2.5])
     beta_v = np.array([1.0, 4.0, 5.0])
     gamma = gamma_lib.Gamma(concentration=alpha_v, rate=beta_v)
     self.assertEqual(gamma.entropy().get_shape(), (3, ))
     if not stats:
         return
     expected_entropy = stats.gamma.entropy(alpha_v, scale=1 / beta_v)
     self.assertAllClose(self.evaluate(gamma.entropy()), expected_entropy)
Esempio n. 5
0
 def testGammaModeAllowNanStatsFalseRaisesForUndefinedBatchMembers(self):
     # Mode will not be defined for the first entry.
     alpha_v = np.array([0.5, 3.0, 2.5])
     beta_v = np.array([1.0, 4.0, 5.0])
     gamma = gamma_lib.Gamma(concentration=alpha_v,
                             rate=beta_v,
                             allow_nan_stats=False)
     with self.assertRaisesOpError("x < y"):
         self.evaluate(gamma.mode())
Esempio n. 6
0
 def testGammaStd(self):
     with self.test_session():
         alpha_v = np.array([1.0, 3.0, 2.5])
         beta_v = np.array([1.0, 4.0, 5.0])
         gamma = gamma_lib.Gamma(concentration=alpha_v, rate=beta_v)
         self.assertEqual(gamma.stddev().get_shape(), (3, ))
         if not stats:
             return
         expected_stddev = stats.gamma.std(alpha_v, scale=1. / beta_v)
         self.assertAllClose(self.evaluate(gamma.stddev()), expected_stddev)
Esempio n. 7
0
  def test_docstring_example_gamma(self):
    with self.test_session() as sess:
      num_draws = int(1e5)
      concentration_p = constant_op.constant(1.)
      concentration_q = constant_op.constant(2.)
      p = gamma_lib.Gamma(concentration=concentration_p, rate=1.)
      q = gamma_lib.Gamma(concentration=concentration_q, rate=3.)
      approx_kl_gamma_gamma = monte_carlo_lib.expectation(
          f=lambda x: p.log_prob(x) - q.log_prob(x),
          samples=p.sample(num_draws, seed=42),
          log_prob=p.log_prob,
          use_reparametrization=(p.reparameterization_type
                                 == distribution_lib.FULLY_REPARAMETERIZED))
      exact_kl_gamma_gamma = kullback_leibler.kl_divergence(p, q)
      [exact_kl_gamma_gamma_, approx_kl_gamma_gamma_] = sess.run([
          exact_kl_gamma_gamma, approx_kl_gamma_gamma])
      self.assertEqual(
          False,
          p.reparameterization_type == distribution_lib.FULLY_REPARAMETERIZED)
      self.assertAllClose(exact_kl_gamma_gamma_, approx_kl_gamma_gamma_,
                          rtol=0.01, atol=0.)

      # Compare gradients. (Not present in `docstring`.)
      gradp = lambda fp: gradients_impl.gradients(fp, concentration_p)[0]
      gradq = lambda fq: gradients_impl.gradients(fq, concentration_q)[0]
      [
          gradp_exact_kl_gamma_gamma_,
          gradq_exact_kl_gamma_gamma_,
          gradp_approx_kl_gamma_gamma_,
          gradq_approx_kl_gamma_gamma_,
      ] = sess.run([
          gradp(exact_kl_gamma_gamma),
          gradq(exact_kl_gamma_gamma),
          gradp(approx_kl_gamma_gamma),
          gradq(approx_kl_gamma_gamma),
      ])
      # Notice that variance (i.e., `rtol`) is higher when using score-trick.
      self.assertAllClose(gradp_exact_kl_gamma_gamma_,
                          gradp_approx_kl_gamma_gamma_,
                          rtol=0.05, atol=0.)
      self.assertAllClose(gradq_exact_kl_gamma_gamma_,
                          gradq_approx_kl_gamma_gamma_,
                          rtol=0.03, atol=0.)
