def testDepthInterleavedDepth3(self):
   x_np = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1, 2, 3], [4, 5, 6]],
                                        [[7, 8, 9], [10, 11, 12]]]])
Esempio n. 2
0
def SubpixelConv2D(*args, **kwargs):
    kwargs['output_dim'] = 4*kwargs['output_dim']
    output = lib.ops.conv2d.Conv2D(*args, **kwargs)
    output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0,3,1,2])
    return output
 def testDepthInterleaved(self):
   x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1, 10], [2, 20]],
                                        [[3, 30], [4, 40]]]])
def depth_to_space(input, scale, data_format=None):
    ''' Uses phase shift algorithm to convert channels/depth for spatial resolution '''
    data_format = 'NHWC'

    data_format = data_format.lower()
    out = tf.depth_to_space(input, scale, data_format=data_format)
    return out
 def testBlockSize0(self):
   x_np = [[[[1], [2]],
            [[3], [4]]]]
   block_size = 0
   with self.assertRaises(ValueError):
     out_tf = tf.depth_to_space(x_np, block_size)
     out_tf.eval()
 def deconv2d(cur, i):
   thicker = conv(
       cur,
       output_filters * 4, (1, 1),
       padding="SAME",
       activation=tf.nn.relu,
       name="deconv2d" + str(i))
   return tf.depth_to_space(thicker, 2)
Esempio n. 7
0
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0,3,1,2])
    output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
    return output
 def testBlockSizeOne(self):
   x_np = [[[[1, 1, 1, 1],
             [2, 2, 2, 2]],
            [[3, 3, 3, 3],
             [4, 4, 4, 4]]]]
   block_size = 1
   with self.assertRaises(ValueError):
     out_tf = tf.depth_to_space(x_np, block_size)
     out_tf.eval()
 def testBlockSize4FlatInput(self):
   x_np = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]]
   block_size = 4
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1], [2], [5], [6]],
                                        [[3], [4], [7], [8]],
                                        [[9], [10], [13], [14]],
                                        [[11], [12], [15], [16]]]])
Esempio n. 10
0
 def depth_to_space(cls, ipt, scale, data_format=None):
     """ Uses phase shift algorithm to convert channels/depth
         for spatial resolution """
     if data_format is None:
         data_format = K.image_data_format()
     data_format = data_format.lower()
     ipt = cls._preprocess_conv2d_input(ipt, data_format)
     out = tf.depth_to_space(ipt, scale)
     out = cls._postprocess_conv2d_output(out, data_format)
     return out
Esempio n. 11
0
 def testDepthToSpaceTranspose(self):
   x = np.arange(20 * 5 * 8 * 7, dtype=np.float32).reshape([20, 5, 8, 7])
   block_size = 2
   crops = np.zeros((2, 2), dtype=np.int32)
   y1 = tf.batch_to_space(x, crops, block_size=block_size)
   y2 = tf.transpose(
       tf.depth_to_space(
           tf.transpose(x, [3, 1, 2, 0]), block_size=block_size),
       [3, 1, 2, 0])
   with self.test_session():
     self.assertAllEqual(y1.eval(), y2.eval())
 def testBlockSizeTooLarge(self):
   x_np = [[[[1, 2, 3, 4],
             [5, 6, 7, 8]],
            [[9, 10, 11, 12],
             [13, 14, 15, 16]]]]
   block_size = 4
   # Raise an exception, since th depth is only 4 and needs to be
   # divisible by 16.
   with self.assertRaises(IndexError):
     out_tf = tf.depth_to_space(x_np, block_size)
     out_tf.eval()
def phase_shift(x, upsampling_factor=2, data_format="NCHW", name="PhaseShift"):

    if data_format == "NCHW":
        x = tf.transpose(x, [0,2,3,1])

    x = tf.depth_to_space(x, upsampling_factor, name=name)

    if data_format == "NCHW":
        x = tf.transpose(x, [0,3,1,2])

    return x
Esempio n. 14
0
def decompress_step(source, hparams, first_relu, is_2d, name):
  """Decompression function."""
  with tf.variable_scope(name):
    shape = common_layers.shape_list(source)
    multiplier = 4 if is_2d else 2
    kernel = (1, 1) if is_2d else (1, 1)
    thicker = common_layers.conv_block(
        source, hparams.hidden_size * multiplier, [((1, 1), kernel)],
        first_relu=first_relu, name="decompress_conv")
    if is_2d:
      return tf.depth_to_space(thicker, 2)
    return tf.reshape(thicker, [shape[0], shape[1] * 2, 1, hparams.hidden_size])
Esempio n. 15
0
 def testNonSquare(self):
   x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]],
            [[5, 50, 6, 60, 7, 70, 8, 80]],
            [[9, 90, 10, 100, 11, 110, 12, 120]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1, 10], [2, 20]],
                                        [[3, 30], [4, 40]],
                                        [[5, 50], [6, 60]],
                                        [[7, 70], [8, 80]],
                                        [[9, 90], [10, 100]],
                                        [[11, 110], [12, 120]]]])
Esempio n. 16
0
 def testDepthInterleavedLarger(self):
   x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40],
             [5, 50, 6, 60, 7, 70, 8, 80]],
            [[9, 90, 10, 100, 11, 110, 12, 120],
             [13, 130, 14, 140, 15, 150, 16, 160]]]]
   block_size = 2
   with self.test_session(use_gpu=False):
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(),
                         [[[[1, 10], [2, 20], [5, 50], [6, 60]],
                           [[3, 30], [4, 40], [7, 70], [8, 80]],
                           [[9, 90], [10, 100], [13, 130], [14, 140]],
                           [[11, 110], [12, 120], [15, 150], [16, 160]]]])
Esempio n. 17
0
    def _PS(X, r, n_out_channels):
        if n_out_channels >= 1:
            assert int(X.get_shape()[-1]) == (r**2) * n_out_channels, _err_log

            # bsize, a, b, c = X.get_shape().as_list()
            # bsize = tf.shape(X)[0] # Handling Dimension(None) type for undefined batch dim
            # Xs=tf.split(X,r,3) #b*h*w*r*r
            # Xr=tf.concat(Xs,2) #b*h*(r*w)*r
            # X=tf.reshape(Xr,(bsize,r*a,r*b,n_out_channel)) # b*(r*h)*(r*w)*c

            X = tf.depth_to_space(X, r)
        else:
            logging.info(_err_log)
        return X
  def _checkGrad(self, x, block_size):
    assert 4 == x.ndim
    with self.test_session():
      tf_x = tf.convert_to_tensor(x)
      tf_y = tf.depth_to_space(tf_x, block_size)
      epsilon = 1e-2
      ((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
          tf_x,
          x.shape,
          tf_y,
          tf_y.get_shape().as_list(),
          x_init_value=x,
          delta=epsilon)

