Esempio n. 1
0
def tf_unmasked_op(x, idx=0):
    scaling_norm = tf.dtypes.cast(
        tf.math.sqrt(
            tf.dtypes.cast(tf.math.reduce_prod(tf.shape(x)[1:3]), 'float32')),
        x.dtype)
    return tf.expand_dims(ifftshift(fft2d(fftshift(x[..., idx], axes=[1, 2])),
                                    axes=[1, 2]),
                          axis=-1) / scaling_norm
Esempio n. 2
0
  def operator_and_matrix(self,
                          shape_info,
                          dtype,
                          use_placeholder,
                          ensure_self_adjoint_and_pd=False):
    shape = shape_info.shape
    # For this test class, we are creating Hermitian spectrums.
    # We also want the spectrum to have eigenvalues bounded away from zero.
    #
    # pre_spectrum is bounded away from zero.
    pre_spectrum = linear_operator_test_util.random_uniform(
        shape=self._shape_to_spectrum_shape(shape),
        dtype=dtype,
        minval=1.,
        maxval=2.)
    pre_spectrum_c = _to_complex(pre_spectrum)

    # Real{IFFT[pre_spectrum]}
    #  = IFFT[EvenPartOf[pre_spectrum]]
    # is the IFFT of something that is also bounded away from zero.
    # Therefore, FFT[pre_h] would be a well-conditioned spectrum.
    pre_h = fft_ops.ifft2d(pre_spectrum_c)

    # A spectrum is Hermitian iff it is the DFT of a real convolution kernel.
    # So we will make spectrum = FFT[h], for real valued h.
    h = math_ops.real(pre_h)
    h_c = _to_complex(h)

    spectrum = fft_ops.fft2d(h_c)

    lin_op_spectrum = spectrum

    if use_placeholder:
      lin_op_spectrum = array_ops.placeholder_with_default(spectrum, shape=None)

    operator = linalg.LinearOperatorCirculant2D(
        lin_op_spectrum,
        is_positive_definite=True if ensure_self_adjoint_and_pd else None,
        is_self_adjoint=True if ensure_self_adjoint_and_pd else None,
        input_output_dtype=dtype)

    self.assertEqual(
        operator.parameters,
        {
            "input_output_dtype": dtype,
            "is_non_singular": None,
            "is_positive_definite": (
                True if ensure_self_adjoint_and_pd else None),
            "is_self_adjoint": (
                True if ensure_self_adjoint_and_pd else None),
            "is_square": True,
            "name": "LinearOperatorCirculant2D",
            "spectrum": lin_op_spectrum,
        })

    mat = self._spectrum_to_circulant_2d(spectrum, shape, dtype=dtype)

    return operator, mat
def ortho_fft2d(image):
    image = _order_for_ft(image)
    shift_axes = [2, 3]
    scaling_norm = _compute_scaling_norm(image)
    shifted_image = fftshift(image, axes=shift_axes)
    kspace_shifted = fft2d(shifted_image)
    kspace_unnormed = ifftshift(kspace_shifted, axes=shift_axes)
    kspace = kspace_unnormed / scaling_norm
    kspace = _order_after_ft(kspace)
    return kspace
  def operator_and_matrix(
      self, shape_info, dtype, use_placeholder,
      ensure_self_adjoint_and_pd=False):
    shape = shape_info.shape
    # For this test class, we are creating Hermitian spectrums.
    # We also want the spectrum to have eigenvalues bounded away from zero.
    #
    # pre_spectrum is bounded away from zero.
    pre_spectrum = linear_operator_test_util.random_uniform(
        shape=self._shape_to_spectrum_shape(shape),
        dtype=dtype,
        minval=1.,
        maxval=2.)
    pre_spectrum_c = _to_complex(pre_spectrum)

    # Real{IFFT[pre_spectrum]}
    #  = IFFT[EvenPartOf[pre_spectrum]]
    # is the IFFT of something that is also bounded away from zero.
    # Therefore, FFT[pre_h] would be a well-conditioned spectrum.
    pre_h = fft_ops.ifft2d(pre_spectrum_c)

