def testLinear(self):
    with self.test_session() as sess:
      with tf.variable_scope("root", initializer=tf.constant_initializer(1.0)):
        x = tf.zeros([1, 2])
        l = linear([x], 2, False)
        sess.run([tf.global_variables_initializer()])
        res = sess.run([l], {x.name: np.array([[1., 2.]])})
        self.assertAllClose(res[0], [[3.0, 3.0]])

        # Checks prevent you from accidentally creating a shared function.
        with self.assertRaises(ValueError):
          l1 = linear([x], 2, False)

        # But you can create a new one in a new scope and share the variables.
        with tf.variable_scope("l1") as new_scope:
          l1 = linear([x], 2, False)
        with tf.variable_scope(new_scope, reuse=True):
          linear([l1], 2, False)
        self.assertEqual(len(tf.trainable_variables()), 2)
Esempio n. 2
0
    def testLinear(self):
        with self.test_session() as sess:
            with tf.variable_scope("root",
                                   initializer=tf.constant_initializer(1.0)):
                x = tf.zeros([1, 2])
                l = linear([x], 2, False)
                sess.run([tf.global_variables_initializer()])
                res = sess.run([l], {x.name: np.array([[1., 2.]])})
                self.assertAllClose(res[0], [[3.0, 3.0]])

                # Checks prevent you from accidentally creating a shared function.
                with self.assertRaises(ValueError):
                    l1 = linear([x], 2, False)

