Esempio n. 1
0
 def testConcatWithNonFullyDefinedElementShape(self):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32, element_shape=[None, 2])
   l = list_ops.tensor_list_push_back(l, [[0., 1.]])
   l = list_ops.tensor_list_push_back(l, [[2., 3.], [4., 5.]])
   t = list_ops.tensor_list_concat(l, element_dtype=dtypes.float32)
   self.assertAllEqual(self.evaluate(t), [[0., 1.], [2., 3.], [4., 5.]])
Esempio n. 2
0
 def testStack(self):
   l = list_ops.empty_tensor_list(element_dtype=dtypes.float32,
                                  element_shape=scalar_shape())
   l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
   l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
   t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
   self.assertAllEqual(t, [1.0, 2.0])
Esempio n. 3
0
 def testUnknownShape(self):
   l = list_ops.empty_tensor_list(element_dtype=dtypes.float32,
                                  element_shape=-1)
   l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
   l = list_ops.tensor_list_push_back(l, constant_op.constant([1.0, 2.0]))
   _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
   self.assertAllEqual(e, [1.0, 2.0])
Esempio n. 4
0
 def testPushInFullListFails(self):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32, element_shape=[], max_num_elements=1)
   l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
   with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                "Tried to push item into a full list"):
     l = list_ops.tensor_list_push_back(l, 2.)
     self.evaluate(l)
 def _testStack(self, max_num_elements):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32,
       element_shape=scalar_shape(),
       max_num_elements=max_num_elements)
   l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
   l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
   t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
   self.assertAllEqual(self.evaluate(t), [1.0, 2.0])
Esempio n. 6
0
 def testPushInEmptyListWithUnknownElementShape(self):
   with self.cached_session(), self.test_scope():
     l = list_ops.empty_tensor_list(
         element_dtype=dtypes.float32, element_shape=None, max_num_elements=2)
     l = list_ops.tensor_list_push_back(l, [3.0, 4.0])
     # Pushing an element with a different shape should raise an error.
     with self.assertRaisesRegexp(errors.InvalidArgumentError, "Shape"):
       l = list_ops.tensor_list_push_back(l, 5.)
       self.evaluate(
           list_ops.tensor_list_stack(l, element_dtype=dtypes.float32))
Esempio n. 7
0
 def testSetDoesNotUpdatePushIndex(self):
   with self.cached_session(), self.test_scope():
     l = list_ops.empty_tensor_list(
         element_shape=[], element_dtype=dtypes.float32, max_num_elements=2)
     # SetItem should not change the push index.
     l = list_ops.tensor_list_set_item(l, 1, 3.)
     l = list_ops.tensor_list_push_back(l, 5.)
     l = list_ops.tensor_list_push_back(l, 7.)
     t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
     self.assertAllEqual(t, [5., 7.])
Esempio n. 8
0
 def testConcatWithMismatchingTensorShapesFails(self):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32, element_shape=None)
   l = list_ops.tensor_list_push_back(l, [[0., 1.]])
   l = list_ops.tensor_list_push_back(l, [[2.], [4.]])
   with self.assertRaisesRegexp(
       errors.InvalidArgumentError,
       r"Tried to concat tensors with unequal shapes: "
       r"\[2\] vs \[1\]"):
     t = list_ops.tensor_list_concat(l, element_dtype=dtypes.float32)
     self.evaluate(t)
Esempio n. 9
0
 def _testStack(self, max_num_elements):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32,
       element_shape=[],
       max_num_elements=max_num_elements)
   l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
   l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
   t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
   if not context.executing_eagerly():
     self.assertAllEqual(t.shape.as_list(), [None])
   self.assertAllEqual(self.evaluate(t), [1.0, 2.0])
Esempio n. 10
0
 def testGatherGrad(self):
   with backprop.GradientTape() as tape:
     l = list_ops.empty_tensor_list(element_dtype=dtypes.float32,
                                    element_shape=scalar_shape())
     c0 = constant_op.constant(1.0)
     tape.watch(c0)
     l = list_ops.tensor_list_push_back(l, c0)
     l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
     t = list_ops.tensor_list_gather(l, [1, 0], element_dtype=dtypes.float32)
     self.assertAllEqual(self.evaluate(t), [2.0, 1.0])
     s = (t[0] + t[1]) * (t[0] + t[1])
   dt = tape.gradient(s, c0)
   self.assertAllEqual(self.evaluate(dt), 6.0)
Esempio n. 11
0
 def testStack(self):
   with self.cached_session(), self.test_scope():
     l = list_ops.empty_tensor_list(
         element_dtype=dtypes.float32,
         element_shape=[],
         max_num_elements=2)
     l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
     e = list_ops.tensor_list_get_item(l, 0, element_dtype=dtypes.float32)
     self.assertAllEqual(e, 1.0)
     l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
     t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
     self.assertAllEqual(t.shape.as_list(), [None])
     self.assertAllEqual(t, [1.0, 2.0])
Esempio n. 12
0
 def testPushPop(self):
   with self.cached_session() as sess, self.test_scope():
     num = array_ops.placeholder(dtypes.int32)
     l = list_ops.tensor_list_reserve(
         element_shape=(7, 15), num_elements=num, element_dtype=dtypes.float32)
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(1.0, shape=(7, 15)))
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(2.0, shape=(7, 15)))
     l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     self.assertAllEqual(sess.run(e2, {num: 10}), 2.0 * np.ones((7, 15)))
     self.assertAllEqual(sess.run(e1, {num: 10}), 1.0 * np.ones((7, 15)))
Esempio n. 13
0
 def testPushPop(self):
   with self.cached_session() as sess, self.test_scope():
     l = list_ops.empty_tensor_list(
         element_shape=(7, 15),
         element_dtype=dtypes.float32,
         max_num_elements=10)
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(1.0, shape=(7, 15)))
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(2.0, shape=(7, 15)))
     l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     self.assertAllEqual(sess.run(e2), 2.0 * np.ones((7, 15)))
     self.assertAllEqual(sess.run(e1), 1.0 * np.ones((7, 15)))
Esempio n. 14
0
  def testStackWithPartiallyDefinedElementShape(self):
    l = list_ops.empty_tensor_list(
        element_dtype=dtypes.float32, element_shape=[-1])
    l = list_ops.tensor_list_push_back(l, constant_op.constant([1.0]))
    l = list_ops.tensor_list_push_back(l, constant_op.constant([2.0]))

    t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
    self.assertAllEqual(self.evaluate(t), [[1.0], [2.0]])

    # Should raise an error when the element tensors do not all have the same
    # shape.
    with self.assertRaisesRegexp(errors.InvalidArgumentError, "unequal shapes"):
      l = list_ops.tensor_list_push_back(l, constant_op.constant([2.0, 3.0]))
      t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
      self.evaluate(t)
Esempio n. 15
0
def _WhileGrad(op, *grads):  # pylint: disable=invalid-name
  """The gradient of a While op produced by while_loop."""
  body_graph = _get_body_graph(op)

  # Replace None gradients with zeros. This is needed because `grads` could have
  # None incoming gradients for the TensorLists. If we pass None's through, the
  # custom gradient of TensorListPopBack will create an EmptyTensorList inside
  # the FuncGraph which is undesirable.
  # TODO(b/80444525): There might be an issue with treating no gradient as zero
  # gradient in certain cases. Consider replacing None gradients with Zeros
  # for accumulators only.
  grads = [
      g if g is not None else array_ops.zeros_like(output)
      for g, output in zip(grads, op.outputs)
  ]

  body_grad_graph, args = _create_grad_func(
      body_graph, grads,
      util.unique_grad_fn_name(body_graph.name), op)

  intermediate_tensors = _get_intermediates(body_grad_graph)

  for intermediate_tensor in intermediate_tensors:
    tensor_list = list_ops.empty_tensor_list(
        element_dtype=intermediate_tensor.dtype,
        element_shape=_get_tensor_convertible_shape(intermediate_tensor.shape))
    with body_grad_graph.as_default():
      tensor_list_ph = body_grad_graph.capture(tensor_list, whitelisted=True)
      # Push the intermediate tensor to the tensor list.
      appended_tensor_list = list_ops.tensor_list_push_back(tensor_list_ph,
                                                            intermediate_tensor)
      # Add this modified tensor list to the list of outputs.
      body_grad_graph.outputs.append(appended_tensor_list)

  def grad_cond(counter, max_iters, *unused_args):
    return counter < max_iters

  loop_vars = args + body_grad_graph.external_captures
  grad_cond_name = util.unique_grad_fn_name(op.get_attr("cond").name)
  cond_grad_graph = func_graph_module.func_graph_from_py_func(
      grad_cond_name, grad_cond, loop_vars, {},
      func_graph=util.WhileCondFuncGraph(grad_cond_name))

  assert len(loop_vars) == len(body_grad_graph.inputs)
  assert len(loop_vars) == len(body_grad_graph.outputs)
  assert len(loop_vars) == len(cond_grad_graph.inputs)

  outputs = gen_functional_ops._while(
      loop_vars,
      util.create_new_tf_function(cond_grad_graph),
      util.create_new_tf_function(body_grad_graph),
      output_shapes=[t.shape for t in body_grad_graph.outputs],
      name="%s_grad" % op.name)

  _copy_handle_data(body_grad_graph.outputs, outputs)
  _maybe_set_lowering_attr(outputs[0].op)

