Esempio n. 1
0
    def bhattacharyya(self):
        """Approximate bhattacharyya distance between cover and non-cover distances.
        
        Similar to Mahalanobis distance, but for distributions with different variances.
        Assumes normality, hence approximate.

        Returns:
            tf.Tensor: bhattacharyya distance between distributions of the cover
                and non-cover pairs' distances.
            tf.Tensor: mean cover pair distance
            tf.Tensor: mean non-cover pair distance
        """
        y_A, y_B = self.subnet_A[-1], self.subnet_B[-1]
        squared_dists = tf.reduce_sum(tf.square(y_A - y_B),
                                      reduction_indices=1, )
        
        cover_pairs = tf.where(tf.equal(self.is_cover, tf.ones_like(self.is_cover)))
        non_cover_pairs = tf.where(tf.equal(self.is_cover, tf.zeros_like(self.is_cover)))

        pair_dists = tf.sqrt(tf.gather(squared_dists, tf.reshape(cover_pairs, [-1])))
        non_pair_dists = tf.sqrt(tf.gather(squared_dists, tf.reshape(non_cover_pairs, [-1])))
        
        mu_pairs, sigma2_pairs = tf.nn.moments(pair_dists, axes=[0], name='d_pairs')
        mu_non_pairs, sigma2_non_pairs = tf.nn.moments(non_pair_dists, axes=[0], name='d_non_pairs')

        bhatt = tf.add( 0.25 * tf.log(0.25 * (sigma2_pairs/sigma2_non_pairs + sigma2_non_pairs/sigma2_pairs + 2)),
                  0.25 * (mu_pairs - mu_non_pairs)**2 / (sigma2_pairs + sigma2_non_pairs), name='bhatt')
        return bhatt, mu_pairs, mu_non_pairs
def make_tf_top(x_shape, loss='sigmoid_ce'):
  """
    builds the top layer, i.e. the loss layer. 
  """
  with tf.name_scope('top') as scope:
    x = tf.placeholder(tf.float32, shape=x_shape, name='input')
    y = tf.placeholder(tf.float32, shape=x_shape, name='output')

    if loss=='sigmoid_ce':
      L = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(x, y))
      correct_prediction = tf.equal(tf.round( tf.sigmoid(x) ), tf.round( y ))
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      accuracy_summary = [tf.summary.scalar('accuracy', accuracy)]
    elif loss=='softmax_ce':
      L = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(x, y))
      correct_prediction = tf.equal(tf.argmax( tf.nn.softmax(x), 1 ), tf.argmax( y, 1 ))
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      accuracy_summary = [tf.summary.scalar('accuracy', accuracy)]
    elif loss=='sigmoid_l2':
      L = tf.nn.l2_loss(tf.sigmoid(x) - y)
      accuracy = None
      accuracy_summary = []
    elif loss=='l2':
      L = tf.nn.l2_loss(x - y)
      accuracy = None
      accuracy_summary = []

    loss_summary = tf.summary.scalar('log_loss', tf.log(L))
    dx = tf.gradients(L, x)[0]

    return L, dx, tf.summary.merge([loss_summary] + accuracy_summary), accuracy
  def train(self, sentences):
    token_ids, token_values, token_dense_shape = self._tokenize(sentences)
    tokens_sparse = tf.sparse.SparseTensor(
        indices=token_ids, values=token_values, dense_shape=token_dense_shape)
    tokens = tf.sparse.to_dense(tokens_sparse, default_value="")

    sparse_lookup_ids = tf.sparse.SparseTensor(
        indices=tokens_sparse.indices,
        values=self._words_to_indices(tokens_sparse.values),
        dense_shape=tokens_sparse.dense_shape)
    lookup_ids = tf.sparse.to_dense(sparse_lookup_ids, default_value=0)

    # Targets are the next word for each word of the sentence.
    tokens_ids_seq = lookup_ids[:, 0:-1]
    tokens_ids_target = lookup_ids[:, 1:]

    tokens_prefix = tokens[:, 0:-1]

    # Mask determining which positions we care about for a loss: all positions
    # that have a valid non-terminal token.
    mask = tf.logical_and(
        tf.logical_not(tf.equal(tokens_prefix, "")),
        tf.logical_not(tf.equal(tokens_prefix, "<E>")))

    input_mask = tf.cast(mask, tf.int32)

    with tf.GradientTape() as t:
      sentence_embeddings = tf.nn.embedding_lookup(self._embeddings,
                                                   tokens_ids_seq)

      lstm_initial_state = self._lstm_cell.get_initial_state(
          sentence_embeddings)

      lstm_output = self._rnn_layer(
          inputs=sentence_embeddings, initial_state=lstm_initial_state)