                # But you can create a new one in a new scope and share the variables.
                with tf.variable_scope("l1") as new_scope:
                    l1 = linear([x], 2, False)
                with tf.variable_scope(new_scope, reuse=True):
                    linear([l1], 2, False)
                self.assertEqual(len(tf.trainable_variables()), 2)
Esempio n. 3
0
 def attention(query):
   """Put attention masks on hidden using hidden_features and query."""
   ds = []  # Results of attention reads will be stored here.
   for a in xrange(num_heads):
     with tf.variable_scope("Attention_%d" % a):
       y = linear(query, attention_vec_size, True)
       y = tf.reshape(y, [-1, 1, 1, attention_vec_size])
       # Attention mask is a softmax of v^T * tanh(...).
       s = tf.reduce_sum(
           v[a] * tf.nn.tanh(hidden_features[a] + y), [2, 3])
       a = tf.nn.softmax(s)
       # Now calculate the attention-weighted vector d. 
       d = tf.reduce_sum(tf.reshape(a, [-1, attn_length, 1, 1]) * hidden,[1, 2])
       # for c in range(ct):
       ds.append(tf.reshape(d, [-1, attn_size]))
   return ds
Esempio n. 4
0
def basic_rnn_cell(inputs, state, num_units, scope=None):
    if state is None:
        if inputs is not None:
            batch_size = inputs.get_shape()[0]
            dtype = inputs.dtype
        else:
            batch_size = 0
            dtype = tf.float32
        init_output = tf.zeros(tf.stack([batch_size, num_units]), dtype=dtype)
        init_state = tf.zeros(tf.stack([batch_size, num_units]), dtype=dtype)
        init_output.set_shape([batch_size, num_units])
        init_state.set_shape([batch_size, num_units])
        return init_output, init_state
    else:
        with tf.variable_scope(scope, "basic_rnn_cell", [inputs, state]):
            output = tf.tanh(linear([inputs, state], num_units, True))
        return output, output
Esempio n. 5
0
def batch_linear(args, output_size, bias):
    '''
    Apply linear map to a batch of matrices.
    args: a 3D Tensor or a list of 3D, batch x n x m, Tensors.
    '''
    if not nest.is_sequence(args):
        args = [args]
    batch_size = args[0].get_shape().as_list()[0] or tf.shape(args[0])[0]
    flat_args = []
    for arg in args:
        m = arg.get_shape().as_list()[2]
        if not m:
            raise ValueError('batch_linear expects shape[2] of arguments: %s' % str(m))
        flat_args.append(tf.reshape(arg, [-1, m]))
    flat_output = linear(flat_args, output_size, bias)
    output = tf.reshape(flat_output, [batch_size, -1, output_size])
    return output
def basic_rnn_cell(inputs, state, num_units, scope=None):
  if state is None:
    if inputs is not None:
      batch_size = inputs.get_shape()[0]
      dtype = inputs.dtype
    else:
      batch_size = 0
      dtype = tf.float32
    init_output = tf.zeros(tf.stack([batch_size, num_units]), dtype=dtype)
    init_state = tf.zeros(tf.stack([batch_size, num_units]), dtype=dtype)
    init_output.set_shape([batch_size, num_units])
    init_state.set_shape([batch_size, num_units])
    return init_output, init_state
  else:
    with tf.variable_scope(scope, "basic_rnn_cell", [inputs, state]):
      output = tf.tanh(linear([inputs, state],
                              num_units, True))
    return output, output
Esempio n. 7
0
 def _output_project(self, output, attn, project_size):
     with tf.variable_scope("AttnOutputProjection"):
         new_output = activation(linear([output, attn], project_size,
                                        False))
     return new_output
Esempio n. 8
0
def beam_attention_decoder(decoder_inputs, initial_state, attention_states, cell,
                      output_size=None, num_heads=1, loop_function=None,
                      dtype=tf.float32, scope=None,
                      initial_state_attention=False, output_projection=None, beam_size=10):
  """RNN decoder with attention for the sequence-to-sequence model.
  In this context "attention" means that, during decoding, the RNN can look up
  information in the additional tensor attention_states, and it does this by
  focusing on a few entries from the tensor. This model has proven to yield
  especially good results in a number of sequence-to-sequence tasks. This
  implementation is based on http://arxiv.org/abs/1412.7449 (see below for
  details). It is recommended for complex sequence-to-sequence tasks.
  Args:
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    initial_state: 2D Tensor [batch_size x cell.state_size].
    attention_states: 3D Tensor [batch_size x attn_length x attn_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    output_size: Size of the output vectors; if None, we use cell.output_size.
    num_heads: Number of attention heads that read from attention_states.
    loop_function: If not None, this function will be applied to i-th output
      in order to generate i+1-th input, and decoder_inputs will be ignored,
      except for the first element ("GO" symbol). This can be used for decoding,
      but also for training to emulate http://arxiv.org/abs/1506.03099.
      Signature -- loop_function(prev, i) = next
        * prev is a 2D Tensor of shape [batch_size x output_size],
        * i is an integer, the step number (when advanced control is needed),
        * next is a 2D Tensor of shape [batch_size x input_size].
    dtype: The dtype to use for the RNN initial state (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "attention_decoder".
    initial_state_attention: If False (default), initial attentions are zero.
      If True, initialize the attentions from the initial state and attention
      states -- useful when we wish to resume decoding from a previously
      stored decoder state and attention states.
  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors of
        shape [batch_size x output_size]. These represent the generated outputs.
        Output i is computed from input i (which is either the i-th element
        of decoder_inputs or loop_function(output {i-1}, i)) as follows.
        First, we run the cell on a combination of the input and previous
        attention masks:
          cell_output, new_state = cell(linear(input, prev_attn), prev_state).
        Then, we calculate new attention masks:
          new_attn = softmax(V^T * tanh(W * attention_states + U * new_state))
        and then we calculate the output:
          output = linear(cell_output, new_attn).
      state: The state of each decoder cell the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  Raises:
    ValueError: when num_heads is not positive, there are no inputs, shapes
      of attention_states are not set, or input size cannot be inferred
      from the input.
  """
  if not decoder_inputs:
    raise ValueError("Must provide at least 1 input to attention decoder.")
  if num_heads < 1:
    raise ValueError("With less than 1 heads, use a non-attention decoder.")
  if not attention_states.get_shape()[1:2].is_fully_defined():
    raise ValueError("Shape[1] and [2] of attention_states must be known: %s"
                     % attention_states.get_shape())
  if output_size is None:
    output_size = cell.output_size

  with tf.variable_scope(scope or "attention_decoder"):
    batch_size = tf.shape(decoder_inputs[0])[0]  # Needed for reshaping.
    attn_length = attention_states.get_shape()[1].value
    attn_size = attention_states.get_shape()[2].value