    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)
Esempio n. 19
0
def UpsampleConv(name,
                 input_dim,
                 output_dim,
                 filter_size,
                 inputs,
                 he_init=True,
                 biases=True):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0, 3, 1, 2])
    output = Conv2D(name,
                    input_dim,
                    output_dim,
                    filter_size,
                    output,
                    he_init=he_init,
                    biases=biases,
                    cpu=CPU)
    return output
Esempio n. 20
0
    def build_pixel_shuffler_layer(self,
                                   name,
                                   h,
                                   scale,
                                   input_filters,
                                   output_filters,
                                   activator=None):

        with tf.variable_scope(name):
            self.build_conv(name + "_CNN",
                            h,
                            self.cnn_size,
                            input_filters,
                            scale * scale * output_filters,
                            use_batch_norm=False,
                            use_bias=True)
            self.H.append(tf.depth_to_space(self.H[-1], scale))
            self.build_activator(self.H[-1],
                                 output_filters,
                                 activator,
                                 base_name=name)
Esempio n. 21
0
def UpsampleConv(name,
                 input_dim,
                 output_dim,
                 filter_size,
                 inputs,
                 he_init=True,
                 biases=True):
    output = inputs
    output = tf.concat([output, output, output, output], 1)
    output = tf.transpose(
        output, [0, 2, 3, 1])  # 调换tensor的维度顺序,按照列表perm的维度排列调换tensor顺序
    output = tf.depth_to_space(output, 2)  # 将一个较多通道的特征变成较少通道的特征
    output = tf.transpose(output, [0, 3, 1, 2])
    output = lib.ops.conv2d.Conv2D(name,
                                   input_dim,
                                   output_dim,
                                   filter_size,
                                   output,
                                   he_init=he_init,
                                   biases=biases)
    return output
Esempio n. 22
0
def G(x, is_train):
    # shape of x: [B,T_in,H,W,C]

    # Generate filters and residual
    # Fx: [B,1,H,W,1*5*5,R*R]
    # Rx: [B,1,H,W,3*R*R]
    Fx, Rx = FR(x, is_train, uf=R)

    x_c = []
    for c in range(3):
        t = DynFilter3D(x[:, T_in // 2:T_in // 2 + 1, :, :, c],
                        Fx[:, 0, :, :, :, :], [1, 5, 5])  # [B,H,W,R*R]
        t = tf.depth_to_space(t, R)  # [B,H*R,W*R,1]
        x_c += [t]
    x = tf.concat(x_c, axis=3)  # [B,H*R,W*R,3]
    x = tf.expand_dims(x, axis=1)

    Rx = depth_to_space_3D(Rx, R)  # [B,1,H*R,W*R,3]
    x += Rx

    return x
Esempio n. 23
0
def P_Conv2(net, mask, n_filter=32, filter_size=3, stride=1, name=''):

    img_patch = tf.extract_image_patches(
        net.outputs,
        ksizes=[1, filter_size, filter_size, 1],
        strides=[1, stride, stride, 1],
        rates=[1, 1, 1, 1],
        padding='SAME')
    img_patch = tf.depth_to_space(img_patch, filter_size)
    img_patch = tf.multiply(img_patch, mask)
    n = InputLayer(img_patch, name=name + '_input')
    n = Conv2d(n,
               n_filter=n_filter,
               filter_size=(filter_size, filter_size),
               padding='VALID',
               W_init=w_init,
               b_init=b_init,
               strides=(filter_size, filter_size),
               name=name + '_depth')

    return n
Esempio n. 24
0
def ScaledUpsampleConv(name,
                       input_dim,
                       output_dim,
                       filter_size,
                       inputs,
                       he_init=True,
                       biases=True):
    output = inputs
    output = lib.ops.concat.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0, 3, 1, 2])
    output = lib.ops.conv2d.Conv2D(name,
                                   input_dim,
                                   output_dim,
                                   filter_size,
                                   output,
                                   he_init=he_init,
                                   biases=biases,
                                   gain=0.5)
    return output
Esempio n. 25
0
    def layer_conv_dts(self, net, args, options):
        options = hc.Config(options)
        config = self.config
        ops = self.ops

        self.ops.activation_name = options.activation_name
        activation_s = options.activation or self.ops.config_option("activation")
        activation = self.ops.lookup(activation_s)

        stride = options.stride or self.ops.config_option("stride", [1,1])[0]
        stride = int(stride)
        fltr = options.filter or self.ops.config_option("filter", [3,3])
        if type(fltr) == type(""):
            fltr=[int(fltr), int(fltr)]
        depth = int(args[0])

        initializer = None # default to global

        trainable = True
        if options.trainable == 'false':
            trainable = False
        bias = True
        if options.bias == 'false':
            bias=False
        net = ops.conv2d(net, fltr[0], fltr[1], stride, stride, depth*4, initializer=initializer, trainable=trainable, bias=bias)
        s = ops.shape(net)
        net = tf.depth_to_space(net, 2)
        if activation:
            #net = self.layer_regularizer(net)
            net = activation(net)

        avg_pool = options.avg_pool or self.ops.config_option("avg_pool")
        if type(avg_pool) == type(""):
            avg_pool = [int(avg_pool), int(avg_pool)]
        if avg_pool:
            ksize = [1,avg_pool[0], avg_pool[1],1]
            stride = ksize
            net = tf.nn.avg_pool(net, ksize=ksize, strides=stride, padding='SAME')

        return net
Esempio n. 26
0
def aspp_features(hlist, num_classes=19, alpha=1.0):
    '''
    Args:
        hlist: list of three features, [1/8, 1/16, 1/32].
    '''
    h0, h1, h2 = hlist
    shape_h0 = combined_static_and_dynamic_shape(h0)
    shape_h1 = combined_static_and_dynamic_shape(h1)

    with ssdnet_argscope():
        # merge h1 and h2, create 1/16 feature
        h2 = tf.depth_to_space(h2, 2)
        h12 = tf.concat([h1, h2], axis=-1)  # 128
        h12 = Conv2D('h12', h12, 256, 1, activation=BNReLU)

        with tf.variable_scope('top'):
            feat = Conv2D('conv1', h12, 256, 1, activation=BNReLU)
        with tf.variable_scope('se'):
            s = AvgPooling('avgpool',
                           h12,
                           49,
                           strides=(16, 20),
                           padding='same')
            s = Conv2D('conv1', s, 256, 1, activation=None, use_bias=True)
            s = tf.sigmoid(s, name='sigmoid')
            s = tf.image.resize_bilinear(s, shape_h1[1:3], align_corners=True)
        feat = tf.multiply(feat, s)

        feat = tf.image.resize_bilinear(feat,
                                        shape_h0[1:3],
                                        align_corners=True)
        feat = DWConv('convd', feat, 5)
        feat_l = Conv2D('conv_h0', h0, 128, 1, activation=BNReLU)

    with argscope([Conv2D], use_bias=True):
        feat = Conv2D('logit_up', feat, num_classes, 1)
        feat_l = Conv2D('logit_h0', feat_l, num_classes, 1)

    out = tf.add(feat, alpha * feat_l, name='cls_logit')
    return out
    def layer_conv_dts(self, net, args, options):
        options = hc.Config(options)
        config = self.config
        ops = self.ops

        self.ops.activation_name = options.activation_name
        activation_s = options.activation or self.ops.config_option("activation")
        activation = self.ops.lookup(activation_s)

        stride = options.stride or self.ops.config_option("stride", [1,1])[0]
        stride = int(stride)
        fltr = options.filter or self.ops.config_option("filter", [3,3])
        if type(fltr) == type(""):
            fltr=[int(fltr), int(fltr)]
        depth = int(args[0])