  # outputs[0] is the loop counter.
  # outputs[1] is the total number of loop iterations.
  return outputs[2:2 + len(op.inputs)]
Esempio n. 16
0
  def testDefaultGradYs(self):
    with ops.Graph().as_default():
      tl = list_ops.empty_tensor_list(
          element_dtype=dtypes.float32,
          element_shape=ops.convert_to_tensor([], dtype=dtypes.int32))
      a = constant(1.0)
      tl = list_ops.tensor_list_push_back(tl, a)

      grad_tl = list_ops.empty_tensor_list(
          element_dtype=dtypes.float32,
          element_shape=ops.convert_to_tensor([], dtype=dtypes.int32))
      grad_tl = list_ops.tensor_list_push_back(tl, constant(5.0))

      grad = gradients.gradients(tl, a, grad_ys=grad_tl)[0]
      with self.cached_session() as sess:
        self.assertEquals(self.evaluate(grad), 5.)
Esempio n. 17
0
 def testConcatListWithScalarElementsFails(self):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32, element_shape=None)
   l1 = list_ops.tensor_list_push_back(l, 1.)
   with self.assertRaisesRegexp(
       errors.InvalidArgumentError, "Concat saw a scalar shape at index 0"
       " but requires at least vectors"):
     t = list_ops.tensor_list_concat(l1, element_dtype=dtypes.float32)
     self.evaluate(t)
   l1 = list_ops.tensor_list_push_back(l, [1.])
   l1 = list_ops.tensor_list_push_back(l1, 2.)
   with self.assertRaisesRegexp(
       errors.InvalidArgumentError, "Concat saw a scalar shape at index 1"
       " but requires at least vectors"):
     t = list_ops.tensor_list_concat(l1, element_dtype=dtypes.float32)
     self.evaluate(t)
Esempio n. 18
0
 def testPushPopSeparateLists(self):
   with self.cached_session() as sess, self.test_scope():
     l = list_ops.empty_tensor_list(
         element_shape=[],
         element_dtype=dtypes.float32,
         max_num_elements=20)
     l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
     l2 = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
     l3 = list_ops.tensor_list_push_back(l, constant_op.constant(3.0))
     _, e11 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     l2, e21 = list_ops.tensor_list_pop_back(l2, element_dtype=dtypes.float32)
     l2, e22 = list_ops.tensor_list_pop_back(l2, element_dtype=dtypes.float32)
     l3, e31 = list_ops.tensor_list_pop_back(l3, element_dtype=dtypes.float32)
     l3, e32 = list_ops.tensor_list_pop_back(l3, element_dtype=dtypes.float32)
     result = sess.run([e11, [e21, e22], [e31, e32]])
     self.assertEqual(result, [1.0, [2.0, 1.0], [3.0, 1.0]])
Esempio n. 19
0
 def _testPushPop(self, max_num_elements):
   l = list_ops.empty_tensor_list(
       element_dtype=dtypes.float32,
       element_shape=[],
       max_num_elements=max_num_elements)
   l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
   l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
   self.assertAllEqual(self.evaluate(e), 1.0)
Esempio n. 20
0
  def testStackWithUnknownElementShape(self, max_num_elements):
    l = list_ops.empty_tensor_list(
        element_dtype=dtypes.float32,
        element_shape=None,
        max_num_elements=max_num_elements)
    l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
    l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))

    t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
    self.assertAllEqual(self.evaluate(t), [1.0, 2.0])

    # Should raise an error when the element tensors do not all have the same
    # shape.
    with self.assertRaisesRegexp(errors.InvalidArgumentError, "unequal shapes"):
      l = list_ops.tensor_list_push_back(l, constant_op.constant([3.0, 4.0]))
      t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32)
      self.evaluate(t)
Esempio n. 21
0
      def body(i, m, t1):
        t1 = control_flow_ops.cond(
            math_ops.equal(list_ops.tensor_list_length(t1), 0),
            lambda: list_ops.empty_tensor_list(m.shape, m.dtype), lambda: t1)

        t1 = list_ops.tensor_list_push_back(t1, m * i)
        i += 1.0
        return i, m, t1
Esempio n. 22
0
 def testPushPopSeparateLists(self):
   with self.cached_session() as sess, self.test_scope():
     num = array_ops.placeholder(dtypes.int32)
     l = list_ops.tensor_list_reserve(
         element_shape=scalar_shape(),
         num_elements=num,
         element_dtype=dtypes.float32)
     l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
     l2 = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
     l3 = list_ops.tensor_list_push_back(l, constant_op.constant(3.0))
     _, e11 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     l2, e21 = list_ops.tensor_list_pop_back(l2, element_dtype=dtypes.float32)
     l2, e22 = list_ops.tensor_list_pop_back(l2, element_dtype=dtypes.float32)
     l3, e31 = list_ops.tensor_list_pop_back(l3, element_dtype=dtypes.float32)
     l3, e32 = list_ops.tensor_list_pop_back(l3, element_dtype=dtypes.float32)
     result = sess.run([e11, [e21, e22], [e31, e32]], {num: 20})
     self.assertEqual(result, [1.0, [2.0, 1.0], [3.0, 1.0]])
Esempio n. 23
0
def tf_tensor_list_new(elements, element_dtype=None, element_shape=None):
  """Overload of new_list that stages a Tensor list creation."""
  if tensor_util.is_tensor(elements):
    if element_shape is not None:
      raise ValueError(
          'element shape may not be specified when creating list from tensor')
    element_shape = array_ops.shape(elements)[1:]
    l = list_ops.tensor_list_from_tensor(elements, element_shape=element_shape)
    return l

  elements = tuple(ops.convert_to_tensor(el) for el in elements)

  all_dtypes = set(el.dtype for el in elements)
  if len(all_dtypes) == 1:
    inferred_dtype = tuple(all_dtypes)[0]
    if element_dtype is not None and element_dtype != inferred_dtype:
      raise ValueError(
          'incompatible dtype; specified: {}, inferred from {}: {}'.format(
              element_dtype, elements, inferred_dtype))
  elif all_dtypes:
    # Heterogeneous lists are ok.
    if element_dtype is not None:
      raise ValueError(
          'specified dtype {} is inconsistent with that of elements {}'.format(
              element_dtype, elements))
    inferred_dtype = dtypes.variant
  else:
    inferred_dtype = dtypes.variant

  all_shapes = set(tuple(el.shape.as_list()) for el in elements)
  if len(all_shapes) == 1:
    inferred_shape = array_ops.shape(elements[0])
    if element_shape is not None and element_shape != inferred_shape:
      raise ValueError(
          'incompatible shape; specified: {}, inferred from {}: {}'.format(
              element_shape, elements, inferred_shape))
  elif all_shapes:
    # Heterogeneous lists are ok.
    if element_shape is not None:
      raise ValueError(
          'specified shape {} is inconsistent with that of elements {}'.format(
              element_shape, elements))
    inferred_shape = constant_op.constant(-1)  # unknown shape, by convention
  else:
    inferred_shape = constant_op.constant(-1)  # unknown shape, by convention

  if element_dtype is None:
    element_dtype = inferred_dtype
  if element_shape is None:
    element_shape = inferred_shape

  element_shape = ops.convert_to_tensor(element_shape, dtype=dtypes.int32)
  l = list_ops.empty_tensor_list(
      element_shape=element_shape, element_dtype=element_dtype)
  for el in elements:
    l = list_ops.tensor_list_push_back(l, el)
  return l
Esempio n. 24
0
 def testDoNotConstantFoldVariants(self):
   with self.cached_session() as sess, self.test_scope():
     val = array_ops.placeholder(dtype=dtypes.float32)
     l = list_ops.empty_tensor_list(
         element_shape=(7, 15),
         element_dtype=dtypes.float32,
         max_num_elements=10)
     # Note: Pushing a Placeholder will force the constant folding code
     # to build a Const node with a DT_VARIANT output. This tests that XLA
     # passes a cf_consider_fn which prevent folding such nodes.
     l = list_ops.tensor_list_push_back(
         l, array_ops.fill(value=val, dims=(7, 15)))
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(2.0, shape=(7, 15)))
     l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     self.assertAllEqual(sess.run(e2, {val: 1.0}), 2.0 * np.ones((7, 15)))
     self.assertAllEqual(sess.run(e1, {val: 1.0}), 1.0 * np.ones((7, 15)))
Esempio n. 25
0
  def testGatherWithUnknownElementShape(self):
    l = list_ops.empty_tensor_list(
        element_dtype=dtypes.float32, element_shape=-1)
    l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
    l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
    l = list_ops.tensor_list_push_back(l, constant_op.constant([3.0, 4.0]))

    t = list_ops.tensor_list_gather(l, [1, 0], element_dtype=dtypes.float32)
    self.assertAllEqual(self.evaluate(t), [2.0, 1.0])

    t = list_ops.tensor_list_gather(l, [2], element_dtype=dtypes.float32)
    self.assertAllEqual(self.evaluate(t), [[3.0, 4.0]])