    # To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
    hidden = tf.reshape(
        attention_states, [-1, attn_length, 1, attn_size])
    hidden_features = []
    v = []
    attention_vec_size = attn_size  # Size of query vectors for attention.
    for a in xrange(num_heads):
      k = tf.get_variable("AttnW_%d" % a,
                                      [1, 1, attn_size, attention_vec_size])
      hidden_features.append(tf.nn.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
      v.append(tf.get_variable("AttnV_%d" % a,
                                           [attention_vec_size]))

    print("Initial_state")

    state_size =  int(initial_state.get_shape().with_rank(2)[1])
    states =[]
    for kk in range(1):
        states.append(initial_state)
    state = tf.reshape(tf.concat(axis=0, values=states), [-1, state_size])
    def attention(query):
      """Put attention masks on hidden using hidden_features and query."""
      ds = []  # Results of attention reads will be stored here.
      for a in xrange(num_heads):
        with tf.variable_scope("Attention_%d" % a):
          y = linear(query, attention_vec_size, True)
          y = tf.reshape(y, [-1, 1, 1, attention_vec_size])
          # Attention mask is a softmax of v^T * tanh(...).
          s = tf.reduce_sum(
              v[a] * tf.nn.tanh(hidden_features[a] + y), [2, 3])
          a = tf.nn.softmax(s)
          # Now calculate the attention-weighted vector d. 
          d = tf.reduce_sum(tf.reshape(a, [-1, attn_length, 1, 1]) * hidden,[1, 2])
          # for c in range(ct):
          ds.append(tf.reshape(d, [-1, attn_size]))
      return ds

    outputs = []
    prev = None
    batch_attn_size = tf.stack([batch_size, attn_size])
    attns = [tf.zeros(batch_attn_size, dtype=dtype)
             for _ in xrange(num_heads)]
    for a in attns:  # Ensure the second shape of attention vectors is set.
      a.set_shape([None, attn_size])

    if initial_state_attention:
       attns = []
       attns.append(attention(initial_state))
       tmp = tf.reshape(tf.concat(axis=0, values=attns), [-1, attn_size])
       attns = []
       attns.append(tmp)

    log_beam_probs, beam_path, beam_symbols = [],[],[]
    for i, inp in enumerate(decoder_inputs):

      if i > 0:
        tf.get_variable_scope().reuse_variables()
      # If loop_function is set, we use it instead of decoder_inputs.
      if loop_function is not None :
        with tf.variable_scope("loop_function", reuse=True):
            if prev is not None:
                inp = loop_function(prev, i,log_beam_probs, beam_path, beam_symbols)

      input_size = inp.get_shape().with_rank(2)[1]
      x = linear([inp] + attns, input_size, True)
      cell_output, state = cell(x, state)

      # Run the attention mechanism.
      if i == 0 and initial_state_attention:
        with tf.variable_scope(tf.get_variable_scope(),
                                           reuse=True):
          attns = attention(state)
      else:
          attns = attention(state)

      with tf.variable_scope("AttnOutputProjection"):
        output = linear([cell_output] + attns, output_size, True)
      if loop_function is not None:
        prev = output
      if  i ==0:
          states =[]
          for kk in range(beam_size):
                states.append(state)
          state = tf.reshape(tf.concat(axis=0, values=states), [-1, state_size])
          with tf.variable_scope(tf.get_variable_scope(), reuse=True):
                attns = attention(state)

      outputs.append(tf.argmax(tf.xw_plus_b(
          output, output_projection[0], output_projection[1]), axis=1))

  return outputs, state, tf.reshape(tf.concat(axis=0, values=beam_path),[-1,beam_size]), tf.reshape(tf.concat(axis=0, values=beam_symbols),[-1,beam_size])