        initializer = None # default to global

        trainable = True
        if options.trainable == 'false':
            trainable = False
        bias = True
        if options.bias == 'false':
            bias=False
        net = ops.conv2d(net, fltr[0], fltr[1], stride, stride, depth*4, initializer=initializer, trainable=trainable, bias=bias)
        s = ops.shape(net)
        net = tf.depth_to_space(net, 2)
        if activation:
            #net = self.layer_regularizer(net)
            net = activation(net)

        avg_pool = options.avg_pool or self.ops.config_option("avg_pool")
        if type(avg_pool) == type(""):
            avg_pool = [int(avg_pool), int(avg_pool)]
        if avg_pool:
            ksize = [1,avg_pool[0], avg_pool[1],1]
            stride = ksize
            net = tf.nn.avg_pool(net, ksize=ksize, strides=stride, padding='SAME')

        return net
Esempio n. 28
0
def subpixel_LR2HR(image_LR):
    c = image_LR.shape[3]
    if c == 4:  #64*50*50*4
        img_HR = tf.depth_to_space(image_LR, 2)
        return img_HR
    elif c == 8:  #64*50*50*8
        img_HR1 = tf.depth_to_space(image_LR[:, :, :, 0:4], 2)
        img_HR2 = tf.depth_to_space(image_LR[:, :, :, 4:8], 2)
        return tf.concat([img_HR1, img_HR2], 3)
    elif c == 12:  #64*50*50*12
        img_HR1 = tf.depth_to_space(image_LR[:, :, :, 0:4], 2)
        img_HR2 = tf.depth_to_space(image_LR[:, :, :, 4:8], 2)
        img_HR3 = tf.depth_to_space(image_LR[:, :, :, 8:12], 2)
        return tf.concat([img_HR1, img_HR2, img_HR3], 3)
    else:
        print('ERROR!')
Esempio n. 29
0
  def model(self):
    d, m, b = self.model_params

    size = self.padding + 1
    features = tf.contrib.layers.conv2d(self.images, d, size, 1, 'VALID', 'NHWC', activation_fn=None, scope='features')

    conv = tf.contrib.layers.conv2d(features, d, 3, 1, 'SAME', 'NHWC', activation_fn=None, scope='conv1')

    shortcuts = conv

    for i in range(1, m+1):
        with tf.variable_scope("FMM{}".format(i)) as scope:
            for bi in range(1, b+1):
                res = tf.contrib.layers.conv2d(conv, d*6, 1, 1, 'SAME', 'NHWC', activation_fn=tf.nn.leaky_relu, scope='widen{}'.format(bi))
                res = tf.contrib.layers.conv2d(res, d, 1, 1, 'SAME', 'NHWC', activation_fn=None, scope='shrink{}'.format(bi))
                res = tf.contrib.layers.conv2d(res, d, 3, 1, 'SAME', 'NHWC', activation_fn=None, scope='embedding{}'.format(bi))

                sa = tf.contrib.layers.separable_conv2d(res, None, 3, 1, 1, 'SAME', 'NHWC', activation_fn=None, scope='sa{}'.format(bi))

                ca = tf.reduce_mean(tf.square(res), [1, 2], True) - tf.square(tf.reduce_mean(res, [1, 2], True))
                ca = tf.contrib.layers.conv2d(ca, max(d//16, 4), 1, 1, 'SAME', 'NHWC', activation_fn=tf.nn.leaky_relu, scope='ca_shrink{}'.format(bi))
                ca = tf.contrib.layers.conv2d(ca, d, 1, 1, 'SAME', 'NHWC', activation_fn=None, scope='ca{}'.format(bi))

                conv = tf.add(conv, tf.add(res, tf.multiply(res, tf.sigmoid(tf.add(sa, ca)))))

            conv = tf.concat([conv, shortcuts], -1)
            conv = tf.contrib.layers.conv2d(conv, d, 1, 1, 'SAME', 'NHWC', activation_fn=None, scope='GF{}'.format(i))
            shortcuts = tf.concat([conv, shortcuts], -1)

    conv = tf.contrib.layers.conv2d(conv, d, 3, 1, 'SAME', 'NHWC', activation_fn=None, scope='res')
    conv = tf.add(conv, features)

    with tf.variable_scope("upscaling"):
        conv = tf.nn.leaky_relu(conv)
        conv = tf.contrib.layers.conv2d(conv, d * self.scale**2, 3, 1, 'SAME', 'NHWC', activation_fn=None, scope='sub-pixel_conv')
        conv = tf.depth_to_space(conv, self.scale, name='pixel_shuffle', data_format='NHWC')

        conv = tf.contrib.layers.conv2d(conv, 1, 3, 1, 'SAME', 'NHWC', activation_fn=None, scope='final')

    return conv
Esempio n. 30
0
def local_head(features, config):
    bn_params = {
        'center': True, 'scale': True
    }
    conv_params = {
        'normalizer_fn': slim.batch_norm,
        'activation_fn': tf.nn.relu6,
        'stride': 1,
        'padding': 'SAME',
        'kernel_size': [3, 3],
    }
    last_conv_params = {
        'normalizer_fn': None,
        'activation_fn': None,
        'stride': 1,
        'padding': 'SAME',
        'kernel_size': [1, 1],
    }

    with tf.variable_scope('descriptor', reuse=tf.AUTO_REUSE):
        with slim.arg_scope([slim.conv2d], **conv_params), \
             slim.arg_scope([slim.batch_norm], **bn_params):
            desc = slim.conv2d(features, config['descriptor_dim'])
        with slim.arg_scope([slim.conv2d], **last_conv_params):
            desc = slim.conv2d(desc, config['descriptor_dim'])
        desc = tf.nn.l2_normalize(desc, -1)

    with tf.variable_scope('detector', reuse=tf.AUTO_REUSE):
        with slim.arg_scope([slim.conv2d], **conv_params), \
             slim.arg_scope([slim.batch_norm], **bn_params):
            logits = slim.conv2d(features, 128)
        with slim.arg_scope([slim.conv2d], **last_conv_params):
            logits = slim.conv2d(logits, 1+pow(config['detector_grid'], 2))
        prob_full = tf.nn.softmax(logits, axis=-1)
        prob = prob_full[:, :, :, :-1]  # Strip the “no interest point” dustbin
        prob = tf.depth_to_space(prob, config['detector_grid'])
        prob = tf.squeeze(prob, axis=-1)

    return {'local_descriptor_map': desc, 'logits': logits,
            'prob_full': prob_full, 'scores_dense': prob}
Esempio n. 31
0
def dark_network(input):
    with tf.variable_scope("DARK") as vs:
        conv1 = slim.conv2d(input, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_1')
        conv1 = slim.conv2d(conv1, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_2')
        pool1 = slim.max_pool2d(conv1, [2, 2], padding='SAME')

        conv2 = slim.conv2d(pool1, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_1')
        conv2 = slim.conv2d(conv2, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_2')
        pool2 = slim.max_pool2d(conv2, [2, 2], padding='SAME')

        conv3 = slim.conv2d(pool2, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_1')
        conv3 = slim.conv2d(conv3, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_2')
        pool3 = slim.max_pool2d(conv3, [2, 2], padding='SAME')