    # Should raise an error when the requested tensors do not all have the same
    # shape.
    with self.assertRaisesRegexp(errors.InvalidArgumentError, "unequal shapes"):
      t = list_ops.tensor_list_gather(l, [0, 2], element_dtype=dtypes.float32)
      self.evaluate(t)
Esempio n. 26
0
 def testGraphStack(self):
   with context.graph_mode(), self.test_session():
     tl = list_ops.empty_tensor_list(
         element_shape=constant_op.constant([1], dtype=dtypes.int32),
         element_dtype=dtypes.int32)
     tl = list_ops.tensor_list_push_back(tl, [1])
     self.assertAllEqual(
         list_ops.tensor_list_stack(tl, element_dtype=dtypes.int32).eval(),
         [[1]])
Esempio n. 27
0
 def testEmptyTensorListMax(self):
   with self.cached_session() as sess, self.test_scope():
     l = list_ops.empty_tensor_list(
         element_shape=(10, 15), element_dtype=dtypes.float32,
         max_num_elements=2)
     l = list_ops.tensor_list_push_back(
         l, array_ops.fill(value=3.0, dims=(10, 15)))
     _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     self.assertAllEqual(sess.run(e), 3.0 * np.ones((10, 15)))
Esempio n. 28
0
 def testEmptyTensorListNoMax(self):
   with self.cached_session() as sess, self.test_scope():
     l = list_ops.empty_tensor_list(
         element_shape=(7, 15), element_dtype=dtypes.float32)
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(1.0, shape=(7, 15)))
     _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                  "Set the max number of elements"):
       self.assertAllEqual(sess.run(e), 1.0 * np.ones((7, 15)))
Esempio n. 29
0
 def testPushPopGradients(self):
   with backprop.GradientTape() as tape:
     l = list_ops.empty_tensor_list(
         element_dtype=dtypes.float32, element_shape=[])
     c = constant_op.constant(1.0)
     tape.watch(c)
     l = list_ops.tensor_list_push_back(l, c)
     l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     e = 2 * e
   self.assertAllEqual(self.evaluate(tape.gradient(e, [c])[0]), 2.0)
Esempio n. 30
0
 def testGraphStack(self):
   with self.cached_session():
     tl = list_ops.empty_tensor_list(
         element_shape=constant_op.constant([1], dtype=dtypes.int32),
         element_dtype=dtypes.int32)
     tl = list_ops.tensor_list_push_back(tl, [1])
     self.assertAllEqual(
         self.evaluate(
             list_ops.tensor_list_stack(tl, element_dtype=dtypes.int32)),
         [[1]])
Esempio n. 31
0
 def testDoNotConstantFoldVariants(self):
     with self.session() as sess, self.test_scope():
         val = array_ops.placeholder(dtype=dtypes.float32)
         l = list_ops.empty_tensor_list(element_shape=(7, 15),
                                        element_dtype=dtypes.float32,
                                        max_num_elements=10)
         # Note: Pushing a Placeholder will force the constant folding code
         # to build a Const node with a DT_VARIANT output. This tests that XLA
         # passes a cf_consider_fn which prevent folding such nodes.
         l = list_ops.tensor_list_push_back(
             l, array_ops.fill(value=val, dims=(7, 15)))
         l = list_ops.tensor_list_push_back(
             l, constant_op.constant(2.0, shape=(7, 15)))
         l, e2 = list_ops.tensor_list_pop_back(l,
                                               element_dtype=dtypes.float32)
         _, e1 = list_ops.tensor_list_pop_back(l,
                                               element_dtype=dtypes.float32)
         self.assertAllEqual(sess.run(e2, {val: 1.0}), 2.0 * np.ones(
             (7, 15)))
         self.assertAllEqual(sess.run(e1, {val: 1.0}), 1.0 * np.ones(
             (7, 15)))
Esempio n. 32
0
 def testSerializeListWithMaxNumElements(self):
     if context.num_gpus():
         # TODO(b/119151861): Enable on GPU.
         return
     worker = test_util.create_local_cluster(num_workers=1, num_ps=1)[0][0]
     with ops.Graph().as_default(), session.Session(target=worker.target):
         with ops.device("/job:worker"):
             l = list_ops.empty_tensor_list(element_shape=None,
                                            element_dtype=dtypes.float32,
                                            max_num_elements=2)
             l = list_ops.tensor_list_push_back(l, 1.)
         with ops.device("/job:ps"):
             l_ps = array_ops.identity(l)
             l_ps = list_ops.tensor_list_push_back(l_ps, 2.)
         with self.assertRaisesRegexp(
                 errors.InvalidArgumentError,
                 "Tried to push item into a full list"):
             with ops.device("/job:worker"):
                 l_worker = array_ops.identity(l_ps)
                 l_worker = list_ops.tensor_list_push_back(l_worker, 3.0)
                 self.evaluate(l_worker)
Esempio n. 33
0
 def testEmptyTensorList(self):
   dim = 7
   with self.cached_session() as sess, self.test_scope():
     p = array_ops.placeholder(dtypes.int32)
     l = list_ops.empty_tensor_list(
         element_shape=(p, 15), element_dtype=dtypes.float32)
     l = list_ops.tensor_list_push_back(
         l, constant_op.constant(1.0, shape=(dim, 15)))
     _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                  "Use TensorListReserve instead"):
       self.assertEqual(sess.run(e, {p: dim}), 1.0 * np.ones((dim, 15)))
Esempio n. 34
0
    def testGatherWithUnknownElementShape(self):
        l = list_ops.empty_tensor_list(element_dtype=dtypes.float32,
                                       element_shape=-1)
        l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
        l = list_ops.tensor_list_push_back(l, constant_op.constant(2.0))
        l = list_ops.tensor_list_push_back(l, constant_op.constant([3.0, 4.0]))

        t = list_ops.tensor_list_gather(l, [1, 0],
                                        element_dtype=dtypes.float32)
        self.assertAllEqual(self.evaluate(t), [2.0, 1.0])

        t = list_ops.tensor_list_gather(l, [2], element_dtype=dtypes.float32)
        self.assertAllEqual(self.evaluate(t), [[3.0, 4.0]])

        # Should raise an error when the requested tensors do not all have the same
        # shape.
        with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                     "unequal shapes"):
            t = list_ops.tensor_list_gather(l, [0, 2],
                                            element_dtype=dtypes.float32)
            self.evaluate(t)
    def testZerosLikeVariant(self):
        for dtype in (dtypes.uint8, dtypes.uint16, dtypes.int8, dtypes.int16,
                      dtypes.int32, dtypes.int64, dtypes.float16,
                      dtypes.float32, dtypes.float64, dtypes.complex64,
                      dtypes.complex128, dtypes.bool):
            l = list_ops.empty_tensor_list(element_dtype=dtypes.variant,
                                           element_shape=scalar_shape())

            sub_l = list_ops.empty_tensor_list(element_dtype=dtype,
                                               element_shape=scalar_shape())
            l = list_ops.tensor_list_push_back(l, sub_l)
            sub_l = list_ops.tensor_list_push_back(
                sub_l, math_ops.cast(1, dtype=dtype))
            l = list_ops.tensor_list_push_back(l, sub_l)
            sub_l = list_ops.tensor_list_push_back(
                sub_l, math_ops.cast(2, dtype=dtype))
            l = list_ops.tensor_list_push_back(l, sub_l)

            # l : [[],
            #      [1],
            #      [1, 2]]
            #
            # l_zeros : [[],
            #            [0],
            #            [0, 0]]
            l_zeros = array_ops.zeros_like(l)

            outputs = []
            for _ in range(3):
                l_zeros, out = list_ops.tensor_list_pop_back(
                    l_zeros, element_dtype=dtypes.variant)
                outputs.append(
                    list_ops.tensor_list_stack(out, element_dtype=dtype))

            # Note: `outputs` contains popped values so the order is reversed.
            self.assertAllEqual(self.evaluate(outputs[2]), [])
            self.assertAllEqual(self.evaluate(outputs[1]),
                                np.zeros((1, ), dtype=dtype.as_numpy_dtype))
            self.assertAllEqual(self.evaluate(outputs[0]),
                                np.zeros((2, ), dtype=dtype.as_numpy_dtype))
Esempio n. 36
0
    def testGatherWithPartiallyDefinedElementShape(self, max_num_elements):
        l = list_ops.empty_tensor_list(element_dtype=dtypes.float32,
                                       element_shape=[-1],
                                       max_num_elements=max_num_elements)
        l = list_ops.tensor_list_push_back(l, constant_op.constant([1.0]))
        l = list_ops.tensor_list_push_back(l, constant_op.constant([2.0, 3.0]))
        l = list_ops.tensor_list_push_back(l, constant_op.constant([4.0, 5.0]))

        t = list_ops.tensor_list_gather(l, [0], element_dtype=dtypes.float32)
        self.assertAllEqual(self.evaluate(t), [[1.0]])

        t = list_ops.tensor_list_gather(l, [1, 2],
                                        element_dtype=dtypes.float32)
        self.assertAllEqual(self.evaluate(t), [[2.0, 3.0], [4.0, 5.0]])

        # Should raise an error when the requested tensors do not all have the same
        # shape.
        with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                     "unequal shapes"):
            t = list_ops.tensor_list_gather(l, [0, 2],
                                            element_dtype=dtypes.float32)
            self.evaluate(t)
Esempio n. 37
0
 def testAddNNestedList(self):
   l1 = list_ops.tensor_list_from_tensor([1.0, 2.0], element_shape=[])
   l2 = list_ops.tensor_list_from_tensor([3.0, 4.0], element_shape=[])
   l3 = list_ops.tensor_list_from_tensor([5.0, 6.0], element_shape=[])
   l4 = list_ops.tensor_list_from_tensor([7.0, 8.0], element_shape=[])
   a = list_ops.empty_tensor_list(
       element_dtype=dtypes.variant, element_shape=[])
   a = list_ops.tensor_list_push_back(a, l1)
   a = list_ops.tensor_list_push_back(a, l2)
   b = list_ops.empty_tensor_list(
       element_dtype=dtypes.variant, element_shape=[])
   b = list_ops.tensor_list_push_back(b, l3)
   b = list_ops.tensor_list_push_back(b, l4)
   result = math_ops.add_n((a, b))
   result_0 = list_ops.tensor_list_stack(
       list_ops.tensor_list_get_item(result, 0, element_dtype=dtypes.variant),
       element_dtype=dtypes.float32)
   result_1 = list_ops.tensor_list_stack(
       list_ops.tensor_list_get_item(result, 1, element_dtype=dtypes.variant),
       element_dtype=dtypes.float32)
   self.assertAllEqual(self.evaluate(result_0), [6., 8.])
   self.assertAllEqual(self.evaluate(result_1), [10., 12.])
    def testZerosLike(self):
        for dtype in (dtypes.uint8, dtypes.uint16, dtypes.int8, dtypes.int16,
                      dtypes.int32, dtypes.int64, dtypes.float16,
                      dtypes.float32, dtypes.float64, dtypes.complex64,
                      dtypes.complex128, dtypes.bool):
            l_empty = list_ops.empty_tensor_list(element_dtype=dtype,
                                                 element_shape=scalar_shape())
            l_empty_zeros = array_ops.zeros_like(l_empty)
            t_empty_zeros = list_ops.tensor_list_stack(l_empty_zeros,
                                                       element_dtype=dtype)

            l_full = list_ops.tensor_list_push_back(
                l_empty, math_ops.cast(0, dtype=dtype))
            l_full = list_ops.tensor_list_push_back(
                l_full, math_ops.cast(1, dtype=dtype))
            l_full_zeros = array_ops.zeros_like(l_full)
            t_full_zeros = list_ops.tensor_list_stack(l_full_zeros,
                                                      element_dtype=dtype)

            self.assertAllEqual(self.evaluate(t_empty_zeros), [])
            self.assertAllEqual(self.evaluate(t_full_zeros),
                                np.zeros((2, ), dtype=dtype.as_numpy_dtype))
Esempio n. 39
0
def _tf_tensor_list_append(list_, x):
  """Overload of list_append that stages a Tensor list write."""
  def empty_list_of_elements_like_x():
    tensor_x = ops.convert_to_tensor(x)
    return list_ops.empty_tensor_list(
        element_shape=array_ops.shape(tensor_x),
        element_dtype=tensor_x.dtype)

  list_ = control_flow_ops.cond(
      list_ops.tensor_list_length(list_) > 0,
      lambda: list_,
      empty_list_of_elements_like_x,
  )
  return list_ops.tensor_list_push_back(list_, x)
Esempio n. 40
0
def dynamic_list_append(target, element):
  """Converts a list append call inline."""
  if isinstance(target, tensor_array_ops.TensorArray):
    return target.write(target.size(), element)
  # TODO(mdan): What's the right way to check this?
  # TODO(mdan): We may not need this branch.
  # It may be possible to use TensorList alone if the loop body will not
  # require wrapping it, although we'd have to think about an autoboxing
  # mechanism for lists received as parameter.
  if isinstance(target, ops.Tensor):
    return list_ops.tensor_list_push_back(target, element)