      # Stack LSTM outputs into a batch instead of a 2D array.
      lstm_output = tf.reshape(lstm_output, [-1, self._lstm_cell.output_size])

      logits = self._logit_layer(lstm_output)

      targets = tf.reshape(tokens_ids_target, [-1])
      weights = tf.cast(tf.reshape(input_mask, [-1]), tf.float32)

      losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
          labels=targets, logits=logits)

      # Final loss is the mean loss for all token losses.
      final_loss = tf.math.divide(
          tf.reduce_sum(tf.multiply(losses, weights)),
          tf.reduce_sum(weights),
          name="final_loss")

    watched = t.watched_variables()
    gradients = t.gradient(final_loss, watched)

    for w, g in zip(watched, gradients):
      w.assign_sub(g)

    return final_loss
Esempio n. 4
0
    def make_minibatch(self, valid_anchors):
        with tf.variable_scope('rpn_minibatch'):

            # in labels(shape is [N, ]): 1 is positive, 0 is negative, -1 is ignored
            labels, anchor_matched_gtboxes, object_mask = \
                self.rpn_find_positive_negative_samples(valid_anchors)  # [num_of_valid_anchors, ]

            positive_indices = tf.reshape(tf.where(tf.equal(labels, 1.0)), [-1])  # use labels is same as object_mask

            num_of_positives = tf.minimum(tf.shape(positive_indices)[0],
                                          tf.cast(self.rpn_mini_batch_size * self.rpn_positives_ratio, tf.int32))

            # num of positives <= minibatch_size * 0.5
            positive_indices = tf.random_shuffle(positive_indices)
            positive_indices = tf.slice(positive_indices, begin=[0], size=[num_of_positives])
            # positive_anchors = tf.gather(self.anchors, positive_indices)

            negative_indices = tf.reshape(tf.where(tf.equal(labels, 0.0)), [-1])
            num_of_negatives = tf.minimum(self.rpn_mini_batch_size - num_of_positives,
                                          tf.shape(negative_indices)[0])

            negative_indices = tf.random_shuffle(negative_indices)
            negative_indices = tf.slice(negative_indices, begin=[0], size=[num_of_negatives])
            # negative_anchors = tf.gather(self.anchors, negative_indices)

            minibatch_indices = tf.concat([positive_indices, negative_indices], axis=0)
            minibatch_indices = tf.random_shuffle(minibatch_indices)

            minibatch_anchor_matched_gtboxes = tf.gather(anchor_matched_gtboxes, minibatch_indices)
            object_mask = tf.gather(object_mask, minibatch_indices)
            labels = tf.cast(tf.gather(labels, minibatch_indices), tf.int32)
            labels_one_hot = tf.one_hot(labels, depth=2)
            return minibatch_indices, minibatch_anchor_matched_gtboxes, object_mask, labels_one_hot
    def _decode_and_resize(image_tensor):
      """Decodes jpeg string, resizes it and returns a uint8 tensor."""

      # These constants are set by Inception v3's expectations.
      height = 299
      width = 299
      channels = 3

      image_tensor = tf.where(tf.equal(image_tensor, ''), IMAGE_DEFAULT_STRING, image_tensor)

      # Fork by whether image_tensor value is a file path, or a base64 encoded string.
      slash_positions = tf.equal(tf.string_split([image_tensor], delimiter="").values, '/')
      is_file_path = tf.cast(tf.count_nonzero(slash_positions), tf.bool)

      # The following two functions are required for tf.cond. Note that we can not replace them
      # with lambda. According to TF docs, if using inline lambda, both branches of condition
      # will be executed. The workaround is to use a function call.
      def _read_file():
        return tf.read_file(image_tensor)

      def _decode_base64():
        return tf.decode_base64(image_tensor)

