Esempio n. 1
0
def logical_xor(x, y, name="LogicalXor"):
  """x ^ y = (x | y) & ~(x & y)."""
  # TODO(alemi) Make this a cwise op if people end up relying on it.
  return gen_math_ops.logical_and(
      gen_math_ops.logical_or(x, y),
      gen_math_ops.logical_not(gen_math_ops.logical_and(x, y)),
      name=name)
        def __body(w_, e_, mask, b):
            e = math_ops.cast(distributions.Beta((self.__mf - 1.0) / 2.0,
                                                 (self.__mf - 1.0) / 2.0).
                              sample(shape, seed=seed), dtype=self.dtype)

            u = random_ops.random_uniform(shape, dtype=self.dtype, seed=seed)
            w = (1.0 - (1.0 + b) * e) / (1.0 - (1.0 - b) * e)
            x = (1.0 - b) / (1.0 + b)
            c = self.scale * x + (self.__mf - 1) * math_ops.log1p(-x**2)

            tmp = tf.clip_by_value(x * w, 0, 1 - 1e-16)
            reject = gen_math_ops.less(((self.__mf - 1.0) * math_ops.log(1.0 - tmp) +
                                        self.scale * w - c),
                                       math_ops.log(u))
            accept = gen_math_ops.logical_not(reject)

            w_ = array_ops.where(gen_math_ops.logical_and(mask, accept), w, w_)
            e_ = array_ops.where(gen_math_ops.logical_and(mask, accept), e, e_)
            mask = array_ops.where(gen_math_ops.logical_and(mask, accept),
                                   reject, mask)

            return w_, e_, mask, b
Esempio n. 3
0
        def __body(w_, e_, bool_mask, b, a, d):
            e = math_ops.cast(Beta((self.__mf - 1) / 2,
                                   (self.__mf - 1) / 2).sample(shape,
                                                               seed=seed),
                              dtype=self.dtype)

            u = random_ops.random_uniform(shape, dtype=self.dtype, seed=seed)

            w = (1 - (1 + b) * e) / (1 - (1 - b) * e)
            t = (2 * a * b) / (1 - (1 - b) * e)

            accept = gen_math_ops.greater(
                ((self.__mf - 1) * math_ops.log(t) - t + d), math_ops.log(u))
            reject = gen_math_ops.logical_not(accept)

            w_ = array_ops.where(gen_math_ops.logical_and(bool_mask, accept),
                                 w, w_)
            e_ = array_ops.where(gen_math_ops.logical_and(bool_mask, accept),
                                 e, e_)
            bool_mask = array_ops.where(
                gen_math_ops.logical_and(bool_mask, accept), reject, bool_mask)

            return w_, e_, bool_mask, b, a, d
Esempio n. 4
0
 def get_switch_op():
   return state_ops.assign(
       self._is_row_sweep_var,
       gen_math_ops.logical_not(self._is_row_sweep_var)).op
Esempio n. 5
0
def not_(a):
    """Functional form of "not"."""
    if tensor_util.is_tensor(a):
        return gen_math_ops.logical_not(a)
    return not a
Esempio n. 6
0
def _tf_not(a):
    """Implementation of the "not_" operator for TensorFlow."""
    return gen_math_ops.logical_not(a)
Esempio n. 7
0
def not_(a):
  """Functional form of "not"."""
  if tensor_util.is_tensor(a):
    return gen_math_ops.logical_not(a)
  return not a
Esempio n. 8
0
 def get_switch_op():
   return state_ops.assign(
       self._is_row_sweep_var,
       gen_math_ops.logical_not(self._is_row_sweep_var)).op
Esempio n. 9
0
def _tf_not(a):
  """Implementation of the "not_" operator for TensorFlow."""
  return gen_math_ops.logical_not(a)