  # Python targets (including TensorList): fallback to their original append.
  target.append(element)
  return target
def tf_tensor_list_new(elements, element_dtype=None, element_shape=None):
    """Overload of new_list that stages a Tensor list creation."""
    elements = tuple(ops.convert_to_tensor(el) for el in elements)

    all_dtypes = set(el.dtype for el in elements)
    if len(all_dtypes) == 1:
        inferred_dtype = tuple(all_dtypes)[0]
        if element_dtype is not None and element_dtype != inferred_dtype:
            raise ValueError(
                'incompatible dtype; specified: {}, inferred from {}: {}'.
                format(element_dtype, elements, inferred_dtype))
    else:
        # Heterogeneous lists are ok.
        if element_dtype is not None:
            raise ValueError(
                'specified dtype {} is inconsistent with that of elements {}'.
                format(element_dtype, elements))
        inferred_dtype = dtypes.variant

    all_shapes = set(tuple(el.shape.as_list()) for el in elements)
    if len(all_shapes) == 1:
        inferred_shape = array_ops.shape(elements[0])
        if element_shape is not None and element_shape != inferred_shape:
            raise ValueError(
                'incompatible shape; specified: {}, inferred from {}: {}'.
                format(element_shape, elements, inferred_shape))
    else:
        # Heterogeneous lists are ok.
        if element_shape is not None:
            raise ValueError(
                'specified shape {} is inconsistent with that of elements {}'.
                format(element_shape, elements))
        inferred_shape = constant_op.constant(
            -1)  # unknown shape, by convention

    if element_dtype is None:
        element_dtype = inferred_dtype
    if element_shape is None:
        element_shape = inferred_shape

    l = list_ops.empty_tensor_list(element_shape=element_shape,
                                   element_dtype=element_dtype)
    for el in elements:
        l = list_ops.tensor_list_push_back(l, el)
    return l
Esempio n. 42
0
def _tf_tensor_list_new(elements):
  """Overload of new_list that stages a Tensor list creation."""
  elements = tuple(ops.convert_to_tensor(el) for el in elements)
  all_dtypes = set(el.dtype for el in elements)
  if len(all_dtypes) == 1:
    element_dtype = tuple(all_dtypes)[0]
  else:
    # Heterogeneous lists are ok.
    element_dtype = dtypes.variant

  # TODO(mdan): This may fail for elements of variable shapes.
  all_shapes = set(tuple(el.shape.as_list()) for el in elements)
  if len(all_shapes) == 1:
    element_shape = array_ops.shape(elements[0])
  else:
    # Heterogeneous lists are ok.
    element_shape = constant_op.constant(-1)  # unknown shape, by convention

  l = list_ops.empty_tensor_list(
      element_shape=element_shape, element_dtype=element_dtype)
  for el in elements:
    l = list_ops.tensor_list_push_back(l, el)
  return l
Esempio n. 43
0
 def testCPUGPUCopyNested(self):
   if not context.num_gpus():
     return
   t = constant_op.constant([1.0, 2.0])
   child_l = list_ops.tensor_list_from_tensor(t, element_shape=[])
   l = list_ops.empty_tensor_list(
       element_shape=constant_op.constant([], dtype=dtypes.int32),
       element_dtype=dtypes.variant)
   l = list_ops.tensor_list_push_back(l, child_l)
   with context.device("gpu:0"):
     l_gpu = array_ops.identity(l)
     _, child_l_gpu = list_ops.tensor_list_pop_back(
         l_gpu, element_dtype=dtypes.variant)
     self.assertAllEqual(
         self.evaluate(
             list_ops.tensor_list_pop_back(
                 child_l_gpu, element_dtype=dtypes.float32)[1]), 2.0)
   l_cpu = array_ops.identity(l_gpu)
   _, child_l_cpu = list_ops.tensor_list_pop_back(
       l_cpu, element_dtype=dtypes.variant)
   self.assertAllEqual(
       self.evaluate(
           list_ops.tensor_list_pop_back(
               child_l_cpu, element_dtype=dtypes.float32)[1]), 2.0)
Esempio n. 44
0
 def Body(x, tl):
     return x + 1, list_ops.tensor_list_push_back(tl, x)
Esempio n. 45
0
 def InnerBody(inner_x, outer_x, tl):
     return inner_x + 1, outer_x + 1, list_ops.tensor_list_push_back(
         tl, x)
Esempio n. 46
0
 def body(list_, m):
   list_ = control_flow_ops.cond(
       math_ops.equal(list_ops.tensor_list_length(list_), 0),
       lambda: list_ops.empty_tensor_list(m.shape, m.dtype), lambda: list_)
   list_ = list_ops.tensor_list_push_back(list_, m)
   return list_, m
Esempio n. 47
0
 def Body(x, tl):
     # There is an accumulator in the loop already so we should not add
     # another.
     tl = list_ops.tensor_list_push_back(tl, x)
     return x**2., tl
 def testPushPop(self):
     l = list_ops.empty_tensor_list(element_dtype=dtypes.float32,
                                    element_shape=scalar_shape())
     l = list_ops.tensor_list_push_back(l, constant_op.constant(1.0))
     l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32)
     self.assertAllEqual(self.evaluate(e), 1.0)
Esempio n. 49
0
  def _capture_helper(self, tensor, name):
    if tensor.graph is not self._forward_graph:
      return super(_WhileBodyGradFuncGraph, self)._capture_helper(tensor, name)

    while tensor.op.type == "Identity":
      # We do not accumulate the output of identity nodes so we try to capture
      # the input of the Identity node instead.
      tensor = tensor.op.inputs[0]

    captured_tensor = self._indirect_captures.get(ops.tensor_id(tensor))
    if captured_tensor is not None:
      return captured_tensor

    # Do not accumulate loop invariants.
    if (any(tensor is t for t in self._forward_graph.inputs) and
        any(tensor is t for t in self._forward_graph.outputs)):
      captured_tensor = super(_WhileBodyGradFuncGraph,
                              self)._capture_helper(tensor, name)
      # Add to `popped_tensor_lists` so that this gets added to the list of
      # outputs.
      # TODO(srbs): Rename popped_tensor_lists.
      self.popped_tensor_lists[ops.tensor_id(captured_tensor)] = captured_tensor
      self._indirect_captures[ops.tensor_id(tensor)] = captured_tensor
      return captured_tensor

    # Do not accumulate Const nodes. Instead copy them directly in the backward
    # graph.
    # TODO(srbs): This just checks for `Const` nodes. Consider checking for
    # graph compile time consts in general.
    # TODO(srbs): Consider making this a loop input.
    if constant_op.is_constant(tensor):
      real_value = constant_op.constant(
          tensor_util.constant_value(tensor), dtype=tensor.dtype)
      self._indirect_captures[ops.tensor_id(tensor)] = real_value
      return real_value

    # Resource tensors are not accumulated and handled specially.
    if tensor.dtype == dtypes.resource:
      return self._resource_capture_helper(tensor)

    # No need to accumulate loop invariants. Capture them directly.
    # The captured tensor gets resolved to the corresponding while output in
    # `_resolve_grad_captures`.
    if _is_loop_invariant(tensor, self._forward_graph_inputs,
                          self._forward_graph_outputs):
      captured_tensor = super(_WhileBodyGradFuncGraph,
                              self)._capture_helper(tensor, name)
      return captured_tensor

    # Create or find an existing accumulator output for `tensor` in the forward
    # graph, and fetch from this accumulator in the gradient graph to get the
    # raw intermediate value.
    accumulator = _get_accumulator(tensor)
    if accumulator is None:
      # Create the initial empty tensor list.
      #
      # Note: We clear the control dependencies to avoid a cycle in case a
      # control tensor has an input path to an output of the  forward While.
      #
      # E.g.:
      # x = tf.while_loop(...)
      # y = f(x)
      # with tf.control_dependencies([y]):
      #   tf.gradients(y, x)
      #
      # Since the EmptyTensorList is fed back into the forward While, not
      # removing the control edge would cause a cycle.
      with self._forward_graph.outer_graph.as_default():
        with util.clear_control_inputs():
          tensor_list = list_ops.empty_tensor_list(
              element_dtype=tensor.dtype,
              element_shape=tensor.shape,
              max_num_elements=self._maximum_iterations,
              name=_build_accumulator_name(tensor))
      self.empty_tensor_lists.append(tensor_list)

      # Push the intermediate tensor to the tensor list. This captures
      # `tensor_list`.
      with self._forward_graph.as_default():
        accumulator = list_ops.tensor_list_push_back(tensor_list, tensor)
      # Add the modified tensor list to the list of outputs. This output will be
      # all the accumulated values.
      self._forward_graph.outputs.append(accumulator)

      # Capture in the cond graph as well so the forward cond and body inputs
      # match.
      with self._forward_cond_graph.as_default():
        self._forward_cond_graph.capture(tensor_list)

    # Capture the accumulator tensor list in the gradient graph directly from
    # the forward graph -- we'll later modify this to capture the final list
    # output by the forward While op instead.
    captured_accumulator = super(_WhileBodyGradFuncGraph, self)._capture_helper(
        accumulator, name)

    # Pop the intermediate value from the tensor list in the gradient graph.
    new_tensor_list, captured_tensor = list_ops.tensor_list_pop_back(
        captured_accumulator, element_dtype=tensor.dtype)

    self._indirect_captures[ops.tensor_id(tensor)] = captured_tensor
    self.popped_tensor_lists[ops.tensor_id(
        captured_accumulator)] = new_tensor_list
    return captured_tensor
Esempio n. 50
0
 def append(self, value):
   self.list_ = list_ops.tensor_list_push_back(self.list_, value)
Esempio n. 51
0
def while_loop(cond,
               body,
               loop_vars,
               shape_invariants=None,
               maximum_iterations=None,
               name=None):
    """Like tf.while_loop, except emits a single While op."""
    maximum_iterations = _validate_and_convert_to_tensor(maximum_iterations)
    # Keep the original loop_vars around to know which args were TensorArrays.
    orig_loop_vars = loop_vars
    # Cache its length since we use it at multiple places below.
    len_orig_loop_vars = len(orig_loop_vars)