      image = tf.cond(is_file_path, lambda: _read_file(), lambda: _decode_base64())
      image = tf.image.decode_jpeg(image, channels=channels)
      image = tf.expand_dims(image, 0)
      image = tf.image.resize_bilinear(image, [height, width], align_corners=False)
      image = tf.squeeze(image, squeeze_dims=[0])
      image = tf.cast(image, dtype=tf.uint8)
      return image
Esempio n. 6
0
 def call(self, inputs):
   batch_shape = tf.shape(inputs)[:-1]
   length = tf.shape(inputs)[-1]
   ngram_range_counts = []
   for n in range(self.minval, self.maxval):
     # Reshape inputs from [..., length] to [..., 1, length // n, n], dropping
     # remainder elements. Each n-vector is an ngram.
     reshaped_inputs = tf.reshape(
         inputs[..., :(n * (length // n))],
         tf.concat([batch_shape, [1], (length // n)[tf.newaxis], [n]], 0))
     # Count the number of times each ngram appears in the input. We do so by
     # checking whether each n-vector in the input is equal to each n-vector
     # in a Tensor of all possible ngrams. The comparison is batched between
     # the input Tensor of shape [..., 1, length // n, n] and the ngrams Tensor
     # of shape [..., input_dim**n, 1, n].
     ngrams = tf.reshape(
         list(np.ndindex((self.input_dim,) * n)),
         [1] * (len(inputs.shape)-1) + [self.input_dim**n, 1, n])
     is_ngram = tf.equal(
         tf.reduce_sum(tf.cast(tf.equal(reshaped_inputs, ngrams), tf.int32),
                       axis=-1),
         n)
     ngram_counts = tf.reduce_sum(tf.cast(is_ngram, tf.float32), axis=-1)
     ngram_range_counts.append(ngram_counts)
   return tf.concat(ngram_range_counts, axis=-1)
Esempio n. 7
0
    def getRpRnTpTnForTrain0OrVal1(self, y, training0OrValidation1):
        # The returned list has (numberOfClasses)x4 integers: >numberOfRealPositives, numberOfRealNegatives, numberOfTruePredictedPositives, numberOfTruePredictedNegatives< for each class (incl background).
        # Order in the list is the natural order of the classes (ie class-0 RP,RN,TPP,TPN, class-1 RP,RN,TPP,TPN, class-2 RP,RN,TPP,TPN ...)
        # param y: y = T.itensor4('y'). Dimensions [batchSize, r, c, z]
        
        yPredToUse = self.y_pred_train if  training0OrValidation1 == 0 else self.y_pred_val
        
        returnedListWithNumberOfRpRnTpTnForEachClass = []
        
        for class_i in range(0, self._numberOfOutputClasses) :
            #Number of Real Positive, Real Negatives, True Predicted Positives and True Predicted Negatives are reported PER CLASS (first for WHOLE).
            tensorOneAtRealPos = tf.equal(y, class_i)
            tensorOneAtRealNeg = tf.logical_not(tensorOneAtRealPos)

            tensorOneAtPredictedPos = tf.equal(yPredToUse, class_i)
            tensorOneAtPredictedNeg = tf.logical_not(tensorOneAtPredictedPos)
            tensorOneAtTruePos = tf.logical_and(tensorOneAtRealPos,tensorOneAtPredictedPos)
            tensorOneAtTrueNeg = tf.logical_and(tensorOneAtRealNeg,tensorOneAtPredictedNeg)
                    
            returnedListWithNumberOfRpRnTpTnForEachClass.append( tf.reduce_sum( tf.cast(tensorOneAtRealPos, dtype="int32")) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( tf.reduce_sum( tf.cast(tensorOneAtRealNeg, dtype="int32")) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( tf.reduce_sum( tf.cast(tensorOneAtTruePos, dtype="int32")) )
            returnedListWithNumberOfRpRnTpTnForEachClass.append( tf.reduce_sum( tf.cast(tensorOneAtTrueNeg, dtype="int32")) )
            
        return returnedListWithNumberOfRpRnTpTnForEachClass
Esempio n. 8
0
  def focal_loss(onehot_labels, cls_preds,
                 alpha=0.25, gamma=2.0, name=None, scope=None):
    """Compute softmax focal loss between logits and onehot labels
    logits and onehot_labels must have same shape [batchsize, num_classes] and
    the same data type (float16, 32, 64)
    Args:
      onehot_labels: Each row labels[i] must be a valid probability distribution
      cls_preds: Unscaled log probabilities
      alpha: The hyperparameter for adjusting biased samples, default is 0.25
      gamma: The hyperparameter for penalizing the easy labeled samples
      name: A name for the operation (optional)
    Returns:
      A 1-D tensor of length batch_size of same type as logits with softmax focal loss
    """
    with tf.name_scope(scope, 'focal_loss', [cls_preds, onehot_labels]) as sc:
      logits = tf.convert_to_tensor(cls_preds)
      onehot_labels = tf.convert_to_tensor(onehot_labels)

      precise_logits = tf.cast(logits, tf.float32) if (
        logits.dtype == tf.float16) else logits
      onehot_labels = tf.cast(onehot_labels, precise_logits.dtype)
      predictions = tf.nn.sigmoid(logits)
      predictions_pt = tf.where(tf.equal(onehot_labels, 1), predictions, 1. - predictions)
      # add small value to avoid 0
      epsilon = 1e-8
      alpha_t = tf.scalar_mul(alpha, tf.ones_like(onehot_labels, dtype=tf.float32))
      alpha_t = tf.where(tf.equal(onehot_labels, 1.0), alpha_t, 1 - alpha_t)
      losses = tf.reduce_sum(
        -alpha_t * tf.pow(1. - predictions_pt, gamma) * onehot_labels * tf.log(predictions_pt + epsilon),
        name=name, axis=1)
      return losses
Esempio n. 9
0
def fpn_map_rois_to_levels(boxes):
    """
    Assign boxes to level 2~5.