        conv4 = slim.conv2d(pool3, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_1')
        conv4 = slim.conv2d(conv4, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_2')
        pool4 = slim.max_pool2d(conv4, [2, 2], padding='SAME')

        conv5 = slim.conv2d(pool4, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_1')
        conv5 = slim.conv2d(conv5, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_2')

        up6 = upsample_and_concat(conv5, conv4, 256, 512)
        conv6 = slim.conv2d(up6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_1')
        conv6 = slim.conv2d(conv6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_2')

        up7 = upsample_and_concat(conv6, conv3, 128, 256)
        conv7 = slim.conv2d(up7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_1')
        conv7 = slim.conv2d(conv7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_2')

        up8 = upsample_and_concat(conv7, conv2, 64, 128)
        conv8 = slim.conv2d(up8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_1')
        conv8 = slim.conv2d(conv8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_2')

        up9 = upsample_and_concat(conv8, conv1, 32, 64)
        conv9 = slim.conv2d(up9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_1')
        conv9 = slim.conv2d(conv9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_2')

        conv10 = slim.conv2d(conv9, 12, [1, 1], rate=1, activation_fn=None, scope='g_conv10')
        out = tf.depth_to_space(conv10, 2)
    return out
 def branch_1_1(self, fcin1, helper1):
     ################################################################################################################
     ####    Branch_1_0: Input: RawImage Output: fc1: bottle layer output just before  deconv                    ####
     ####                                        helper1: concat of feature map with size H*W for final deconv   ####
     ################################################################################################################
     with tf.variable_scope('branch_1_1', reuse=self.reuse):
         deconv_1_1_0 = slim.conv2d_transpose(
             inputs=fcin1,
             num_outputs=128,
             kernel_size=[4, 4],
             stride=2,
             reuse=self.reuse,
             scope='deconv_1_1_0',
             activation_fn=model_tools.lrelu)
         conv_1_1_0 = slim.conv2d(inputs=deconv_1_1_0,
                                  num_outputs=128,
                                  kernel_size=self.kernel_size,
                                  scope='conv_1_1_0',
                                  reuse=self.reuse,
                                  activation_fn=model_tools.lrelu)
         dense_1_0, next_in_0 = model_tools.block(conv_1_1_0,
                                                  self.growth_rate,
                                                  self.layers_per_block,
                                                  self.kernel_size_dense,
                                                  self.reuse, 'dense_1_0')
         bottle_1_1 = slim.conv2d(inputs=tf.concat(
             [helper1, conv_1_1_0, dense_1_0], axis=3),
                                  num_outputs=self.bottle_output,
                                  kernel_size=1,
                                  scope='bottle_1_1',
                                  reuse=self.reuse,
                                  activation_fn=model_tools.lrelu)
         #conv_1_1_1 = bottle_1_1
         conv_1_1_1 = slim.conv2d(inputs=bottle_1_1,
                                  num_outputs=48,
                                  kernel_size=self.kernel_size,
                                  scope='conv_1_1_1',
                                  reuse=self.reuse,
                                  activation_fn=model_tools.lrelu)
         conv_r = tf.depth_to_space(
             tf.depth_to_space(conv_1_1_1[:, :, :, :16], 2), 2)
         conv_g = tf.depth_to_space(
             tf.depth_to_space(conv_1_1_1[:, :, :, 16:32], 2), 2)
         conv_b = tf.depth_to_space(
             tf.depth_to_space(conv_1_1_1[:, :, :, 32:], 2), 2)
         rgb = tf.concat([conv_r, conv_g, conv_b], axis=3)
         return rgb
def ResNet1(input,reuse=False):
    current = input
    act = lrelu
    with tf.variable_scope('ResNet'):
        with tf.variable_scope('Restore-Net'):
            current=slim.conv2d(current,64,[3,3], activation_fn=act,scope='conv_init',reuse=reuse)
            for j in range(10):
                add = current
                current=slim.conv2d(current,64,[3,3], activation_fn=act,scope='conv_%d0'%(j),reuse=reuse)
                current=slim.conv2d(current,64,[3,3], activation_fn=act,scope='conv_%d1'%(j),reuse=reuse)
                current = current + add
            current=slim.conv2d(current,64,[3,3], activation_fn=act,scope='conv_final',reuse=reuse)
            restore = slim.conv2d(current,12,[1,1], activation_fn=None,scope='conv_subpixel',reuse=reuse)
            restore = tf.depth_to_space(restore,2)

    with tf.variable_scope('Enhance-Net'):
        current=slim.conv2d(restore,32,[3,3], activation_fn=act,scope='conv_init',reuse=reuse)
        for j in range(6):
            current=slim.conv2d(current,32,[3,3],rate=2**(i), activation_fn=act,scope='conv_%d0'%(j),reuse=reuse)
        current=slim.conv2d(current,32,[3,3], activation_fn=act,scope='conv_final0',reuse=reuse)
        enhance=slim.conv2d(current,3,[1,1], activation_fn=None,scope='conv_final1',reuse=reuse)
    return enhance
Esempio n. 34
0
def network(input_image):
    c1 = sl.conv2d(input_image, 32, [3, 3], activation_fn=leaky_relu)
    c1 = sl.conv2d(c1, 32, [3, 3], activation_fn=leaky_relu)
    p1 = sl.max_pool2d(c1, [2, 2], padding='SAME')
    # Unit 2
    c2 = sl.conv2d(p1, 64, [3, 3], activation_fn=leaky_relu)
    c2 = sl.conv2d(c2, 64, [3, 3], activation_fn=leaky_relu)
    p2 = sl.max_pool2d(c2, [2, 2], padding='SAME')
    # Unit 3
    c3 = sl.conv2d(p2, 128, [3, 3], activation_fn=leaky_relu)
    c3 = sl.conv2d(c3, 128, [3, 3], activation_fn=leaky_relu)
    p3 = sl.max_pool2d(c3, [2, 2], padding='SAME')
    # Unit 4
    c4 = sl.conv2d(p3, 256, [3, 3], activation_fn=leaky_relu)
    c4 = sl.conv2d(c4, 256, [3, 3], activation_fn=leaky_relu)
    p4 = sl.max_pool2d(c4, [2, 2], padding='SAME')
    # Unit 5
    c5 = sl.conv2d(p4, 512, [3, 3], activation_fn=leaky_relu)
    c5 = sl.conv2d(c5, 512, [3, 3], activation_fn=leaky_relu)
    # Unit 6
    uc6 = upsample_and_concat(c5, c4, 256, 512)
    c6 = sl.conv2d(uc6, 256, [3, 3], activation_fn=leaky_relu)
    c6 = sl.conv2d(c6, 256, [3, 3], activation_fn=leaky_relu)
    # Unit 7
    uc7 = upsample_and_concat(c6, c3, 128, 256)
    c7 = sl.conv2d(uc7, 128, [3, 3], activation_fn=leaky_relu)
    c7 = sl.conv2d(c7, 128, [3, 3], activation_fn=leaky_relu)
    # Unit 8
    uc8 = upsample_and_concat(c7, c2, 64, 128)
    c8 = sl.conv2d(uc8, 64, [3, 3], activation_fn=leaky_relu)
    c8 = sl.conv2d(c8, 64, [3, 3], activation_fn=leaky_relu)
    # Unit 9
    uc9 = upsample_and_concat(c8, c1, 32, 64)
    c9 = sl.conv2d(uc9, 32, [3, 3], activation_fn=leaky_relu)
    c9 = sl.conv2d(c9, 32, [3, 3], activation_fn=leaky_relu)
    # Final Unit
    c10 = sl.conv2d(c9, 12, [1, 1], activation_fn=None)
    output_image = tf.depth_to_space(c10, 2)
    return output_image
Esempio n. 35
0
    def _upscale(self, inputs, scale):
        # According to this paper [https://arxiv.org/pdf/1609.05158.pdf]
        conv = self._conv2d_layer(inputs,
                                  filters_size=[5, 5, 64, 64],
                                  add_bias=True,
                                  name="upscale_{}_0".format(scale),
                                  activation=tf.nn.relu)
        conv = self._conv2d_layer(conv,
                                  filters_size=[3, 3, 64, 32],
                                  add_bias=True,
                                  name="upscale_{}_1".format(scale),
                                  activation=tf.nn.relu)

