Esempio n. 1
0
    def build(self, input_shape):
        channel_axis = self._channel_axis()
        input_shape = tensor_shape.TensorShape(input_shape)
        num_channels = input_shape[channel_axis].value
        if num_channels is None:
            raise ValueError("The channel dimension of the inputs to `GDN` "
                             "must be defined.")
        self._input_rank = input_shape.ndims
        self.input_spec = base.InputSpec(ndim=input_shape.ndims,
                                         axes={channel_axis: num_channels})

        self.beta = self._beta_parameterization(name="beta",
                                                shape=[num_channels],
                                                dtype=self.dtype,
                                                getter=self.add_variable,
                                                initializer=init_ops.Ones())

        self.gamma = self._gamma_parameterization(
            name="gamma",
            shape=[num_channels, num_channels],
            dtype=self.dtype,
            getter=self.add_variable,
            initializer=init_ops.Identity(gain=self._gamma_init))

        self.built = True
Esempio n. 2
0
 def test_Ones(self):
     tensor_shape = (4, 5)
     with self.cached_session():
         self._runner(init_ops.Ones(),
                      tensor_shape,
                      target_mean=1.,
                      target_max=1.)
Esempio n. 3
0
 def test_Ones(self):
     shape = (4, 5)
     with self.cached_session():
         for tensor_shape in [shape, tensor_shape_lib.TensorShape(shape)]:
             self._runner(init_ops.Ones(),
                          tensor_shape,
                          target_mean=1.,
                          target_max=1.)