    # Convert TensorArrays to their flow variables. These get converted back to
    # TensorArrays before calling `cond` and `body`. See `wrapped_cond` and
    # `wrapped_body` below.
    loop_vars = list(_tensor_array_to_flow(orig_loop_vars))
    loop_vars = nest.map_structure(
        ops.internal_convert_to_tensor_or_indexed_slices, loop_vars)
    if shape_invariants is not None:
        nest.assert_same_structure(orig_loop_vars, shape_invariants)
    else:
        shape_invariants = nest.map_structure(lambda t: t.shape, loop_vars)

    if not name:
        name = "while"

    with ops.name_scope(name) as scope:
        with ops.name_scope(None):
            cond_name = util.unique_fn_name(scope, "cond")
            body_name = util.unique_fn_name(scope, "body")

        loop_counter = constant_op.constant(
            0,
            dtype=maximum_iterations.dtype
            if maximum_iterations is not None else None,
            name="loop_counter")
        # Add loop counter needed for computing gradients.
        loop_vars = [loop_counter] + loop_vars

        shape_invariants = type(shape_invariants)([tensor_shape.scalar()
                                                   ]) + shape_invariants

        # Automatic control dependencies are added in defuns, but not in v1
        # graphs. Propagate that behavior here.
        add_control_dependencies = util.in_defun()

        # Build a `cond` wrapper that can handle the extra counter loop_var.
        def wrapped_cond(loop_counter, *args):
            # Convert the flow variables in `args` to TensorArrays. `args` should
            # already have the same structure as `orig_loop_vars` but currently there
            # is no nest.zip so we call `_pack_sequence_as` which flattens both
            # `orig_loop_vars` and `args`, converts flows in `args` to TensorArrays
            # and packs it into the structure of `orig_loop_vars`.
            if maximum_iterations is None:
                return cond(*_pack_sequence_as(orig_loop_vars, args))
            else:
                return math_ops.logical_and(
                    loop_counter < maximum_iterations,
                    cond(*_pack_sequence_as(orig_loop_vars, args)))

        cond_graph = func_graph_module.func_graph_from_py_func(
            cond_name,
            wrapped_cond,
            loop_vars, {},
            signature=_build_signature(loop_vars, shape_invariants),
            func_graph=util.WhileCondFuncGraph(cond_name),
            add_control_dependencies=add_control_dependencies)

        # Add external_captures of cond to the list of loop vars.
        # Note that external tensors will be treated as loop invariants, i.e.,
        # the value of that tensor in each iteration is the same as it was at the
        # beginning of the loop execution.
        loop_vars = loop_vars + cond_graph.external_captures
        shape_invariants = shape_invariants + type(shape_invariants)(
            [t.shape for t in cond_graph.external_captures])

        def wrapped_body(loop_counter, *args):
            """Loop body augmented with counter update.

      Args:
        loop_counter: Loop counter which needs to be incremented in the body.
        *args: List of args
          args[:len_orig_loop_vars] - Args for the original loop body.
          args[len_orig_loop_vars:] - External captures of cond. These get
            passed through as is.

      Returns:
        A list of tensors the same length as args.
      """
            # Convert the flow variables in `args` to TensorArrays. `args` should
            # already have the same structure as `orig_loop_vars` but currently there
            # is no nest.zip so we call `_pack_sequence_as` which flattens both
            # `orig_loop_vars` and `args`, converts flows in `args` to TensorArrays
            # and packs it into the structure of `orig_loop_vars`.
            outputs = body(
                *_pack_sequence_as(orig_loop_vars, args[:len_orig_loop_vars]))
            if not nest.is_sequence(outputs):
                outputs = [outputs]
            # Compare the structure of input and output of body converting the
            # top-level tuples to list to be compatible with legacy while_loop.
            nest.assert_same_structure(list(outputs), list(orig_loop_vars))

            outputs = _tensor_array_to_flow(outputs)

            # Return the external_captures of cond_graph as is, i.e., treat them as
            # loop invariants.
            # TODO(srbs): Update lowering code to create _Enter nodes with
            # is_constant=True for inputs that are directly passed to outputs.
            return [loop_counter + 1] + list(outputs) + list(
                args[len_orig_loop_vars:])

        body_graph = func_graph_module.func_graph_from_py_func(
            body_name,
            wrapped_body,
            loop_vars, {},
            signature=_build_signature(loop_vars, shape_invariants),
            func_graph=util.WhileBodyFuncGraph(body_name),
            add_control_dependencies=add_control_dependencies)
        # Add external captures of body to the list of loop vars.
        # Note that external tensors will be treated as loop invariants, i.e.,
        # the value of that tensor in each iteration is the same as it was at the
        # beginning of the loop execution.
        loop_vars = loop_vars + body_graph.external_captures
        # TODO(srbs): Update lowering code to create _Enter nodes with
        # is_constant=True for inputs that are directly passed to outputs.
        body_graph.outputs.extend(body_graph.internal_captures)

        # Capture `external_captures` of `body_graph` in `cond_graph` so that it
        # expects to receive those as arguments.
        # TODO(b/118457764): Dedup tensors that are captured in both the cond and
        # body. This logic already exists in cond_v2.
        with cond_graph.as_default():
            for external_capture in body_graph.external_captures:
                assert external_capture not in cond_graph.captures, (
                    "Looks like both cond and body are capturing the same tensor %s. "
                    "This is not supported yet. For now consider passing,"
                    " this as a loop variable." % str(external_capture))
                cond_graph.capture(external_capture)

        # Export all tensors in the loop body that may be needed for gradient
        # computation. We do this by accumulating the intermediate values in
        # TensorLists.
        intermediate_tensors = _get_intermediates(body_graph)

        for intermediate_tensor in intermediate_tensors:
            tensor_list = list_ops.empty_tensor_list(
                element_dtype=intermediate_tensor.dtype,
                element_shape=intermediate_tensor.shape,
                max_num_elements=maximum_iterations)
            loop_vars.append(tensor_list)
            with cond_graph.as_default():
                # Add a placeholder to cond_graph's inputs corresponding to the
                # tensor_list.
                cond_graph.capture(tensor_list)
            with body_graph.as_default():
                # Push the intermediate tensor to the tensor list. This captures the
                # `tensor_list` as well.
                appended_tensor_list = list_ops.tensor_list_push_back(
                    tensor_list, intermediate_tensor)
                # Add this modified tensor list to the list of outputs.
                body_graph.outputs.append(appended_tensor_list)

        # Make sure that the shapes of the loop outputs are compatible with the
        # shape invariants, or the shapes of the loop vars if the invariants are not
        # specified.
        num_flattened_outputs = len(nest.flatten(orig_loop_vars))
        _check_shapes_compat(
            body_graph.outputs[1:1 + num_flattened_outputs],
            nest.flatten(shape_invariants[1:1 + len_orig_loop_vars]),
            nest.flatten(loop_vars[1:1 + len_orig_loop_vars]))
        flattened_loop_vars = nest.flatten(loop_vars)
        _check_num_inputs_outputs(cond_graph, body_graph,
                                  len(flattened_loop_vars))

        outputs = gen_functional_ops._while(
            flattened_loop_vars,
            util.create_new_tf_function(cond_graph),
            util.create_new_tf_function(body_graph),
            output_shapes=[t.shape for t in body_graph.outputs],
            name=scope)

        _copy_handle_data(body_graph.outputs, outputs)
        util.maybe_set_lowering_attr(outputs[0].op)
        _maybe_set_maximum_iterations_attr(outputs[0].op, maximum_iterations)

        # Return identities for each output of the While op, rather than the output
        # of the While op directly. This makes pruning work if the output of
        # while_loop() is fetched: the lowering pass converts the While outputs into
        # IdentityN outputs, which if fetched will cause all ops in the body to be
        # run (since it takes all exit ops as input). After lowering, each output
        # identity op will end up with only the appropriate exit op as input.
        outputs = tuple(array_ops.identity(t) for t in outputs)

    # First var is loop counter.
    outputs = _pack_sequence_as(orig_loop_vars,
                                outputs[1:1 + num_flattened_outputs])

    flattened_outputs = nest.flatten(outputs)
    if len(flattened_outputs) == 1:
        return flattened_outputs[0]
    else:
        return outputs
Esempio n. 52
0
def _WhileGrad(op, *grads):  # pylint: disable=invalid-name
    """The gradient of a While op produced by while_loop."""
    body_graph = _get_body_graph(op)

    # Set the incoming gradient of TensorArray handles to None. The gradient
    # implementation currently assumes all resource tensors correspond to float32
    # ResourceVariables, which can lead to runtime shape errors when used with a
    # TensorArray. This is a workaround until TensorArrays are reimplemented with
    # TensorLists instead of resources.
    # Also set the incoming gradient of non-trainable inputs to None. It is
    # possible that we receive non-None gradients for non-trainable types in
    # nested while loops because we accumulate outputs of the inner while as
    # variant tensors which are trainable and hence receive zeros_like tensors in
    # the gradient pass. The non-trainable tensors then receive the popped zeros
    # tensor from this zeros variant. The gradient for the loop vars corresponding
    # to these tensors is None or zeros (this happens only if the loop var is
    # accumulated as well) in _grad_fn so we reset these.
    # TODO(b/118712257): Remove the IsTrainable filter once we can handle None
    # output grads in _grad_fn.
    grads = [
        None if _is_tensor_array_handle(output)
        or not gradients_impl.IsTrainable(output) else grad
        for grad, output in zip(grads, op.outputs)
    ]

    # Ensure that all non-resource trainable outputs have incoming gradients.
    assert all(g is not None or o.dtype == dtypes.resource
               or not gradients_impl.IsTrainable(o)
               for o, g in zip(op.outputs, grads)
               ), "All trainable loop vars must receive incoming gradients."
    # We compute the gradient for the sub-graph between trainable ys and xs
    # with non-None incoming gradients. We later pad the None's to the list of
    # outputs.
    ys, xs, non_none_grads = zip(
        *[(y, x, grad)
          for (y, x, grad) in zip(body_graph.outputs, body_graph.inputs, grads)
          if grad is not None])

    body_grad_graph, args = _create_grad_func(
        ys, xs, non_none_grads, body_graph,
        util.unique_grad_fn_name(body_graph.name), op)

    intermediate_tensors = _get_intermediates(body_grad_graph)

    maximum_iterations = op.get_attr(
        "_maximum_iterations") if _is_in_xla_context() else None
    assert not _is_in_xla_context() or maximum_iterations is not None
    for intermediate_tensor in intermediate_tensors:
        tensor_list = list_ops.empty_tensor_list(
            element_dtype=intermediate_tensor.dtype,
            element_shape=intermediate_tensor.shape,
            max_num_elements=maximum_iterations)

        with body_grad_graph.as_default():
            tensor_list_ph = body_grad_graph.capture(tensor_list,
                                                     whitelisted=True)
            # Push the intermediate tensor to the tensor list.
            appended_tensor_list = list_ops.tensor_list_push_back(
                tensor_list_ph, intermediate_tensor)
            # Add this modified tensor list to the list of outputs.
            body_grad_graph.outputs.append(appended_tensor_list)

    def grad_cond(counter, max_iters, *unused_args):
        return counter < max_iters

    loop_vars = args + body_grad_graph.external_captures
    grad_cond_name = util.unique_grad_fn_name(op.get_attr("cond").name)
    cond_grad_graph = func_graph_module.func_graph_from_py_func(
        grad_cond_name,
        grad_cond,
        loop_vars, {},
        func_graph=util.WhileCondFuncGraph(grad_cond_name))

