Esempio n. 1
0
    def _CreateLayerVariables(self):
        super()._CreateLayerVariables()
        p = self.params

        load_op_list = []
        retrieve_op_list = []

        # At the feature level, track which are associated
        # with "sequence embeddings".
        self._sequence_features = {}

        if py_utils.use_tpu():
            num_cores = self.cluster.params.worker.tpus_per_replica
            global_batch_size = (self.params.batch_size *
                                 self.cluster.num_splits_per_client)
            table_to_config_dict = {}
            feature_to_config_dict = {}
            for table in self.tables:
                table_to_config_dict[table.table_name] = table.table_config
                load_op_list += table.load_op_list
                retrieve_op_list += table.retrieve_op_list
                for feature in table.input_keys:
                    if table.max_sequence_length > 0:
                        self._sequence_features[feature] = True
                    feature_to_config_dict[
                        feature] = tpu_embedding_lib.FeatureConfig(
                            table.table_name,
                            max_sequence_length=table.max_sequence_length)

            tpu_embedding = self._tpu_embedding_collection.tpu_embedding
            if tpu_embedding:
                self._CheckTPUEmbeddingConfig(tpu_embedding,
                                              table_to_config_dict,
                                              feature_to_config_dict,
                                              global_batch_size)
                tf.logging.info(
                    'TPUEmbedding API singleton already exists, reusing')
                self._tpu_embedding = tpu_embedding
            else:
                tf.logging.info('adding load and retrieve ops to collection.')
                self._tpu_embedding_collection.AddLoadOps(load_op_list)
                self._tpu_embedding_collection.AddRetrieveOps(retrieve_op_list)

                mode = tpu_embedding_lib.TRAINING
                device_config = tpu_embedding_lib.DeviceConfig(
                    num_cores=num_cores,
                    num_hosts=self.params.tables[0].num_tpu_hosts,
                    job_name=self.cluster.params.worker.name)
                self._tpu_embedding = tpu_embedding_lib.TPUEmbedding(
                    table_to_config_dict,
                    feature_to_config_dict,
                    global_batch_size,
                    mode,
                    master=None,
                    pipeline_execution_with_tensor_core=(
                        self.params.pipeline_execution_with_tensor_core),
                    partition_strategy=p.partition_strategy,
                    device_config=device_config)
                self._tpu_embedding_collection.tpu_embedding = self._tpu_embedding
Esempio n. 2
0
    def _CreateLayerVariables(self):
        super()._CreateLayerVariables()

        load_op_list = []
        retrieve_op_list = []

        # At the feature level, track which are associated
        # with "sequence embeddings".
        self._sequence_features = {}

        if py_utils.use_tpu():
            num_cores = self.cluster.params.worker.tpus_per_replica
            global_batch_size = (self.params.batch_size *
                                 self.cluster.num_splits_per_client)
            table_to_config_dict = {}
            feature_to_config_dict = {}
            for table in self.tables:
                table_to_config_dict[table.table_name] = table.table_config
                load_op_list += table.load_op_list
                retrieve_op_list += table.retrieve_op_list
                for feature in table.input_keys:
                    if table.max_sequence_length > 0:
                        self._sequence_features[feature] = True
                    feature_to_config_dict[
                        feature] = tpu_embedding_lib.FeatureConfig(
                            table.table_name,
                            max_sequence_length=table.max_sequence_length)
            tf.logging.info('adding load and retrieve ops to collection.')
            tf.add_to_collection(py_utils.TPU_EMBEDDING_LOAD_OPS, load_op_list)
            tf.add_to_collection(py_utils.TPU_EMBEDDING_RETRIEVE_OPS,
                                 retrieve_op_list)

            tpu_embedding_collection = tf.get_collection(
                py_utils.TPU_EMBEDDING)
            assert len(tpu_embedding_collection) <= 1
            if len(tpu_embedding_collection) == 1:
                tf.logging.info(
                    'TPUEmbedding API singleton already exists, reusing')
                self._tpu_embedding = tpu_embedding_collection[0]
            else:
                mode = tpu_embedding_lib.TRAINING
                device_config = tpu_embedding_lib.DeviceConfig(
                    num_cores=num_cores,
                    num_hosts=self.params.tables[0].num_tpu_hosts,
                    job_name=self.cluster.params.worker.name)
                self._tpu_embedding = tpu_embedding_lib.TPUEmbedding(
                    table_to_config_dict,
                    feature_to_config_dict,
                    global_batch_size,
                    mode,
                    master=None,
                    pipeline_execution_with_tensor_core=(
                        self.params.pipeline_execution_with_tensor_core),
                    device_config=device_config)
                tf.add_to_collection(py_utils.TPU_EMBEDDING,
                                     self._tpu_embedding)
Esempio n. 3
0
        def _BuildTpuEmbeddingApi():
            load_op_list = []
            retrieve_op_list = []