Esempio n. 8
0
 def testGammaVariance(self):
     with self.test_session():
         alpha_v = np.array([1.0, 3.0, 2.5])
         beta_v = np.array([1.0, 4.0, 5.0])
         gamma = gamma_lib.Gamma(concentration=alpha_v, rate=beta_v)
         self.assertEqual(gamma.variance().get_shape(), (3, ))
         if not stats:
             return
         expected_variances = stats.gamma.var(alpha_v, scale=1 / beta_v)
         self.assertAllClose(gamma.variance().eval(), expected_variances)
Esempio n. 9
0
 def testGammaFullyReparameterized(self):
     alpha = constant_op.constant(4.0)
     beta = constant_op.constant(3.0)
     with backprop.GradientTape() as tape:
         tape.watch(alpha)
         tape.watch(beta)
         gamma = gamma_lib.Gamma(concentration=alpha, rate=beta)
         samples = gamma.sample(100)
     grad_alpha, grad_beta = tape.gradient(samples, [alpha, beta])
     self.assertIsNotNone(grad_alpha)
     self.assertIsNotNone(grad_beta)
Esempio n. 10
0
 def testGammaModeAllowNanStatsIsTrueReturnsNaNforUndefinedBatchMembers(
         self):
     # Mode will not be defined for the first entry.
     alpha_v = np.array([0.5, 3.0, 2.5])
     beta_v = np.array([1.0, 4.0, 5.0])
     gamma = gamma_lib.Gamma(concentration=alpha_v,
                             rate=beta_v,
                             allow_nan_stats=True)
     expected_modes = (alpha_v - 1) / beta_v
     expected_modes[0] = np.nan
     self.assertEqual(gamma.mode().get_shape(), (3, ))
     self.assertAllClose(self.evaluate(gamma.mode()), expected_modes)
Esempio n. 11
0
    def testGammaCDF(self):
        batch_size = 6
        alpha = constant_op.constant([2.0] * batch_size)
        beta = constant_op.constant([3.0] * batch_size)
        alpha_v = 2.0
        beta_v = 3.0
        x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)

        gamma = gamma_lib.Gamma(concentration=alpha, rate=beta)
        cdf = gamma.cdf(x)
        self.assertEqual(cdf.get_shape(), (6, ))
        if not stats:
            return
        expected_cdf = stats.gamma.cdf(x, alpha_v, scale=1 / beta_v)
        self.assertAllClose(self.evaluate(cdf), expected_cdf)
Esempio n. 12
0
 def testGammaLogPDF(self):
     with self.test_session():
         batch_size = 6
         alpha = constant_op.constant([2.0] * batch_size)
         beta = constant_op.constant([3.0] * batch_size)
         alpha_v = 2.0
         beta_v = 3.0
         x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float32)
         gamma = gamma_lib.Gamma(concentration=alpha, rate=beta)
         log_pdf = gamma.log_prob(x)
         self.assertEqual(log_pdf.get_shape(), (6, ))
         pdf = gamma.prob(x)
         self.assertEqual(pdf.get_shape(), (6, ))
         if not stats:
             return
         expected_log_pdf = stats.gamma.logpdf(x, alpha_v, scale=1 / beta_v)
         self.assertAllClose(self.evaluate(log_pdf), expected_log_pdf)
         self.assertAllClose(self.evaluate(pdf), np.exp(expected_log_pdf))
Esempio n. 13
0
 def testGammaLogPDFMultidimensional(self):
     batch_size = 6
     alpha = constant_op.constant([[2.0, 4.0]] * batch_size)
     beta = constant_op.constant([[3.0, 4.0]] * batch_size)
     alpha_v = np.array([2.0, 4.0])
     beta_v = np.array([3.0, 4.0])
     x = np.array([[2.5, 2.5, 4.0, 0.1, 1.0, 2.0]], dtype=np.float32).T
     gamma = gamma_lib.Gamma(concentration=alpha, rate=beta)
     log_pdf = gamma.log_prob(x)
     log_pdf_values = self.evaluate(log_pdf)
     self.assertEqual(log_pdf.get_shape(), (6, 2))
     pdf = gamma.prob(x)
     pdf_values = self.evaluate(pdf)
     self.assertEqual(pdf.get_shape(), (6, 2))
     if not stats:
         return
     expected_log_pdf = stats.gamma.logpdf(x, alpha_v, scale=1 / beta_v)
     self.assertAllClose(log_pdf_values, expected_log_pdf)
     self.assertAllClose(pdf_values, np.exp(expected_log_pdf))
Esempio n. 14
0
    def testStateParts(self):
        with self.test_session(graph=ops.Graph()) as sess:
            dist_x = normal_lib.Normal(loc=self.dtype(0), scale=self.dtype(1))
            dist_y = independent_lib.Independent(
                gamma_lib.Gamma(concentration=self.dtype([1, 2]),
                                rate=self.dtype([0.5, 0.75])),
                reinterpreted_batch_ndims=1)

            def target_log_prob(x, y):
                return dist_x.log_prob(x) + dist_y.log_prob(y)

            x0 = [dist_x.sample(seed=1), dist_y.sample(seed=2)]
            samples, _ = hmc.sample_chain(num_results=int(2e3),
                                          target_log_prob_fn=target_log_prob,
                                          current_state=x0,
                                          step_size=0.85,
                                          num_leapfrog_steps=3,
                                          num_burnin_steps=int(250),
                                          seed=49)
            actual_means = [math_ops.reduce_mean(s, axis=0) for s in samples]
            actual_vars = [_reduce_variance(s, axis=0) for s in samples]
            expected_means = [dist_x.mean(), dist_y.mean()]
            expected_vars = [dist_x.variance(), dist_y.variance()]
            [
                actual_means_,
                actual_vars_,
                expected_means_,
                expected_vars_,
            ] = sess.run([
                actual_means,
                actual_vars,
                expected_means,
                expected_vars,
            ])
            self.assertAllClose(expected_means_,
                                actual_means_,
                                atol=0.05,
                                rtol=0.16)
            self.assertAllClose(expected_vars_,
                                actual_vars_,
                                atol=0.,
                                rtol=0.25)
Esempio n. 15
0
 def testGammaSample(self):
     alpha_v = 4.0
     beta_v = 3.0
     alpha = constant_op.constant(alpha_v)
     beta = constant_op.constant(beta_v)
     n = 100000
     gamma = gamma_lib.Gamma(concentration=alpha, rate=beta)
     samples = gamma.sample(n, seed=137)
     sample_values = self.evaluate(samples)
     self.assertEqual(samples.get_shape(), (n, ))
     self.assertEqual(sample_values.shape, (n, ))
     self.assertTrue(self._kstest(alpha_v, beta_v, sample_values))
     if not stats:
         return
     self.assertAllClose(sample_values.mean(),
                         stats.gamma.mean(alpha_v, scale=1 / beta_v),
                         atol=.01)
     self.assertAllClose(sample_values.var(),
                         stats.gamma.var(alpha_v, scale=1 / beta_v),
                         atol=.15)
Esempio n. 16
0
 def testGammaPdfOfSampleMultiDims(self):
     gamma = gamma_lib.Gamma(concentration=[7., 11.], rate=[[5.], [6.]])
     num = 50000
     samples = gamma.sample(num, seed=137)
     pdfs = gamma.prob(samples)
     sample_vals, pdf_vals = self.evaluate([samples, pdfs])
     self.assertEqual(samples.get_shape(), (num, 2, 2))
     self.assertEqual(pdfs.get_shape(), (num, 2, 2))
     self._assertIntegral(sample_vals[:, 0, 0], pdf_vals[:, 0, 0], err=0.02)
     self._assertIntegral(sample_vals[:, 0, 1], pdf_vals[:, 0, 1], err=0.02)
     self._assertIntegral(sample_vals[:, 1, 0], pdf_vals[:, 1, 0], err=0.02)
     self._assertIntegral(sample_vals[:, 1, 1], pdf_vals[:, 1, 1], err=0.02)
     if not stats:
         return
     self.assertAllClose(stats.gamma.mean([[7., 11.], [7., 11.]],
                                          scale=1 /
                                          np.array([[5., 5.], [6., 6.]])),
                         sample_vals.mean(axis=0),
                         atol=.1)
     self.assertAllClose(stats.gamma.var([[7., 11.], [7., 11.]],
                                         scale=1 /
                                         np.array([[5., 5.], [6., 6.]])),
                         sample_vals.var(axis=0),
                         atol=.1)