    _check_num_inputs_outputs(cond_grad_graph, body_grad_graph, len(loop_vars))

    outputs = gen_functional_ops._while(
        loop_vars,
        util.create_new_tf_function(cond_grad_graph),
        util.create_new_tf_function(body_grad_graph),
        output_shapes=[t.shape for t in body_grad_graph.outputs],
        name="%s_grad" % op.name)

    _copy_handle_data(body_grad_graph.outputs, outputs)
    util.maybe_set_lowering_attr(outputs[0].op)
    _maybe_set_maximum_iterations_attr(outputs[0].op, maximum_iterations)

    # See comment in while_loop.
    outputs = [array_ops.identity(t) for t in outputs]

    # Set None as the output gradient for tensors with None input gradient
    # e.g. TensorArray handles.
    # outputs[0] is the loop counter.
    # outputs[1] is the total number of loop iterations.
    index = 2
    none_padded_outputs = []
    for g in grads:
        if g is None:
            none_padded_outputs.append(None)
        else:
            none_padded_outputs.append(outputs[index])
            index += 1
    return none_padded_outputs
Esempio n. 53
0
    def _capture_helper(self, tensor, name):
        if tensor.graph is not self._forward_graph:
            return super(_WhileBodyGradFuncGraph,
                         self)._capture_helper(tensor, name)

        while tensor.op.type == "Identity":
            # We do not accumulate the output of identity nodes so we try to capture
            # the input of the Identity node instead.
            tensor = tensor.op.inputs[0]

        captured_tensor = self._indirect_captures.get(tensor)
        if captured_tensor is not None:
            return captured_tensor

        if tensor.dtype == dtypes.resource:
            # Resource-type tensors are not accumulated.
            # If a resource tensor exists in the loop body it must either be a loop
            # input or an output of a nested While op inside the loop body which
            # had captured the external resource.
            if tensor in self._forward_graph.inputs:
                index = self._forward_graph.inputs.index(tensor)
            elif tensor.op.type == "While":
                # Captured resources occur at the same index in the lists of inputs and
                # outputs of a while op. So we lookup the input of `tensor.op` at the
                # same index as the index of `tensor` in the `tensor.op.outputs`.
                index = self._forward_graph.inputs.index(
                    tensor.op.inputs[tensor.value_index])
            else:
                raise ValueError(
                    "Taking gradient of a while loop which creates"
                    " a resource in its body is not supported: %s" %
                    str(tensor))
            # This must be a loop invariant.
            assert self._forward_graph.inputs[
                index] == self._forward_graph.outputs[
                    index], "Resource tensors must be loop invariants %s." % str(
                        self._forward_graph._while.inputs[index])
            tensor_in_outer_graph = self._forward_graph._while.inputs[index]
            self._indirect_captures[tensor] = self.capture(
                tensor_in_outer_graph, whitelisted=True)
            return self._indirect_captures[tensor]

        # Create or find an existing accumulator output for `tensor` in the forward
        # graph, and fetch from this accumulator in the gradient graph to get the
        # raw intermediate value.
        accumulator = _get_accumulator(tensor)
        if accumulator is None:
            # Create the initial empty tensor list.
            with self._forward_graph.outer_graph.as_default():
                tensor_list = list_ops.empty_tensor_list(
                    element_dtype=tensor.dtype,
                    element_shape=tensor.shape,
                    max_num_elements=self._maximum_iterations)
            self.empty_tensor_lists.append(tensor_list)

            # Push the intermediate tensor to the tensor list. This captures
            # `tensor_list`.
            with self._forward_graph.as_default():
                accumulator = list_ops.tensor_list_push_back(
                    tensor_list, tensor)
            # Add the modified tensor list to the list of outputs. This output will be
            # all the accumulated values.
            self._forward_graph.outputs.append(accumulator)

            # Capture in the cond graph as well so the forward cond and body inputs
            # match.
            with self._forward_cond_graph.as_default():
                self._forward_cond_graph.capture(tensor_list)

        # Capture the accumulator tensor list in the gradient graph directly from
        # the forward graph -- we'll later modify this to capture the final list
        # output by the forward While op instead.
        captured_accumulator = super(_WhileBodyGradFuncGraph,
                                     self)._capture_helper(accumulator, name)

        # Pop the intermediate value from the tensor list in the gradient graph.
        new_tensor_list, captured_tensor = list_ops.tensor_list_pop_back(
            captured_accumulator, element_dtype=tensor.dtype)

        self._indirect_captures[tensor] = captured_tensor
        self.popped_tensor_lists[captured_accumulator] = new_tensor_list
        return captured_tensor
Esempio n. 54
0
def while_loop(cond, body, loop_vars, shape_invariants=None, name=None):
    """Like tf.while_loop, except emits a single While op."""
    flattened_loop_vars = nest.flatten(loop_vars)
    if shape_invariants is not None:
        nest.assert_same_structure(loop_vars, shape_invariants)
        flattened_shapes = nest.flatten(shape_invariants)
    else:
        flattened_shapes = [t.shape for t in flattened_loop_vars]

    del shape_invariants

    if not name:
        name = "while"

    with ops.name_scope(name) as scope:
        with ops.name_scope(None):
            cond_name = util.unique_fn_name(scope, "cond")
            body_name = util.unique_fn_name(scope, "body")

        num_outputs = len(flattened_loop_vars)

        # Add loop counter needed for computing gradients.
        flattened_loop_vars = [constant_op.constant(0., name="loop_counter")
                               ] + flattened_loop_vars

        flattened_shapes = [tensor_shape.scalar()] + flattened_shapes

        # Build a `cond` wrapper that can handle the extra counter loop_var.
        def wrapped_cond(unused_loop_counter, *loop_vars):
            return cond(*loop_vars)

        signature = [
            tensor_spec.TensorSpec(shape, t.dtype)
            for shape, t in zip(flattened_shapes, flattened_loop_vars)
        ]
        cond_graph = function.func_graph_from_py_func(
            cond_name,
            wrapped_cond,
            flattened_loop_vars, {},
            signature=signature,
            func_graph=util.WhileCondFuncGraph(cond_name))

        # Add external_captures of cond to the list of loop vars.
        # Note that external tensors will be treated as loop invariants, i.e.,
        # the value of that tensor in each iteration is the same as it was at the
        # beginning of the loop execution.
        flattened_loop_vars = flattened_loop_vars + cond_graph.external_captures
        flattened_shapes = flattened_shapes + [
            t.shape for t in cond_graph.external_captures
        ]

        def wrapped_body(loop_counter, *args):
            """Loop body augmented with counter update.

      Args:
        loop_counter: Loop counter which needs to be incremented in the body.
        *args: List of args
          args[:num_outputs] - Args for the original loop body.
          args[num_outputs:] - External captures of cond. These get passed
            through as is.

      Returns:
        A list of tensors the same length as args.
      """
            outputs = body(*args[:num_outputs])
            if not isinstance(outputs, collections.Sequence):
                outputs = [outputs]

            # Return the external_captures of cond_graph as is, i.e., treat them as
            # loop invariants.
            # TODO(srbs): Update lowering code to create _Enter nodes with
            # is_constant=True for inputs that are directly passed to outputs.
            return [loop_counter + 1] + list(outputs) + list(
                args[num_outputs:])

        signature = [
            tensor_spec.TensorSpec(shape, t.dtype)
            for shape, t in zip(flattened_shapes, flattened_loop_vars)
        ]
        body_graph = function.func_graph_from_py_func(
            body_name,
            wrapped_body,
            flattened_loop_vars, {},
            signature=signature,
            func_graph=util.WhileBodyFuncGraph(body_name))
        # Add external captures of body to the list of loop vars.
        # Note that external tensors will be treated as loop invariants, i.e.,
        # the value of that tensor in each iteration is the same as it was at the
        # beginning of the loop execution.
        flattened_loop_vars = flattened_loop_vars + body_graph.external_captures
        # TODO(srbs): Update lowering code to create _Enter nodes with
        # is_constant=True for inputs that are directly passed to outputs.
        body_graph.outputs.extend(body_graph.internal_captures)

        # Capture `external_captures` of `body_graph` in `cond_graph` so that it
        # expects to receive those as arguments.
        # TODO(srbs): Dedup tensors that are captured in both the cond and body.
        # This logic already exists in cond_v2.
        with cond_graph.as_default():
            for external_capture in body_graph.external_captures:
                cond_graph.capture(external_capture)

        # Export all tensors in the loop body that may be needed for gradient
        # computation. We do this by accumulating the intermediate values in
        # TensorLists.
        intermediate_tensors = _get_intermediates(body_graph)

        for intermediate_tensor in intermediate_tensors:
            # TODO(srbs): Cache and re-use empty tensor lists.
            tensor_list = list_ops.empty_tensor_list(
                element_dtype=intermediate_tensor.dtype,
                element_shape=_get_tensor_convertible_shape(
                    intermediate_tensor.shape))
            flattened_loop_vars.append(tensor_list)
            with cond_graph.as_default():
                # Add a placeholder to cond_graph's inputs corresponding to the
                # tensor_list.
                cond_graph.capture(tensor_list)
            with body_graph.as_default():
                # Push the intermediate tensor to the tensor list. This captures the
                # `tensor_list` as well.
                appended_tensor_list = list_ops.tensor_list_push_back(
                    tensor_list, intermediate_tensor)
                # Add this modified tensor list to the list of outputs.
                body_graph.outputs.append(appended_tensor_list)