        conv = self._conv2d_layer(
            conv,
            filters_size=[3, 3, 32, self.n_channel * np.power(scale, 2)],
            add_bias=True,
            name="upscale_{}_2".format(scale))

        upscaled_conv = tf.depth_to_space(conv, scale)

        return upscaled_conv
def u_net(input):
    c1 = layer.conv2d(input, 32, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv1_1')
    c1 = layer.conv2d(c1, 32, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv1_2')
    p1 = layer.max_pool2d(c1, [2, 2], padding='SAME')

    c2 = layer.conv2d(p1, 64, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv2_1')
    c2 = layer.conv2d(c2, 64, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv2_2')
    p2 = layer.max_pool2d(c2, [2, 2], padding='SAME')

    c3 = layer.conv2d(p2, 128, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv3_1')
    c3 = layer.conv2d(c3, 128, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv3_2')
    p3 = layer.max_pool2d(c3, [2, 2], padding='SAME')

    c4 = layer.conv2d(p3, 256, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv4_1')
    c4 = layer.conv2d(c4, 256, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv4_2')
    p4 = layer.max_pool2d(c4, [2, 2], padding='SAME')

    c5 = layer.conv2d(p4, 512, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv5_1')
    c5 = layer.conv2d(c5, 512, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv5_2')

    up6 = upsample_merge(c5, c4, 256, 512)
    c6 = layer.conv2d(up6, 256, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv6_1')
    c6 = layer.conv2d(c6, 256, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv6_2')

    up7 = upsample_merge(c6, c3, 128, 256)
    c7 = layer.conv2d(up7, 128, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv7_1')
    c7 = layer.conv2d(c7, 128, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv7_2')

    up8 = upsample_merge(c7, c2, 64, 128)
    c8 = layer.conv2d(up8, 64, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv8_1')
    c8 = layer.conv2d(c8, 64, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv8_2')

    up9 = upsample_merge(c8, c1, 32, 64)
    c9 = layer.conv2d(up9, 32, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv9_1')
    c9 = layer.conv2d(c9, 32, [3, 3], rate=1, activation_fn=tf.nn.leaky_relu, scope='g_conv9_2')

    c10 = layer.conv2d(c9, 12, [1, 1], rate=1, activation_fn=None, scope='g_conv10')
    out_image = tf.depth_to_space(c10, 2)
    return out_image
def network(input):  # Unet
    conv1 = slim.conv2d(input, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_1')
    conv1 = slim.conv2d(conv1, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv1_2')
    pool1 = slim.max_pool2d(conv1, [2, 2], padding='SAME')

    conv2 = slim.conv2d(pool1, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_1')
    conv2 = slim.conv2d(conv2, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv2_2')
    pool2 = slim.max_pool2d(conv2, [2, 2], padding='SAME')

    conv3 = slim.conv2d(pool2, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_1')
    conv3 = slim.conv2d(conv3, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv3_2')
    pool3 = slim.max_pool2d(conv3, [2, 2], padding='SAME')

    conv4 = slim.conv2d(pool3, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_1')
    conv4 = slim.conv2d(conv4, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv4_2')
    pool4 = slim.max_pool2d(conv4, [2, 2], padding='SAME')

    conv5 = slim.conv2d(pool4, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_1')
    conv5 = slim.conv2d(conv5, 512, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv5_2')

    up6 = upsample_and_concat(conv5, conv4, 256, 512)
    conv6 = slim.conv2d(up6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_1')
    conv6 = slim.conv2d(conv6, 256, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv6_2')

    up7 = upsample_and_concat(conv6, conv3, 128, 256)
    conv7 = slim.conv2d(up7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_1')
    conv7 = slim.conv2d(conv7, 128, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv7_2')

    up8 = upsample_and_concat(conv7, conv2, 64, 128)
    conv8 = slim.conv2d(up8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_1')
    conv8 = slim.conv2d(conv8, 64, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv8_2')

    up9 = upsample_and_concat(conv8, conv1, 32, 64)
    conv9 = slim.conv2d(up9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_1')
    conv9 = slim.conv2d(conv9, 32, [3, 3], rate=1, activation_fn=lrelu, scope='g_conv9_2')

    conv10 = slim.conv2d(conv9, 27, [1, 1], rate=1, activation_fn=None, scope='g_conv10')
    out = tf.depth_to_space(conv10, 3)
    return out
Esempio n. 38
0
def upsample(x, num_units, method="subpixel"):
    """
    2D upsampling layer.

    Parameters
    ----------
    x: tensor
        input
    num_units:
        number of feature maps in the output
    method:
        upsampling method. A `string` from: `"conv_transposed", "nearest_neighbor", "linear", "subpixel"`
        Subpixel means that every upsampled pixel gets its own filter.

    Returns
    -------
        upsampled input

    """
    xs = x.shape.as_list()
    if method == "conv_transposed":
        return deconv2d(x, num_units, stride=[2, 2])
    elif method == "subpixel":
        x = conv2d(x, 4 * num_units)
        x = tf.depth_to_space(x, 2)
        return x
    elif method == "nearest_neighbor":
        bs, h, w, c = x.shape.as_list()
        x = tf.image.resize_images(x, [2 * h, 2 * w],
                                   tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        return x
    elif method == "linear":
        bs, h, w, c = xs[:4]
        x = tf.image.resize_images(x, [2 * h, 2 * w],
                                   tf.image.ResizeMethod.BILINEAR)
        return x
    else:
        raise NotImplemented(method)
Esempio n. 39
0
def build_network( input , num_blocks , first_channels , alpha , name = 'Default' ) :

    def conv_layer( input , shp , name , strides = [1,1,1,1] , padding = 'SAME' ) :

        filters = tf.get_variable( name + '/filters' , shp , initializer = tf.truncated_normal_initializer( stddev = 0.05 ) )
        biases = tf.get_variable( name + '/biases' , [ shp[-1] ] , initializer = tf.constant_initializer(0) )
        output = tf.nn.conv2d( input , filters , strides = strides , padding = padding ) + biases
        return output

    def residual_block( input , in_channels , out_channels , name ) :

        conv1 = conv_layer( input , [3,3,in_channels,out_channels] , name + '/conv1' )
        relu1 = tf.nn.relu(conv1)

