Esempio n. 1
0
    def _resource_apply_dense(self, grad, var, apply_state=None):
        var_device, var_dtype = var.device, var.dtype.base_dtype
        coefficients = ((apply_state or {}).get((var_device, var_dtype))
                        or self._fallback_apply_state(var_device, var_dtype))

        accum = self.get_slot(var, 'accumulator')
        linear = self.get_slot(var, 'linear')

        if self._l2_shrinkage_regularization_strength <= 0.0:
            return gen_training_ops.ResourceApplyFtrl(
                var=var.handle,
                accum=accum.handle,
                linear=linear.handle,
                grad=grad,
                lr=coefficients['lr_t'],
                l1=coefficients['l1_regularization_strength'],
                l2=coefficients['l2_regularization_strength'],
                lr_power=coefficients['learning_rate_power'],
                use_locking=self._use_locking)
        else:
            return gen_training_ops.ResourceApplyFtrlV2(
                var=var.handle,
                accum=accum.handle,
                linear=linear.handle,
                grad=grad,
                lr=coefficients['lr_t'],
                l1=coefficients['l1_regularization_strength'],
                l2=coefficients['l2_regularization_strength'],
                l2_shrinkage=coefficients[
                    'l2_shrinkage_regularization_strength'],
                lr_power=coefficients['learning_rate_power'],
                use_locking=self._use_locking)
Esempio n. 2
0
    def _resource_apply_dense(self, grad, var, apply_state=None):
        var_device, var_dtype = var.device, var.dtype.base_dtype
        coefficients = ((apply_state or {}).get((var_device, var_dtype))
                        or self._fallback_apply_state(var_device, var_dtype))

        # Adjust L2 regularization strength to include beta to avoid the underlying
        # TensorFlow ops needing to include it.
        adjusted_l2_regularization_strength = (
            coefficients['l2_regularization_strength'] + coefficients['beta'] /
            (2. * coefficients['lr_t']))

        accum = self.get_slot(var, 'accumulator')
        linear = self.get_slot(var, 'linear')

        if self._l2_shrinkage_regularization_strength <= 0.0:
            return gen_training_ops.ResourceApplyFtrl(
                var=var.handle,
                accum=accum.handle,
                linear=linear.handle,
                grad=grad,
                lr=coefficients['lr_t'],
                l1=coefficients['l1_regularization_strength'],
                l2=adjusted_l2_regularization_strength,
                lr_power=coefficients['learning_rate_power'],
                use_locking=self._use_locking)
        else:
            return gen_training_ops.ResourceApplyFtrlV2(
                var=var.handle,
                accum=accum.handle,
                linear=linear.handle,
                grad=grad,
                lr=coefficients['lr_t'],
                l1=coefficients['l1_regularization_strength'],
                l2=adjusted_l2_regularization_strength,
                l2_shrinkage=coefficients[
                    'l2_shrinkage_regularization_strength'],
                lr_power=coefficients['learning_rate_power'],
                use_locking=self._use_locking)