        # Make sure that the shapes of the loop outputs are compatible with the
        # shape invariants, or the shapes of the loop vars if the invariants are not
        # specified.
        _check_shapes_compat(body_graph.outputs[1:1 + num_outputs],
                             flattened_shapes[1:1 + num_outputs],
                             flattened_loop_vars[1:1 + num_outputs])
        outputs = gen_functional_ops._while(
            flattened_loop_vars,
            util.create_new_tf_function(cond_graph),
            util.create_new_tf_function(body_graph),
            output_shapes=[t.shape for t in body_graph.outputs],
            name=scope)

        _copy_handle_data(body_graph.outputs, outputs)
        _maybe_set_lowering_attr(outputs[0].op)

    # First var is loop counter.
    if num_outputs == 1:
        return outputs[1]
    else:
        return nest.pack_sequence_as(loop_vars, outputs[1:1 + num_outputs])
Esempio n. 55
0
def while_loop(cond,
               body,
               loop_vars,
               shape_invariants=None,
               parallel_iterations=10,
               maximum_iterations=None,
               name=None,
               return_same_structure=True,
               back_prop=True):
  """Like tf.while_loop, except emits a single While op."""
  # Keep the original loop_vars around to know which args were TensorArrays.
  orig_loop_vars = loop_vars
  # Cache its length since we use it at multiple places below.
  len_orig_loop_vars = len(orig_loop_vars)

  # Convert TensorArrays to their flow variables. These get converted back to
  # TensorArrays before calling `cond` and `body`. See `wrapped_cond` and
  # `wrapped_body` below.
  loop_vars = list(_tensor_array_to_flow(orig_loop_vars))
  loop_vars = nest.map_structure(
      ops.internal_convert_to_tensor_or_indexed_slices, loop_vars,
      expand_composites=True)
  if shape_invariants is not None:
    nest.assert_same_structure(orig_loop_vars, shape_invariants,
                               expand_composites=False)
    signature = nest.map_structure(
        control_flow_ops._shape_invariant_to_type_spec, loop_vars,
        list(shape_invariants), expand_composites=False)
    shape_invariants = nest.map_structure(
        control_flow_ops._get_shape_invariant, loop_vars,
        list(shape_invariants), expand_composites=False)

  else:
    signature = nest.map_structure(
        type_spec.type_spec_from_value, loop_vars, expand_composites=False)
    shape_invariants = nest.map_structure(
        control_flow_ops._get_shape_invariant, loop_vars,
        expand_composites=False)
  if not name:
    name = "while"

  with ops.name_scope(name) as scope:
    with ops.name_scope(None):
      cond_name = util.unique_fn_name(scope, "cond")
      body_name = util.unique_fn_name(scope, "body")
    maximum_iterations_loop_var = _build_maximum_iterations_loop_var(
        maximum_iterations)
    loop_counter = constant_op.constant(
        0,
        dtype=maximum_iterations_loop_var.dtype
        if maximum_iterations is not None else None,
        name="loop_counter")
    # Add loop counter needed for computing gradients.
    loop_vars = [loop_counter, maximum_iterations_loop_var] + loop_vars

    shape_invariants = [tensor_shape.TensorShape([])] * 2 + shape_invariants
    signature = (
        [tensor_spec.TensorSpec.from_tensor(loop_counter),
         tensor_spec.TensorSpec.from_tensor(maximum_iterations_loop_var)] +
        signature)

    # Automatic control dependencies are added in defuns, but not in v1
    # graphs. Propagate that behavior here.
    add_control_dependencies = ops.get_default_graph()._add_control_dependencies

    def wrapped_cond(loop_counter, maximum_iterations_arg, *args):
      """Extra `cond` wrapper that can handle the extra counter loop_var."""
      # Convert the flow variables in `args` to TensorArrays. `args` should
      # already have the same structure as `orig_loop_vars` but currently there
      # is no nest.zip so we call `_pack_sequence_as` which flattens both
      # `orig_loop_vars` and `args`, converts flows in `args` to TensorArrays
      # and packs it into the structure of `orig_loop_vars`.
      pred = cond(*_pack_sequence_as(orig_loop_vars, args))
      if (tensor_util.is_tensor(pred) and
          (pred.shape.dims is None or pred.shape.dims)):
        pred = array_ops.squeeze_v2(pred)

      if maximum_iterations is None:
        return pred
      else:
        return math_ops.logical_and(
            loop_counter < maximum_iterations_arg, pred)

    # NOTE(skyewm): we set collections to the outer graph's collections for
    # compatibility with TPUEstimator.
    cond_graph = func_graph_module.func_graph_from_py_func(
        cond_name,
        wrapped_cond,
        [],  # We provide signature instead of args.
        {},
        signature=signature,
        func_graph=util.WhileCondFuncGraph(
            cond_name, collections=ops.get_default_graph()._collections),  # pylint: disable=protected-access
        add_control_dependencies=add_control_dependencies)

    def wrapped_body(loop_counter, maximum_iterations_arg, *args):
      """Loop body augmented with counter update.

      Args:
        loop_counter: Loop counter which needs to be incremented in the body.
        maximum_iterations_arg: Maximum iterations of the loop.
        *args: List of args

      Returns:
        A list of tensors the same length as args.
      """
      # Capture the tensors already captured in cond_graph so that they appear
      # in the same order in body_graph.external_captures.
      for t in cond_graph.external_captures:
        ops.get_default_graph().capture(t)

      # Convert the flow variables in `args` to TensorArrays. `args` should
      # already have the same structure as `orig_loop_vars` but currently there
      # is no nest.zip so we call `_pack_sequence_as` which flattens both
      # `orig_loop_vars` and `args`, converts flows in `args` to TensorArrays
      # and packs it into the structure of `orig_loop_vars`.
      outputs = body(*_pack_sequence_as(orig_loop_vars, args))
      if not nest.is_sequence_or_composite(outputs):
        outputs = [outputs]
      # Compare the structure of input and output of body converting the
      # top-level tuples to list to be compatible with legacy while_loop.
      nest.assert_same_structure(list(outputs), list(orig_loop_vars),
                                 expand_composites=True)

      outputs = _tensor_array_to_flow(outputs)

      # TODO(srbs): Update lowering code to create _Enter nodes with
      # is_constant=True for inputs that are directly passed to outputs.
      return [loop_counter + 1, maximum_iterations_arg] + list(outputs)

    body_graph = func_graph_module.func_graph_from_py_func(
        body_name,
        wrapped_body,
        [],  # We provide signature instead of args.
        {},
        signature=signature,
        func_graph=util.WhileBodyFuncGraph(
            body_name, collections=ops.get_default_graph()._collections),  # pylint: disable=protected-access
        add_control_dependencies=add_control_dependencies)
    # Add external captures of body to the list of loop vars.
    # Note that external tensors will be treated as loop invariants, i.e.,
    # the value of that tensor in each iteration is the same as it was at the
    # beginning of the loop execution.
    loop_vars = loop_vars + body_graph.external_captures
    # TODO(srbs): Update lowering code to create _Enter nodes with
    # is_constant=True for inputs that are directly passed to outputs.
    body_graph.outputs.extend(body_graph.internal_captures)

    # Capture the extra `external_captures` of `body_graph` in `cond_graph` so
    # that it expects to receive those as arguments.
    with cond_graph.as_default():
      num_cond_captures = len(cond_graph.external_captures)
      assert (cond_graph.external_captures ==
              body_graph.external_captures[:num_cond_captures])
      cond_graph_captures = object_identity.ObjectIdentitySet(
          cond_graph.external_captures)
      for body_capture in body_graph.external_captures[num_cond_captures:]:
        assert body_capture not in cond_graph_captures
        cond_graph.capture(body_capture)

    # Make sure that the shapes of the loop outputs are compatible with the
    # shape invariants, or the shapes of the loop vars if the invariants are not
    # specified.
    num_flattened_outputs = len(nest.flatten(orig_loop_vars,
                                             expand_composites=True))
    # First var is loop counter and second var is maximum_iterations.
    first_loop_var_index = 2
    _check_shapes_compat(
        body_graph.outputs[first_loop_var_index:first_loop_var_index +
                           num_flattened_outputs],
        nest.flatten(
            shape_invariants[first_loop_var_index:first_loop_var_index +
                             len_orig_loop_vars], expand_composites=True),
        nest.flatten(loop_vars[first_loop_var_index:first_loop_var_index +
                               len_orig_loop_vars], expand_composites=True))

    num_original_outputs = len(body_graph.outputs)
    if back_prop and util.output_all_intermediates():
      # Export all tensors in the loop body that may be needed for gradient
      # computation. We do this by accumulating the intermediate values in
      # TensorLists.
      intermediate_tensors = _get_intermediates(body_graph)

      for intermediate_tensor in intermediate_tensors:
        tensor_list = list_ops.empty_tensor_list(
            element_dtype=intermediate_tensor.dtype,
            element_shape=intermediate_tensor.shape,
            max_num_elements=maximum_iterations)
        loop_vars.append(tensor_list)
        with cond_graph.as_default():
          # Add a placeholder to cond_graph's inputs corresponding to the
          # tensor_list.
          cond_graph.capture(tensor_list)
        with body_graph.as_default():
          # Push the intermediate tensor to the tensor list. This captures the
          # `tensor_list` as well.
          appended_tensor_list = list_ops.tensor_list_push_back(
              tensor_list, intermediate_tensor)
          # Add this modified tensor list to the list of outputs.
          body_graph.outputs.append(appended_tensor_list)

    flattened_loop_vars = nest.flatten(loop_vars, expand_composites=True)
    _check_num_inputs_outputs(cond_graph, body_graph,
                              len(flattened_loop_vars))
    _check_inputs_outputs_types_match(body_graph, flattened_loop_vars)

    with ops.control_dependencies(
        list(cond_graph.control_captures) + list(body_graph.control_captures)):
      output_shapes = [t.shape for t in body_graph.outputs]
      orig_loop_vars_range = slice(first_loop_var_index,
                                   first_loop_var_index + num_flattened_outputs)
      output_shapes[orig_loop_vars_range] = nest.flatten(
          shape_invariants, expand_composites=True)[orig_loop_vars_range]

      cond_stateful_ops = [
          op for op in cond_graph.get_operations() if op._is_stateful
      ]
      body_stateful_ops = [
          op for op in body_graph.get_operations() if op._is_stateful
      ]
      if (cond_stateful_ops or body_stateful_ops):
        op_fn = gen_functional_ops._while
      else:
        op_fn = gen_functional_ops.stateless_while

      outputs = op_fn(
          flattened_loop_vars,
          util.create_new_tf_function(cond_graph),
          util.create_new_tf_function(body_graph),
          output_shapes=output_shapes,
          parallel_iterations=parallel_iterations,
          name=scope)
      # This is needed so we do not compute derivative wrt these extra outputs.
      outputs[0].op._set_attr("_num_original_outputs",
                              attr_value_pb2.AttrValue(i=num_original_outputs))