        conv2 = conv_layer( relu1 , [3,3,out_channels,out_channels] , name + '/conv2' )
        relu2 = tf.nn.relu(conv2)

        if in_channels != out_channels :
            tmp = tf.pad( input , [ [0,0] , [0,0] , [0,0] , [0,out_channels - in_channels] ] , "CONSTANT" )

        output = tmp + relu2

        print(in_channels , '->' , out_channels)

        return output

    current = conv_layer( input , [3,3,3,first_channels] , name + '/first_layer' )
    pre = first_channels
    for i in range(num_blocks) :
        cur = pre + int( ( float(i+1) * alpha ) / num_blocks + 0.5 )
        current = residual_block( current , pre , cur , name + '/residual_block' + str(i) )
        pre = cur

    current = conv_layer( current , [3,3,pre,75] , name + '/last_layer' )
    current = tf.depth_to_space( current , 5 )
    output  = conv_layer( current , [3,3,3,3] , name + '/down_sampling_layer' , strides = (1,2,2,1) )

    return output
Esempio n. 40
0
    def forward(self, x, is_train):
        # shape of x: [B,T_in,H,W,C]

        # Generate filters and residual
        # Fx: [B,1,H,W,1*5*5,R*R]
        # Rx: [B,1,H,W,3*R*R]
        with tf.variable_scope('G', reuse=tf.AUTO_REUSE) as scope:
            Fx, Rx = FR_52L(x, is_train)

            x_c = []
            for c in range(3):
                t = DynFilter3D(x[:, self.num_frames //
                                  2:self.num_frames // 2 + 1, :, :, c],
                                Fx[:, 0, :, :, :, :], [1, 5, 5])  # [B,H,W,R*R]
                t = tf.depth_to_space(t, self.scale)  # [B,H*R,W*R,1]
                x_c += [t]
            x = tf.concat(x_c, axis=3)  # [B,H*R,W*R,3]
            x = tf.expand_dims(x, axis=1)

            Rx = depth_to_space_3D(Rx, self.scale)  # [B,1,H*R,W*R,3]
            x += Rx

            return x
Esempio n. 41
0
def generator(z, label):
    with tf.variable_scope('generator', reuse=None):
        d = 16
        z = tf.concat([z, label], axis=1)
        h0 = tf.layers.dense(z, units=d * d * 64)
        h0 = tf.reshape(h0, shape=[-1, d, d, 64])
        h0 = tf.nn.relu(batch_norm(h0))
        shortcut = h0

        for i in range(16):
            h0 = g_block(h0)

        h0 = tf.nn.relu(batch_norm(h0))
        h0 = tf.add(h0, shortcut)

        for i in range(3):
            h0 = conv2d(h0, 3, 256, 1, use_bias=False)
            h0 = tf.depth_to_space(h0, 2)
            h0 = tf.nn.relu(batch_norm(h0))

        h0 = tf.layers.conv2d(h0, kernel_size=9, filters=3, strides=1, padding='same', activation=tf.nn.tanh, name='g',
                              use_bias=True)
        return h0
Esempio n. 42
0
    def construct_model(self):
        with self.graph.as_default():
            x = tf.split(self.x, 4, axis=3)
            x1 = x[0]
            x2 = x[1]
            x3 = x[2]
            x4 = x[3]

            conv4_1 = self.CNN(x1)
            conv4_2 = self.CNN(x2, True)
            conv4_3 = self.CNN(x3, True)
            conv4_4 = self.CNN(x4, True)
            f1 = self.SPP(conv4_1)
            f2 = self.SPP(conv4_2, True)
            f3 = self.SPP(conv4_3, True)
            f4 = self.SPP(conv4_4, True)

            cost_vol = self.cost_vol(f1, f2, f3, f4)
            output = self.CNN3D(cost_vol, type="hourglass")

            with tf.name_scope('{}'.format(self.scoped_name)):
                self.yy = tf.depth_to_space(output, 2)
            self.y = tf.clip_by_value(self.yy, 0, 1, name='{}/y'.format(self.scoped_name))
Esempio n. 43
0
File: ops.py Progetto: mikigom/EDSR
def subpixel_upsample(in_, scale=4, n_feature=256):
    with slim.arg_scope([slim.conv2d], kernel_size=3, stride=1, padding='SAME', activation_fn=None):
        if scale == 4:
            x = slim.conv2d(in_, n_feature * 2 ** 2)
            x = tf.depth_to_space(x, 2)
            x = slim.conv2d(x, n_feature * 2 ** 2)
            x = tf.depth_to_space(x, 2)
        elif scale == 8:
            x = slim.conv2d(in_, n_feature * 2 ** 2)
            x = tf.depth_to_space(x, 2)
            x = slim.conv2d(x, n_feature * 2 ** 2)
            x = tf.depth_to_space(x, 2)
            x = slim.conv2d(x, n_feature * 2 ** 2)
            x = tf.depth_to_space(x, 2)
        else:
            x = slim.conv2d(in_, n_feature * scale ** 2)
            x = tf.depth_to_space(x, 2)
    return x
Esempio n. 44
0
    def generator_block(self, inputs, out_dim, name='generator_block'):
        """
        Args:
          inputs:
          out_dim:
          name:
        Return:
        """
        with tf.variable_scope(name):
            output = tf.concat(values=[inputs, inputs, inputs, inputs], axis=3)
            output = tf.depth_to_space(output, block_size=2)

            output = lib.ops.conv2d.Conv2D(output,
                                           output.shape.as_list()[-1],
                                           out_dim,
                                           3,
                                           1,
                                           'Conv.1',
                                           inputs_norm=self.inputs_norm,
                                           he_init=True,
                                           biases=True)
            output = lib.ops.pixelnorm.Pixelnorm(output)
            output = lrelu(output)

            output = lib.ops.conv2d.Conv2D(output,
                                           output.shape.as_list()[-1],
                                           out_dim,
                                           3,
                                           1,
                                           'Conv.2',
                                           inputs_norm=self.inputs_norm,
                                           he_init=True,
                                           biases=True)
            output = lib.ops.pixelnorm.Pixelnorm(output)
            output = lrelu(output)

        return output
Esempio n. 45
0
def UpsampleConv(name,
                 input_dim,
                 output_dim,
                 filter_size,
                 inputs,
                 biases=True,
                 with_sn=False,
                 with_learnable_sn_scale=False,
                 update_collection=None):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0, 3, 1, 2])
    output = conv2d.Conv2D(name,
                           input_dim,
                           output_dim,
                           filter_size,
                           output,
                           biases=biases,
                           with_sn=with_sn,
                           with_learnable_sn_scale=with_learnable_sn_scale,
                           update_collection=update_collection)
    return output
Esempio n. 46
0
def depth_to_space(input, block_size, channels_last=True, name=None):
    """
    Wraps :func:`tf.depth_to_space`, to support tensors higher than 4-d.

    Args:
        input: The input tensor, at least 4-d.
        block_size (int): An int >= 2, the size of the spatial block.
        channels_last (bool): Whether or not the channels axis
            is the last axis in the input tensor?

    Returns:
        tf.Tensor: The output tensor.