    Args:
        boxes (nx4):

    Returns:
        [tf.Tensor]: 4 tensors for level 2-5. Each tensor is a vector of indices of boxes in its level.
        [tf.Tensor]: 4 tensors, the gathered boxes in each level.

    Be careful that the returned tensor could be empty.
    """
    sqrtarea = tf.sqrt(tf_area(boxes))
    level = tf.to_int32(tf.floor(
        4 + tf.log(sqrtarea * (1. / 224) + 1e-6) * (1.0 / np.log(2))))

    # RoI levels range from 2~5 (not 6)
    level_ids = [
        tf.where(level <= 2),
        tf.where(tf.equal(level, 3)),   # == is not supported
        tf.where(tf.equal(level, 4)),
        tf.where(level >= 5)]
    level_ids = [tf.reshape(x, [-1], name='roi_level{}_id'.format(i + 2))
                 for i, x in enumerate(level_ids)]
    num_in_levels = [tf.size(x, name='num_roi_level{}'.format(i + 2))
                     for i, x in enumerate(level_ids)]
    add_moving_summary(*num_in_levels)

    level_boxes = [tf.gather(boxes, ids) for ids in level_ids]
    return level_ids, level_boxes
Esempio n. 10
0
def get_accuracy_loss(arg,x,y,y_):
    '''
    Note: when the task is regression accuracy = loss but for classification
    loss = cross_entropy,svm_loss, surrogate_loss, etc and accuracy = 1 - {0-1 loss}.
    '''
    with tf.name_scope("loss_and_acc") as scope:
        # loss
        if arg.softmax:
            #cross_entropy = tf.reduce_mean(-tf.rduce_sum(y_ * tf.log(y), reduction_indices=[1]))
            diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
            cross_entropy = tf.reduce_mean(diff)
            loss = cross_entropy
            correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) # list of booleans indicating correct predictions
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        else:
            l2_loss = tf.reduce_sum( tf.reduce_mean(tf.square(y_-y), 0))
            loss = l2_loss
            y = tf.cast(tf.sign(y),tf.float32)
            y_ = tf.cast(tf.sign(y_),tf.float32)
            correct_prediction = tf.equal(y, y_) # list of booleans indicating correct predictions
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        # accuracy
        # if arg.classification:
        #     correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) # list of booleans indicating correct predictions
        #     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        # else:
        #     accuracy = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    ##
    tf.summary.scalar('loss', loss)
    tf.summary.scalar('accuracy', accuracy)
    return loss, accuracy
    def remap_keys(sparse_tensor):
        # Current indices of our SparseTensor that we need to fix
        bad_indices = sparse_tensor.indices # shape = (current_batch_size * (number_of_items/users[i] + 1), 2)
        # Current values of our SparseTensor that we need to fix
        bad_values = sparse_tensor.values # shape = (current_batch_size * (number_of_items/users[i] + 1),)

        # Since batch is ordered, the last value for a batch index is the user
        # Find where the batch index chages to extract the user rows
        # 1 where user, else 0
        user_mask = tf.concat(values = [bad_indices[1:,0] - bad_indices[:-1,0], tf.constant(value = [1], dtype = tf.int64)], axis = 0) # shape = (current_batch_size * (number_of_items/users[i] + 1), 2)

        # Mask out the user rows from the values
        good_values = tf.boolean_mask(tensor = bad_values, mask = tf.equal(x = user_mask, y = 0)) # shape = (current_batch_size * number_of_items/users[i],)
        item_indices = tf.boolean_mask(tensor = bad_indices, mask = tf.equal(x = user_mask, y = 0)) # shape = (current_batch_size * number_of_items/users[i],)
        user_indices = tf.boolean_mask(tensor = bad_indices, mask = tf.equal(x = user_mask, y = 1))[:, 1] # shape = (current_batch_size,)

        good_user_indices = tf.gather(params = user_indices, indices = item_indices[:,0]) # shape = (current_batch_size * number_of_items/users[i],)