            num_cores = self.cluster.params.worker.tpus_per_replica
            global_batch_size = (self.params.batch_size *
                                 self.cluster.num_splits_per_client)
            table_to_config_dict = {}
            feature_to_config_dict = {}
            for table in self.tables:
                table_to_config_dict[table.table_name] = table.table_config
                load_op_list += table.load_op_list
                retrieve_op_list += table.retrieve_op_list
                for feature in table.input_keys:
                    feature_to_config_dict[
                        feature] = tpu_embedding_lib.FeatureConfig(
                            table.table_name,
                            max_sequence_length=table.max_sequence_length)

            mode = tpu_embedding_lib.TRAINING
            device_config = tpu_embedding_lib.DeviceConfig(
                num_cores=num_cores,
                num_hosts=self.params.tables[0].num_tpu_hosts,
                job_name=self.cluster.params.worker.name)
            tpu_embedding = tpu_embedding_lib.TPUEmbedding(
                table_to_config_dict,
                feature_to_config_dict,
                global_batch_size,
                mode,
                master=None,
                pipeline_execution_with_tensor_core=(
                    self.params.pipeline_execution_with_tensor_core),
                partition_strategy=p.partition_strategy,
                device_config=device_config)

            with tf.init_scope():
                dummy_variables, dummy_variables_init = (
                    tpu_embedding_gradient.create_dummy_table_variables(
                        tpu_embedding))
            load_op_list += [dummy_variables_init]

            tf.add_to_collection(py_utils.TPU_EMBEDDING, tpu_embedding)
            tf.add_to_collection(py_utils.TPU_EMBEDDING_DUMMY_VARS,
                                 dummy_variables)
            tf.add_to_collection(py_utils.TPU_EMBEDDING_LOAD_OPS, load_op_list)
            tf.add_to_collection(py_utils.TPU_EMBEDDING_RETRIEVE_OPS,
                                 retrieve_op_list)
Esempio n. 4
0
  def _CreateLayerVariables(self):
    super()._CreateLayerVariables()
    p = self.params

    # At the feature level, track which are associated
    # with "sequence embeddings".
    self._sequence_features = {}

    if _ShouldUseTpu(p):
      num_cores = self.cluster.params.worker.tpus_per_replica
      global_batch_size = (
          self.params.batch_size * self.cluster.num_splits_per_client)
      table_to_config_dict = {}
      feature_to_config_dict = {}
      for table in self.tables:
        table_to_config_dict[table.table_name] = table.table_config
        for feature in table.input_keys:
          if table.max_sequence_length > 0:
            self._sequence_features[feature] = True
          feature_to_config_dict[feature] = tpu_embedding_lib.FeatureConfig(
              table.table_name, max_sequence_length=table.max_sequence_length)

      tpu_embedding = self._tpu_embedding_collection.tpu_embedding
      if tpu_embedding:
        self._CheckTPUEmbeddingConfig(tpu_embedding, table_to_config_dict,
                                      feature_to_config_dict, global_batch_size)
        tf.logging.info('TPUEmbedding API singleton already exists, reusing')
        self._tpu_embedding = tpu_embedding
      else:
        mode = tpu_embedding_lib.TRAINING
        device_config = tpu_embedding_lib.DeviceConfig(
            num_cores=num_cores,
            num_hosts=self.params.tables[0].num_tpu_hosts,
            job_name=self.cluster.params.worker.name)
        self._tpu_embedding = tpu_embedding_lib.TPUEmbedding(
            table_to_config_dict,
            feature_to_config_dict,
            global_batch_size,
            mode,
            master=None,
            pipeline_execution_with_tensor_core=(
                self.params.pipeline_execution_with_tensor_core),
            partition_strategy=p.partition_strategy,
            device_config=device_config)
        self._tpu_embedding_collection.tpu_embedding = self._tpu_embedding
        self._tpu_embedding_collection.SetGradientMultiplierSchedule(
            self.gradient_multiplier_schedule)