    See Also:
        :func:`tf.depth_to_space`
    """
    block_size = int(block_size)
    data_format = 'NHWC' if channels_last else 'NCHW'
    input = tf.convert_to_tensor(input)
    with tf.name_scope(name or 'space_to_depth', values=[input]):
        output, s1, s2 = flatten_to_ndims(input, ndims=4)
        output = tf.depth_to_space(output, block_size, data_format=data_format)
        output = unflatten_from_ndims(output, s1, s2)
        return output
Esempio n. 47
0
def unet(net, inp, nch, inch, nlev, pfx='u', _ch=None):

    out = inp

    if _ch is None:
        out = conv(net, pfx + 'u1_%d' % nlev, out, [3, nch], 0, True)
    else:
        out = conv(net, pfx + 'u1_%d' % nlev, out, [3, nch, _ch], 0, True)
    out = conv(net, 'u2_%d' % nlev, out, [3, nch], 0, True)

    if nlev == 1:
        return out

    out1 = tf.nn.max_pool(out, [1, 2, 2, 1], [1, 2, 2, 1], 'VALID')
    out1 = unet(net, out1, nch + inch, inch, nlev - 1, pfx)
    out1 = conv(net, pfx + 'u3_%d' % nlev, out1, [1, nch * 4], 0, True)
    out1 = tf.depth_to_space(out1, 2)

    out = tf.concat([out, out1], 3)

    out = conv(net, 'u4_%d' % nlev, out, [3, nch], 0, True)
    out = conv(net, pfx + 'u5_%d' % nlev, out, [3, nch], 0, True)

    return out
Esempio n. 48
0
def UpsampleConv(opts,
                 input,
                 input_dim,
                 output_dim,
                 filter_size,
                 scope=None,
                 init='he',
                 biases=True):
    output = input
    output = tf.concat([output, output, output, output],
                       axis=-1)  # concat along channel axis
    # output = tf.concat([output, output, output, output], axis=1)
    # output = tf.transpose(output, [0,2,3,1])
    output = tf.depth_to_space(output, 2)
    # output = tf.transpose(output, [0,3,1,2])
    output = Conv2d(opts,
                    output,
                    input_dim,
                    output_dim,
                    filter_size,
                    scope=scope,
                    init=init,
                    biases=biases)
    return output
Esempio n. 49
0
def UpsampleConv(name,
                 input_dim,
                 output_dim,
                 filter_size,
                 inputs,
                 he_init=True,
                 biases=True,
                 spectralnorm=False,
                 update_collection=None):
    output = inputs
    output = tf.concat([output, output, output, output], axis=1)
    output = tf.transpose(output, [0, 2, 3, 1])
    output = tf.depth_to_space(output, 2)
    output = tf.transpose(output, [0, 3, 1, 2])
    output = lib.ops.conv2d.Conv2D(name,
                                   input_dim,
                                   output_dim,
                                   filter_size,
                                   output,
                                   he_init=he_init,
                                   biases=biases,
                                   spectralnorm=spectralnorm,
                                   update_collection=update_collection)
    return output
Esempio n. 50
0
def depth_to_space(inputs,
                   block_size,
                   name='d2s',
                   data_format='channels_last'):
    """ 1d, 2d and 3d depth_to_space transformation.

    Parameters
    ----------
    inputs : tf.Tensor
        a tensor to resize
    block_size : int
        An int that is >= 2. The size of the spatial block
    name : str
        scope name
    data_format : {'channels_last', 'channels_first'}
        position of the channels dimension

    Returns
    -------
    tf.Tensor

    See also
    --------
    `tf.depth_to_space <https://www.tensorflow.org/api_docs/python/tf/depth_to_space>`_
    """
    dim = inputs.shape.ndims - 2
    if dim == 2:
        dafo = 'NHWC' if data_format == 'channels_last' else 'NCHW'
        return tf.depth_to_space(inputs, block_size, name, data_format=dafo)

    if data_format == 'channels_first':
        inputs = tf.transpose(inputs, [0] + list(range(2, dim + 2)) + [1])
    x = _depth_to_space(inputs, block_size, name)
    if data_format == 'channels_first':
        x = tf.transpose(x, [0, dim + 1] + list(range(1, dim + 1)))
    return x
def phase_shift(x, upsampling_factor=2, name="PhaseShift"):

    return tf.depth_to_space(x, upsampling_factor, name=name)
Esempio n. 52
0
 def _testOne(self, inputs, block_size, outputs):
   for use_gpu in [False, True]:
     with self.test_session(use_gpu=use_gpu):
       x_tf = tf.depth_to_space(tf.to_float(inputs), block_size)
       self.assertAllEqual(x_tf.eval(), outputs)
def decompress_seqcnn(x,
                      targets,
                      targets_vocab_size,
                      dilations_and_kernels,
                      block_size,
                      is_2d=False,
                      embedding_var=None,
                      name=None,
                      reuse=None):
  """Decompress x into targets size using a Sequence CNN at every element."""
  with tf.variable_scope(
      name,
      default_name="decompress_batch_seqcnn",
      values=[x, targets],
      reuse=reuse):
    # We assume targets are [batch x block_size * N x block_size * N x C] if
    # is_2d=True or [batch, block_size * N, 1, C] otherwise, and C is static.
    # Let's shift targets to depth and embed.
    targets_shape, targets_shape_static = tf.shape(targets), targets.get_shape()
    channels = int(targets_shape_static[-1])
    hidden_size = int(x.get_shape()[-1])
    if is_2d:
      depth_targets = tf.space_to_depth(targets, block_size)
      factor = channels * block_size * block_size
    else:
      depth_targets = tf.reshape(targets, [
          targets_shape[0], targets_shape[1] // block_size, 1,
          channels * block_size
      ])
      factor = channels * block_size
    if embedding_var is None:
      embedding_var = tf.get_variable("targets_embedding",
                                      [targets_vocab_size, hidden_size])
    targets_emb = tf.gather(embedding_var, depth_targets)
    # Flatten x and embedded targets. Flat targets are factor* larger on axis=1.
    flat_x = tf.reshape(x, [-1, 1, 1, hidden_size])
    flat_targets = tf.reshape(targets_emb, [-1, factor, 1, hidden_size])
    shifted_targets = shift_left(flat_targets)
    # Run a SeqCNN large-batch to produce factor outputs out of every target.
    flat_x += tf.zeros_like(shifted_targets)  # Broadcast on axis=1.
    flat_outputs = conv_block(
        tf.concat([flat_x, shifted_targets], axis=3),
        hidden_size,
        dilations_and_kernels,
        padding="LEFT")
    # Reshape back to embedded targets shape.
    outputs = tf.reshape(flat_outputs, [
        tf.shape(targets_emb)[0],
        tf.shape(targets_emb)[1],
        tf.shape(targets_emb)[2], factor * hidden_size
    ])
    # Move depth back to target space.
    if is_2d:
      outputs = tf.depth_to_space(outputs, 2)
    else:
      outputs = tf.reshape(outputs, [
          tf.shape(outputs)[0], block_size * tf.shape(outputs)[1], 1,
          hidden_size
      ])
    # Final reshape before prediction to ensure target size.
    outputs = tf.reshape(outputs, [
        targets_shape[0], targets_shape[1], targets_shape[2], channels,
        hidden_size
    ])
    return tf.layers.dense(outputs, targets_vocab_size)
Esempio n. 54
0
def apply_depth_to_space(input_node, train, parameters, options):
    """Construct a TensorFlow depth_to_space node."""
    return tf.depth_to_space(input_node, options["block_size"])
Esempio n. 55
0
 def call(self, x, mask=None):
     y = tf.depth_to_space(x, self.scale_factor, self.data_format)
     return y
Esempio n. 56
0
def position_sensitive_crop_regions(image,
                                    boxes,
                                    box_ind,
                                    crop_size,
                                    num_spatial_bins,
                                    global_pool,
                                    extrapolation_value=None):
    """Position-sensitive crop and pool rectangular regions from a feature grid.