        # User and item indices are rank 1, need to make rank 1 to concat
        good_user_indices_expanded = tf.expand_dims(input = good_user_indices, axis = -1) # shape = (current_batch_size * number_of_items/users[i], 1)
        good_item_indices_expanded = tf.expand_dims(input = item_indices[:, 1], axis = -1) # shape = (current_batch_size * number_of_items/users[i], 1)
        good_indices = tf.concat(values = [good_user_indices_expanded, good_item_indices_expanded], axis = 1) # shape = (current_batch_size * number_of_items/users[i], 2)

        remapped_sparse_tensor = tf.SparseTensor(indices = good_indices, values = good_values, dense_shape = sparse_tensor.dense_shape)
        return remapped_sparse_tensor
def _compute_sparse_average_correct(input_, labels, per_example_weights, topk=1):
    """Returns the numerator and denominator of classifier accuracy."""
    labels = tf.to_int64(labels)
    labels.get_shape().assert_is_compatible_with([input_.get_shape()[0], None])
    if topk == 1:
        predictions = tf.reshape(tf.argmax(input_, 1), [-1, 1])
        in_topk = tf.reduce_any(tf.equal(labels, predictions), reduction_indices=[1])
    else:
        # Use broadcasting to check if ANY of the predictions are in the top k.
        # TODO(eiderman): For a multi-label top k, what does accuracy mean?
        predictions = tf.reshape(tf.nn.top_k(input_, topk)[1], [-1, 1, topk])
        labels = tf.expand_dims(labels, [-1])

        in_topk = tf.reduce_any(tf.equal(tf.cast(labels, predictions.dtype), predictions), reduction_indices=[1, 2])
    correct_predictions = tf.to_float(in_topk)

    # If individual examples are weighted, then we want to normalize by that.
    if per_example_weights is not None:
        per_example_weights = _convert_and_assert_per_example_weights_compatible(
            input_, per_example_weights, dtype=None
        )
        float_weights = tf.to_float(per_example_weights)
        # TODO(eiderman): This should use an op that doesn't support broadcasting.
        correct_predictions *= float_weights
        num_examples = tf.reduce_sum(float_weights)
    else:
        # shape only holds ints, but we want to always return the same type
        # for num_examples to make everything compatible.
        num_examples = tf.to_float(tf.gather(tf.shape(input_), 0))
    return tf.reduce_sum(correct_predictions), num_examples
Esempio n. 13
0
def _get_mask_of_label(label, background, ignore_label):
    mask_fg = 1 - tf.to_float(tf.equal(label, background))
    mask_ig = 1 - tf.to_float(tf.equal(label, ignore_label))
    # mask_fg = 1 - label.eq(background)
    # mask_ig = 1 - label.eq(ignore_label)
    mask = mask_fg * mask_ig
    return mask, mask_ig
Esempio n. 14
0
def to_binary_tf(bar_or_track_bar, threshold=0.0, track_mode=False, melody=False):
    """Return the binarize tensor of the input tensor (be careful of the channel order!)"""
    if track_mode:
        # melody track
        if melody:
            melody_is_max = tf.equal(bar_or_track_bar, tf.reduce_max(bar_or_track_bar, axis=2, keep_dims=True))
            melody_pass_threshold = (bar_or_track_bar > threshold)
            out_tensor = tf.logical_and(melody_is_max, melody_pass_threshold)
        # non-melody track
        else:
            out_tensor = (bar_or_track_bar > threshold)
        return out_tensor
    else:
        if len(bar_or_track_bar.get_shape()) == 4:
            melody_track = tf.slice(bar_or_track_bar, [0, 0, 0, 0], [-1, -1, -1, 1])
            other_tracks = tf.slice(bar_or_track_bar, [0, 0, 0, 1], [-1, -1, -1, -1])
        elif len(bar_or_track_bar.get_shape()) == 5:
            melody_track = tf.slice(bar_or_track_bar, [0, 0, 0, 0, 0], [-1, -1, -1, -1, 1])
            other_tracks = tf.slice(bar_or_track_bar, [0, 0, 0, 0, 1], [-1, -1, -1, -1, -1])
        # melody track
        melody_is_max = tf.equal(melody_track, tf.reduce_max(melody_track, axis=2, keep_dims=True))
        melody_pass_threshold = (melody_track > threshold)
        out_tensor_melody = tf.logical_and(melody_is_max, melody_pass_threshold)
        # other tracks
        out_tensor_others = (other_tracks > threshold)
        if len(bar_or_track_bar.get_shape()) == 4:
            return tf.concat([out_tensor_melody, out_tensor_others], 3)
        elif len(bar_or_track_bar.get_shape()) == 5:
            return tf.concat([out_tensor_melody, out_tensor_others], 4)
Esempio n. 15
0
        def m_body(i, ta_tp, ta_fp, gmatch):
            # Jaccard score with groundtruth bboxes.
            rbbox = bboxes[i]
            jaccard = bboxes_jaccard(rbbox, gbboxes)
            jaccard = jaccard * tf.cast(tf.equal(glabels, rlabel), dtype=jaccard.dtype)

            # Best fit, checking it's above threshold.
            idxmax = tf.cast(tf.argmax(jaccard, axis=0), tf.int32)
            jcdmax = jaccard[idxmax]
            match = jcdmax > matching_threshold
            existing_match = gmatch[idxmax]
            not_difficult = tf.logical_not(gdifficults[idxmax])