    _copy_handle_data(body_graph.outputs, outputs)
    util.maybe_set_lowering_attr(outputs[0].op)
    util.maybe_propagate_compile_time_consts_in_xla(outputs[0].op)

    # Return identities for each output of the While op, rather than the output
    # of the While op directly. This makes pruning work if the output of
    # while_loop() is fetched: the lowering pass converts the While outputs into
    # IdentityN outputs, which if fetched will cause all ops in the body to be
    # run (since it takes all exit ops as input). After lowering, each output
    # identity op will end up with only the appropriate exit op as input.
    outputs = tuple(array_ops.identity(t) for t in outputs)

  outputs = _pack_sequence_as(
      orig_loop_vars, outputs[first_loop_var_index:first_loop_var_index +
                              num_flattened_outputs])

  if return_same_structure:
    return outputs

  flattened_outputs = nest.flatten(outputs, expand_composites=True)
  if len(flattened_outputs) == 1:
    return flattened_outputs[0]
  else:
    return outputs
Esempio n. 56
0
 def Body(x, tl):
     tl = list_ops.tensor_list_push_back(tl, x)
     tl = list_ops.tensor_list_push_back(tl, constant_op.constant(100.))
     return x**2., tl
 def body(i, t1):
     t1 = list_ops.tensor_list_push_back(t1, i)
     i += 1
     return i, t1
Esempio n. 58
0
    def _capture_helper(self, tensor, name):
        if tensor.graph is not self._forward_graph:
            return super(_WhileBodyGradFuncGraph,
                         self)._capture_helper(tensor, name)

        while tensor.op.type == "Identity":
            # We do not accumulate the output of identity nodes so we try to capture
            # the input of the Identity node instead.
            tensor = tensor.op.inputs[0]

        captured_tensor = self._indirect_captures.get(tensor)
        if captured_tensor is not None:
            return captured_tensor

        # Resource tensors are not accumulated and handled specially.
        if tensor.dtype == dtypes.resource:
            return self._resource_capture_helper(tensor)

        # Create or find an existing accumulator output for `tensor` in the forward
        # graph, and fetch from this accumulator in the gradient graph to get the
        # raw intermediate value.
        accumulator = _get_accumulator(tensor)
        if accumulator is None:
            # Create the initial empty tensor list.
            #
            # Note: We clear the control dependencies to avoid a cycle in case a
            # control tensor has an input path to an output of the  forward While.
            #
            # E.g.:
            # x = tf.while_loop(...)
            # y = f(x)
            # with tf.control_dependencies([y]):
            #   tf.gradients(y, x)
            #
            # Since the EmptyTensorList is fed back into the forward While, not
            # removing the control edge would cause a cycle.
            with self._forward_graph.outer_graph.as_default():
                with util.clear_control_inputs():
                    tensor_list = list_ops.empty_tensor_list(
                        element_dtype=tensor.dtype,
                        element_shape=tensor.shape,
                        max_num_elements=self._maximum_iterations,
                        name=_build_accumulator_name(tensor))
            self.empty_tensor_lists.append(tensor_list)

            # Push the intermediate tensor to the tensor list. This captures
            # `tensor_list`.
            with self._forward_graph.as_default():
                accumulator = list_ops.tensor_list_push_back(
                    tensor_list, tensor)
            # Add the modified tensor list to the list of outputs. This output will be
            # all the accumulated values.
            self._forward_graph.outputs.append(accumulator)

            # Capture in the cond graph as well so the forward cond and body inputs
            # match.
            with self._forward_cond_graph.as_default():
                self._forward_cond_graph.capture(tensor_list)

        # Capture the accumulator tensor list in the gradient graph directly from
        # the forward graph -- we'll later modify this to capture the final list
        # output by the forward While op instead.
        captured_accumulator = super(_WhileBodyGradFuncGraph,
                                     self)._capture_helper(accumulator, name)

        # Pop the intermediate value from the tensor list in the gradient graph.
        new_tensor_list, captured_tensor = list_ops.tensor_list_pop_back(
            captured_accumulator, element_dtype=tensor.dtype)

        self._indirect_captures[tensor] = captured_tensor
        self.popped_tensor_lists[captured_accumulator] = new_tensor_list
        return captured_tensor
Esempio n. 59
0
def _WhileGrad(op, *grads):  # pylint: disable=invalid-name
    """The gradient of a While op produced by while_loop."""
    body_graph = _get_body_graph(op)

    # Set the incoming gradient of TensorArray handle to None.
    # TODO(b/118164915): We need a way of distinguising b/w TensorArray resource
    # handles and ResourceVariables and set the default gradient of only the
    # TensorArray handle to None.
    grads = [
        None if output.dtype == dtypes.resource else g
        for g, output in zip(grads, op.outputs)
    ]

    # Ensure that all non-resource trainable outputs have incoming gradients.
    assert all(g is not None or o.dtype == dtypes.resource
               or not gradients_impl.IsTrainable(o)
               for o, g in zip(op.outputs, grads)
               ), "All trainable loop vars must receive incoming gradients."
    # We compute the gradient for the sub-graph between trainable ys and xs
    # with non-None incoming gradients. We later pad the None's to the list of
    # outputs.
    ys, xs, non_none_grads = zip(
        *[(y, x, grad)
          for (y, x, grad) in zip(body_graph.outputs, body_graph.inputs, grads)
          if grad is not None])

    body_grad_graph, args = _create_grad_func(
        ys, xs, non_none_grads, body_graph,
        util.unique_grad_fn_name(body_graph.name), op)

    intermediate_tensors = _get_intermediates(body_grad_graph)

    for intermediate_tensor in intermediate_tensors:
        tensor_list = list_ops.empty_tensor_list(
            element_dtype=intermediate_tensor.dtype,
            element_shape=_get_tensor_convertible_shape(
                intermediate_tensor.shape))
        with body_grad_graph.as_default():
            tensor_list_ph = body_grad_graph.capture(tensor_list,
                                                     whitelisted=True)
            # Push the intermediate tensor to the tensor list.
            appended_tensor_list = list_ops.tensor_list_push_back(
                tensor_list_ph, intermediate_tensor)
            # Add this modified tensor list to the list of outputs.
            body_grad_graph.outputs.append(appended_tensor_list)

    def grad_cond(counter, max_iters, *unused_args):
        return counter < max_iters

    loop_vars = args + body_grad_graph.external_captures
    grad_cond_name = util.unique_grad_fn_name(op.get_attr("cond").name)
    cond_grad_graph = func_graph_module.func_graph_from_py_func(
        grad_cond_name,
        grad_cond,
        loop_vars, {},
        func_graph=util.WhileCondFuncGraph(grad_cond_name))

    _check_num_inputs_outputs(cond_grad_graph, body_grad_graph, len(loop_vars))

    outputs = gen_functional_ops._while(
        loop_vars,
        util.create_new_tf_function(cond_grad_graph),
        util.create_new_tf_function(body_grad_graph),
        output_shapes=[t.shape for t in body_grad_graph.outputs],
        name="%s_grad" % op.name)

    _copy_handle_data(body_grad_graph.outputs, outputs)
    _maybe_set_lowering_attr(outputs[0].op)

    # Set None as the output gradient for tensors with None input gradient
    # e.g. TensorArray handles.
    # outputs[0] is the loop counter.
    # outputs[1] is the total number of loop iterations.
    index = 2
    none_padded_outputs = []
    for g in grads:
        if g is None:
            none_padded_outputs.append(None)
        else:
            none_padded_outputs.append(outputs[index])
            index += 1
    return none_padded_outputs
Esempio n. 60
0
def _WhileGrad(op, *grads):  # pylint: disable=invalid-name
    """The gradient of a While op produced by while_loop."""
    body_graph = _get_body_graph(op)

    # Replace None gradients with zeros. This is needed because `grads` could have
    # None incoming gradients for the TensorLists. If we pass None's through, the
    # custom gradient of TensorListPopBack will create an EmptyTensorList inside
    # the FuncGraph which is undesirable.
    # TODO(b/80444525): There might be an issue with treating no gradient as zero
    # gradient in certain cases. Consider replacing None gradients with Zeros
    # for accumulators only.
    grads = [
        g if g is not None else array_ops.zeros_like(output)
        for g, output in zip(grads, op.outputs)
    ]

    body_grad_graph, args = _create_grad_func(
        body_graph, grads, util.unique_grad_fn_name(body_graph.name), op)

    intermediate_tensors = _get_intermediates(body_grad_graph)

    for intermediate_tensor in intermediate_tensors:
        tensor_list = list_ops.empty_tensor_list(
            element_dtype=intermediate_tensor.dtype,
            element_shape=_get_tensor_convertible_shape(
                intermediate_tensor.shape))
        with body_grad_graph.as_default():
            tensor_list_ph = body_grad_graph.capture(tensor_list,
                                                     whitelisted=True)
            # Push the intermediate tensor to the tensor list.
            appended_tensor_list = list_ops.tensor_list_push_back(
                tensor_list_ph, intermediate_tensor)
            # Add this modified tensor list to the list of outputs.
            body_grad_graph.outputs.append(appended_tensor_list)

    def grad_cond(counter, max_iters, *unused_args):
        return counter < max_iters

    loop_vars = args + body_grad_graph.external_captures
    grad_cond_name = util.unique_grad_fn_name(op.get_attr("cond").name)
    cond_grad_graph = function.func_graph_from_py_func(
        grad_cond_name,
        grad_cond,
        loop_vars, {},
        func_graph=util.WhileCondFuncGraph(grad_cond_name))

    assert len(loop_vars) == len(body_grad_graph.inputs)
    assert len(loop_vars) == len(body_grad_graph.outputs)
    assert len(loop_vars) == len(cond_grad_graph.inputs)

    outputs = gen_functional_ops._while(
        loop_vars,
        util.create_new_tf_function(cond_grad_graph),
        util.create_new_tf_function(body_grad_graph),
        output_shapes=[t.shape for t in body_grad_graph.outputs],
        name="%s_grad" % op.name)

    _copy_handle_data(body_grad_graph.outputs, outputs)
    _maybe_set_lowering_attr(outputs[0].op)

    # outputs[0] is the loop counter.
    # outputs[1] is the total number of loop iterations.
    return outputs[2:2 + len(op.inputs)]