    The output crops are split into `spatial_bins_y` vertical bins
    and `spatial_bins_x` horizontal bins. For each intersection of a vertical
    and a horizontal bin the output values are gathered by performing
    `tf.image.crop_and_resize` (bilinear resampling) on a a separate subset of
    channels of the image. This reduces `depth` by a factor of
    `(spatial_bins_y * spatial_bins_x)`.

    When global_pool is True, this function implements a differentiable version
    of position-sensitive RoI pooling used in
    [R-FCN detection system](https://arxiv.org/abs/1605.06409).

    When global_pool is False, this function implements a differentiable version
    of position-sensitive assembling operation used in
    [instance FCN](https://arxiv.org/abs/1603.08678).

    Args:
      image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
        `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
        A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
        Both `image_height` and `image_width` need to be positive.
      boxes: A `Tensor` of type `float32`.
        A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor
        specifies the coordinates of a box in the `box_ind[i]` image and is
        specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized
        coordinate value of `y` is mapped to the image coordinate at
        `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image
        height is mapped to `[0, image_height - 1] in image height coordinates.
        We do allow y1 > y2, in which case the sampled crop is an up-down flipped
        version of the original image. The width dimension is treated similarly.
        Normalized coordinates outside the `[0, 1]` range are allowed, in which
        case we use `extrapolation_value` to extrapolate the input image values.
      box_ind:  A `Tensor` of type `int32`.
        A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.
        The value of `box_ind[i]` specifies the image that the `i`-th box refers
        to.
      crop_size: A list of two integers `[crop_height, crop_width]`. All
        cropped image patches are resized to this size. The aspect ratio of the
        image content is not preserved. Both `crop_height` and `crop_width` need
        to be positive.
      num_spatial_bins: A list of two integers `[spatial_bins_y, spatial_bins_x]`.
        Represents the number of position-sensitive bins in y and x directions.
        Both values should be >= 1. `crop_height` should be divisible by
        `spatial_bins_y`, and similarly for width.
        The number of image channels should be divisible by
        (spatial_bins_y * spatial_bins_x).
        Suggested value from R-FCN paper: [3, 3].
      global_pool: A boolean variable.
        If True, we perform average global pooling on the features assembled from
          the position-sensitive score maps.
        If False, we keep the position-pooled features without global pooling
          over the spatial coordinates.
        Note that using global_pool=True is equivalent to but more efficient than
          running the function with global_pool=False and then performing global
          average pooling.
      extrapolation_value: An optional `float`. Defaults to `0`.
        Value used for extrapolation, when applicable.
    Returns:
      position_sensitive_features: A 4-D tensor of shape
        `[num_boxes, K, K, crop_channels]`,
        where `crop_channels = depth / (spatial_bins_y * spatial_bins_x)`,
        where K = 1 when global_pool is True (Average-pooled cropped regions),
        and K = crop_size when global_pool is False.
    Raises:
      ValueError: Raised in four situations:
        `num_spatial_bins` is not >= 1;
        `num_spatial_bins` does not divide `crop_size`;
        `(spatial_bins_y*spatial_bins_x)` does not divide `depth`;
        `bin_crop_size` is not square when global_pool=False due to the
          constraint in function space_to_depth.
    """
    total_bins = 1
    bin_crop_size = []

    for (num_bins, crop_dim) in zip(num_spatial_bins, crop_size):
        if num_bins < 1:
            raise ValueError('num_spatial_bins should be >= 1')

        if crop_dim % num_bins != 0:
            raise ValueError('crop_size should be divisible by num_spatial_bins')

        total_bins *= num_bins
        bin_crop_size.append(crop_dim // num_bins)

    if not global_pool and bin_crop_size[0] != bin_crop_size[1]:
        raise ValueError('Only support square bin crop size for now.')

    ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1)
    spatial_bins_y, spatial_bins_x = num_spatial_bins

    # Split each box into spatial_bins_y * spatial_bins_x bins.
    position_sensitive_boxes = []
    for bin_y in range(spatial_bins_y):
        step_y = (ymax - ymin) / spatial_bins_y
        for bin_x in range(spatial_bins_x):
            step_x = (xmax - xmin) / spatial_bins_x
            box_coordinates = [ymin + bin_y * step_y,
                               xmin + bin_x * step_x,
                               ymin + (bin_y + 1) * step_y,
                               xmin + (bin_x + 1) * step_x,
                               ]
            position_sensitive_boxes.append(tf.stack(box_coordinates, axis=1))

    image_splits = tf.split(value=image, num_or_size_splits=total_bins, axis=3)

    image_crops = []
    for (split, box) in zip(image_splits, position_sensitive_boxes):
        crop = tf.image.crop_and_resize(split, box, box_ind, bin_crop_size,
                                        extrapolation_value=extrapolation_value)
        image_crops.append(crop)

    if global_pool:
        # Average over all bins.
        position_sensitive_features = tf.add_n(image_crops) / len(image_crops)
        # Then average over spatial positions within the bins.
        position_sensitive_features = tf.reduce_mean(
            position_sensitive_features, [1, 2], keep_dims=True)
    else:
        # Reorder height/width to depth channel.
        block_size = bin_crop_size[0]
        if block_size >= 2:
            image_crops = [tf.space_to_depth(
                crop, block_size=block_size) for crop in image_crops]

        # Pack image_crops so that first dimension is for position-senstive boxes.
        position_sensitive_features = tf.stack(image_crops, axis=0)

        # Unroll the position-sensitive boxes to spatial positions.
        position_sensitive_features = tf.squeeze(
            tf.batch_to_space_nd(position_sensitive_features,
                                 block_shape=[1] + num_spatial_bins,
                                 crops=tf.zeros((3, 2), dtype=tf.int32)),
            squeeze_dims=[0])

        # Reorder back the depth channel.
        if block_size >= 2:
            position_sensitive_features = tf.depth_to_space(
                position_sensitive_features, block_size=block_size)

    return position_sensitive_features
Esempio n. 57
0
 def testBasic(self):
   x_np = [[[[1, 2, 3, 4]]]]
   with self.test_session(use_gpu=False):
     block_size = 2
     x_tf = tf.depth_to_space(x_np, block_size)
     self.assertAllEqual(x_tf.eval(), [[[[1], [2]], [[3], [4]]]])
 def _testOne(self, inputs, block_size, outputs):
   with self.test_session():
     x_tf = tf.depth_to_space(tf.to_float(inputs), block_size)
     self.assertAllEqual(x_tf.eval(), outputs)
 def testUnknownShape(self):
   t = tf.depth_to_space(tf.placeholder(tf.float32), block_size=4)
   self.assertEqual(4, t.get_shape().ndims)