            # TP: match & no previous match and FP: previous match | no match.
            # If difficult: no record, i.e FP=False and TP=False.
            tp = tf.logical_and(not_difficult,
                                tf.logical_and(match, tf.logical_not(existing_match)))
            ta_tp = ta_tp.write(i, tp)
            fp = tf.logical_and(not_difficult,
                                tf.logical_or(existing_match, tf.logical_not(match)))
            ta_fp = ta_fp.write(i, fp)
            # Update grountruth match.
            mask = tf.logical_and(tf.equal(grange, idxmax),
                                  tf.logical_and(not_difficult, match))
            gmatch = tf.logical_or(gmatch, mask)

            return [i+1, ta_tp, ta_fp, gmatch]
Esempio n. 16
0
def activation_image(activations, label_onehot):
  """Make a row sorted by class for each activation. Put a black line around the activations."""
  labels = tf.argmax(label_onehot, axis=1)
  _, n_classes = label_onehot.shape.as_list()
  mean, var = tf.nn.moments(activations, [0, 1])
  activations = (activations - mean)/tf.sqrt(var+1e-5)

  activations = tf.clip_by_value(activations, -1, 1)
  activations = (activations + 1.0) / 2.0 # shift to [0, 1]

  canvas = []
  for i in xrange(n_classes):
    inds = tf.where(tf.equal(labels, i))

    def _gather():
      return tf.squeeze(tf.gather(activations, inds), 1)

    def _empty():
      return tf.zeros([0, activations.shape.as_list()[1]], dtype=tf.float32)

    assert inds.shape.as_list()[0] is None
    x = tf.cond(tf.equal(tf.shape(inds)[0], 0), _empty, _gather)
    canvas.append(x)
    canvas.append(tf.zeros([1, activations.shape.as_list()[1]]))
  canvas = tf.concat(canvas, 0)
  canvas = tf.reshape(canvas, [1, activations.shape.as_list()[0]+n_classes, canvas.shape.as_list()[1], 1])
  return canvas
def weights_concatenated(labels):
  """Assign weight 1.0 to the "target" part of the concatenated labels.

  The labels look like:
    source English I love you . ID1 target French Je t'aime . ID1 source
      English the cat ID1 target French le chat ID1 source English ...

  We want to assign weight 1.0 to all words in the target text (including the
  ID1 end symbol), but not to the source text or the boilerplate.  In the
  above example, the target words that get positive weight are:
    Je t'aime . ID1 le chat ID1

  Args:
    labels: a Tensor
  Returns:
    a Tensor
  """
  eos_mask = tf.to_int32(tf.equal(labels, 1))
  sentence_num = tf.cumsum(eos_mask, axis=1, exclusive=True)
  in_target = tf.equal(tf.mod(sentence_num, 2), 1)
  # first two tokens of each sentence are boilerplate.
  sentence_num_plus_one = sentence_num + 1
  shifted = tf.pad(sentence_num_plus_one, [[0, 0], [2, 0], [0, 0],
                                           [0, 0]])[:, :-2, :, :]
  nonboilerplate = tf.equal(sentence_num_plus_one, shifted)
  ret = tf.to_float(tf.logical_and(nonboilerplate, in_target))
  return ret
Esempio n. 18
0
def sorted_images(images, label_onehot):
  # images is [bs, x, y, c]
  labels = tf.argmax(label_onehot, axis=1)
  _, n_classes = label_onehot.shape.as_list()
  to_stack = []
  for i in xrange(n_classes):
    inds = tf.where(tf.equal(labels, i))

    def _gather():
      return tf.squeeze(tf.gather(images, inds), 1)

    def _empty():
      return tf.zeros([0] + images.shape.as_list()[1:], dtype=tf.float32)

    assert inds.shape.as_list()[0] is None
    x = tf.cond(tf.equal(tf.shape(inds)[0], 0), _empty, _gather)
    to_stack.append(x)
  # pad / trim all up to 10.
  padded = []
  for t in to_stack:
    n_found = tf.shape(t)[0]
    pad = tf.pad(t[0:10], tf.stack([tf.stack([0,tf.maximum(0, 10-n_found)]), [0,0], [0,0], [0,0]]))
    padded.append(pad)

  xs = [tf.concat(tf.split(p, 10), axis=1) for p in padded]
  ys = tf.concat(xs, axis=2)
  ys = tf.cast(tf.clip_by_value(ys, 0., 1.) * 255., tf.uint8)
  return ys
def evaluate_precision_recall(
    input_layer, labels, threshold=0.5, per_example_weights=None, name=PROVIDED, phase=Phase.train
):
    """Computes the precision and recall of the prediction vs the labels.