    # A spectrum is Hermitian iff it is the DFT of a real convolution kernel.
    # So we will make spectrum = FFT[h], for real valued h.
    h = math_ops.real(pre_h)
    h_c = _to_complex(h)

    spectrum = fft_ops.fft2d(h_c)

    lin_op_spectrum = spectrum

    if use_placeholder:
      lin_op_spectrum = array_ops.placeholder_with_default(spectrum, shape=None)

    operator = linalg.LinearOperatorCirculant2D(
        lin_op_spectrum,
        is_positive_definite=True if ensure_self_adjoint_and_pd else None,
        is_self_adjoint=True if ensure_self_adjoint_and_pd else None,
        input_output_dtype=dtype)

    mat = self._spectrum_to_circulant_2d(spectrum, shape, dtype=dtype)

    return operator, mat
 def op(self, inputs):
     if self.multicoil:
         if self.masked:
             image, mask, smaps = inputs
         else:
             image, smaps = inputs
     else:
         if self.masked:
             image, mask = inputs
         else:
             image = inputs
     image = image[..., 0]
     scaling_norm = _compute_scaling_norm(image)
     if self.multicoil:
         image = tf.expand_dims(image, axis=1)
         image = image * smaps
     shifted_image = fftshift(image, axes=self.shift_axes)
     kspace_shifted = fft2d(shifted_image)
     kspace_unnormed = ifftshift(kspace_shifted, axes=self.shift_axes)
     kspace = kspace_unnormed[..., None] / scaling_norm
     if self.masked:
         kspace = _mask_tf([kspace, mask])
     return kspace
    def _spectrum_to_circulant_2d(self, spectrum, shape, dtype):
        """Creates a block circulant matrix from a spectrum.

    Intentionally done in an explicit yet inefficient way.  This provides a
    cross check to the main code that uses fancy reshapes.

    Args:
      spectrum: Float or complex `Tensor`.
      shape:  Python list.  Desired shape of returned matrix.
      dtype:  Type to cast the returned matrix to.

    Returns:
      Block circulant (batch) matrix of desired `dtype`.
    """
        spectrum = _to_complex(spectrum)
        spectrum_shape = self._shape_to_spectrum_shape(shape)
        domain_dimension = spectrum_shape[-1]
        if not domain_dimension:
            return array_ops.zeros(shape, dtype)

        block_shape = spectrum_shape[-2:]

        # Explicitly compute the action of spectrum on basis vectors.
        matrix_rows = []
        for n0 in range(block_shape[0]):
            for n1 in range(block_shape[1]):
                x = np.zeros(block_shape)
                # x is a basis vector.
                x[n0, n1] = 1.0
                fft_x = fft_ops.fft2d(math_ops.cast(x, spectrum.dtype))
                h_convolve_x = fft_ops.ifft2d(spectrum * fft_x)
                # We want the flat version of the action of the operator on a basis
                # vector, not the block version.
                h_convolve_x = array_ops.reshape(h_convolve_x, shape[:-1])
                matrix_rows.append(h_convolve_x)
        matrix = array_ops.stack(matrix_rows, axis=-1)
        return math_ops.cast(matrix, dtype)
  def _spectrum_to_circulant_2d(self, spectrum, shape, dtype):
    """Creates a block circulant matrix from a spectrum.

    Intentionally done in an explicit yet inefficient way.  This provides a
    cross check to the main code that uses fancy reshapes.

    Args:
      spectrum: Float or complex `Tensor`.
      shape:  Python list.  Desired shape of returned matrix.
      dtype:  Type to cast the returned matrix to.

    Returns:
      Block circulant (batch) matrix of desired `dtype`.
    """
    spectrum = _to_complex(spectrum)
    spectrum_shape = self._shape_to_spectrum_shape(shape)
    domain_dimension = spectrum_shape[-1]
    if not domain_dimension:
      return array_ops.zeros(shape, dtype)

    block_shape = spectrum_shape[-2:]

    # Explicitly compute the action of spectrum on basis vectors.
    matrix_rows = []
    for n0 in range(block_shape[0]):
      for n1 in range(block_shape[1]):
        x = np.zeros(block_shape)
        # x is a basis vector.
        x[n0, n1] = 1.0
        fft_x = fft_ops.fft2d(x.astype(np.complex64))
        h_convolve_x = fft_ops.ifft2d(spectrum * fft_x)
        # We want the flat version of the action of the operator on a basis
        # vector, not the block version.
        h_convolve_x = array_ops.reshape(h_convolve_x, shape[:-1])
        matrix_rows.append(h_convolve_x)
    matrix = array_ops.stack(matrix_rows, axis=-1)
    return math_ops.cast(matrix, dtype)