Esempio n. 1
0
 def __init__(self, input_dataset):
     """See `unique()` for details."""
     self._input_dataset = input_dataset
     if dataset_ops.get_legacy_output_types(input_dataset) not in (
             dtypes.int32, dtypes.int64, dtypes.string):
         raise TypeError(
             "`tf.data.experimental.unique()` only supports inputs with a single "
             "`tf.int32`, `tf.int64`, or `tf.string` component.")
     variant_tensor = gen_experimental_dataset_ops.experimental_unique_dataset(
         self._input_dataset._variant_tensor,  # pylint: disable=protected-access
         **dataset_ops.flat_structure(self))
     super(_UniqueDataset, self).__init__(input_dataset, variant_tensor)
Esempio n. 2
0
 def __init__(self, input_dataset):
   """See `unique()` for details."""
   self._input_dataset = input_dataset
   if input_dataset.output_types not in (dtypes.int32, dtypes.int64,
                                         dtypes.string):
     raise TypeError(
         "`tf.data.experimental.unique()` only supports inputs with a single "
         "`tf.int32`, `tf.int64`, or `tf.string` component.")
   variant_tensor = gen_experimental_dataset_ops.experimental_unique_dataset(
       self._input_dataset._variant_tensor,  # pylint: disable=protected-access
       **dataset_ops.flat_structure(self))
   super(_UniqueDataset, self).__init__(input_dataset, variant_tensor)
Esempio n. 3
0
 def _as_variant_tensor(self):
     return gen_experimental_dataset_ops.experimental_unique_dataset(
         self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
         **dataset_ops.flat_structure(self))
Esempio n. 4
0
 def _as_variant_tensor(self):
   return gen_experimental_dataset_ops.experimental_unique_dataset(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       **dataset_ops.flat_structure(self))