  Args:
    input_layer: A Pretty Tensor object.
    labels: The target labels to learn as a float tensor.
    threshold: The threshold to use to decide if the prediction is true.
    per_example_weights: A Tensor with a weight per example.
    name: An optional name.
    phase: The phase of this model; non training phases compute a total across
      all examples.
  Returns:
    Precision and Recall.
  """
    _ = name  # Eliminate warning, name used for namescoping by PT.
    selected, sum_retrieved, sum_relevant = _compute_precision_recall(
        input_layer, labels, threshold, per_example_weights
    )

    if phase != Phase.train:
        dtype = tf.float32
        # Create the variables in all cases so that the load logic is easier.
        relevant_count = tf.get_variable(
            "relevant_count",
            [],
            dtype,
            tf.zeros_initializer,
            collections=[bookkeeper.GraphKeys.TEST_VARIABLES],
            trainable=False,
        )
        retrieved_count = tf.get_variable(
            "retrieved_count",
            [],
            dtype,
            tf.zeros_initializer,
            collections=[bookkeeper.GraphKeys.TEST_VARIABLES],
            trainable=False,
        )
        selected_count = tf.get_variable(
            "selected_count",
            [],
            dtype,
            tf.zeros_initializer,
            collections=[bookkeeper.GraphKeys.TEST_VARIABLES],
            trainable=False,
        )

        with input_layer.g.device(selected_count.device):
            selected = tf.assign_add(selected_count, selected)
        with input_layer.g.device(retrieved_count.device):
            sum_retrieved = tf.assign_add(retrieved_count, sum_retrieved)
        with input_layer.g.device(relevant_count.device):
            sum_relevant = tf.assign_add(relevant_count, sum_relevant)

    return (
        tf.select(tf.equal(sum_retrieved, 0), tf.zeros_like(selected), selected / sum_retrieved),
        tf.select(tf.equal(sum_relevant, 0), tf.zeros_like(selected), selected / sum_relevant),
    )
    def streaming_f1(self, labels, predictions, n_classes, weights=None, type='macro'):
        labels_and_predictions_by_class = [(tf.equal(labels, c), tf.equal(predictions, c)) for c in range(0, n_classes)]
        tp_by_class_val, tp_by_class_update_op = zip(*[tf.metrics.true_positives(label, prediction, weights=weights)
                                                       for label, prediction in labels_and_predictions_by_class])
        fn_by_class_val, fn_by_class_update_op = zip(*[tf.metrics.false_negatives(label, prediction, weights=weights)
                                                       for label, prediction in labels_and_predictions_by_class])
        fp_by_class_val, fp_by_class_update_op = zip(*[tf.metrics.false_positives(label, prediction, weights=weights)
                                                       for label, prediction in labels_and_predictions_by_class])

        f1_update_op = tf.group(*chain(tp_by_class_update_op, fn_by_class_update_op, fp_by_class_update_op))

        if type == 'macro':
            epsilon = [10e-6 for _ in range(n_classes)]
            f1_val = tf.multiply(2., tp_by_class_val) / (tf.reduce_sum([tf.multiply(2., tp_by_class_val),
                                                                        fp_by_class_val, fn_by_class_val, epsilon],
                                                                       axis=0))
            f1_val = tf.reduce_mean(f1_val)
        else:
            epsilon = 10e-6
            total_tp = tf.reduce_sum(tp_by_class_val)
            total_fn = tf.reduce_sum(fn_by_class_val)
            total_fp = tf.reduce_sum(fp_by_class_val)

            f1_val = tf.squeeze(tf.multiply(2., total_tp) / (tf.multiply(2., total_tp) +
                                                             total_fp + total_fn + epsilon,
                                                             ))
        return f1_val, f1_update_op
Esempio n. 21
0
      def check_integrity_and_batch(*datasets):
        """Checks whether a sequence of frames are from the same video.

        Args:
          *datasets: datasets each skipping 1 frame from the previous one.

        Returns:
          batched data and the integrity flag.
        """
        not_broken = tf.constant(True)
        if "frame_number" in datasets[0]:
          frame_numbers = [dataset["frame_number"][0] for dataset in datasets]

          not_broken = tf.equal(
              frame_numbers[-1] - frame_numbers[0], num_frames-1)
          if self.only_keep_videos_from_0th_frame:
            not_broken = tf.logical_and(not_broken,
                                        tf.equal(frame_numbers[0], 0))
        else:
          tf.logging.warning("use_not_breaking_batching is True but "
                             "no frame_number is in the dataset.")

        features = {}
        for key in datasets[0].keys():
          values = [dataset[key] for dataset in datasets]
          batch = tf.stack(values)
          features[key] = batch
        return features, not_broken
Esempio n. 22
0
def training_control(global_step, print_span, evaluation_span, max_step, name=None):
    with tf.name_scope(name, "training_control"):
        return {
            "step": global_step,
            "time_to_print": tf.equal(tf.mod(global_step, print_span), 0),
            "time_to_evaluate": tf.equal(tf.mod(global_step, evaluation_span), 0),
            "time_to_stop": tf.greater_equal(global_step, max_step),
        }
Esempio n. 23
0
    def body(i, prev_base_states, prev_high_states, prev_ys, prev_embs, cost, ys_array, p_array):
        # get predictions from all models and sum the log probs
        sum_log_probs = None
        base_states = [None] * len(models)
        high_states = [None] * len(models)
        for j in range(len(models)):
            d = models[j].decoder
            states1 = d.grustep1.forward(prev_base_states[j], prev_embs[j])
            att_ctx = d.attstep.forward(states1)
            base_states[j] = d.grustep2.forward(states1, att_ctx)
            if d.high_gru_stack == None:
                stack_output = base_states[j]
                high_states[j] = []
            else:
                if d.high_gru_stack.context_state_size == 0:
                    stack_output, high_states[j] = d.high_gru_stack.forward_single(
                        prev_high_states[j], base_states[j])
                else:
                    stack_output, high_states[j] = d.high_gru_stack.forward_single(
                        prev_high_states[j], base_states[j], context=att_ctx)
            logits = d.predictor.get_logits(prev_embs[j], stack_output,
                                            att_ctx, multi_step=False)
            log_probs = tf.nn.log_softmax(logits) # shape (batch, vocab_size)
            if sum_log_probs == None:
                sum_log_probs = log_probs
            else:
                sum_log_probs += log_probs

        # set cost of EOS to zero for completed sentences so that they are in top k
        # Need to make sure only EOS is selected because a completed sentence might
        # kill ongoing sentences
        sum_log_probs = tf.where(tf.equal(prev_ys, 0), eos_log_probs, sum_log_probs)

        all_costs = sum_log_probs + tf.expand_dims(cost, axis=1) # TODO: you might be getting NaNs here since -inf is in log_probs

        all_costs = tf.reshape(all_costs,
                               shape=[-1, target_vocab_size * beam_size])
        values, indices = tf.nn.top_k(all_costs, k=beam_size) #the sorted option is by default True, is this needed?
        new_cost = tf.reshape(values, shape=[batch_size])
        offsets = tf.range(
                    start = 0,
                    delta = beam_size,
                    limit = batch_size,
                    dtype=tf.int32)
        offsets = tf.expand_dims(offsets, axis=1)
        survivor_idxs = (indices // target_vocab_size) + offsets
        new_ys = indices % target_vocab_size
        survivor_idxs = tf.reshape(survivor_idxs, shape=[batch_size])
        new_ys = tf.reshape(new_ys, shape=[batch_size])
        new_embs = [m.decoder.y_emb_layer.forward(new_ys, factor=0) for m in models]
        new_base_states = [tf.gather(s, indices=survivor_idxs) for s in base_states]
        new_high_states = [[tf.gather(s, indices=survivor_idxs) for s in states] for states in high_states]
        new_cost = tf.where(tf.equal(new_ys, 0), tf.abs(new_cost), new_cost)

        ys_array = ys_array.write(i, value=new_ys)
        p_array = p_array.write(i, value=survivor_idxs)

        return i+1, new_base_states, new_high_states, new_ys, new_embs, new_cost, ys_array, p_array
Esempio n. 24
0
def expected_classification_loss_under_sampling(batch_cls_targets, cls_losses,
                                                desired_negative_sampling_ratio,
                                                minimum_negative_sampling):
  """Computes classification loss by background/foreground weighting.

  The weighting is such that the effective background/foreground weight ratio
  is the desired_negative_sampling_ratio. if p_i is the foreground probability
  of anchor a_i, L(a_i) is the anchors loss, N is the number of anchors, and M
  is the sum of foreground probabilities across anchors, then the total loss L
  is calculated as:

  beta = K*M/(N-M)
  L = sum_{i=1}^N [p_i + beta * (1 - p_i)] * (L(a_i))

  Args:
    batch_cls_targets: A tensor with shape [batch_size, num_anchors,
        num_classes + 1], where 0'th index is the background class, containing
        the class distrubution for the target assigned to a given anchor.
    cls_losses: Float tensor of shape [batch_size, num_anchors]
        representing anchorwise classification losses.
    desired_negative_sampling_ratio: The desired background/foreground weight
      ratio.
    minimum_negative_sampling: Minimum number of effective negative samples.
      Used only when there are no positive examples.

  Returns:
    The classification loss.
  """
  num_anchors = tf.cast(tf.shape(batch_cls_targets)[1], tf.float32)

  # find the p_i
  foreground_probabilities = (
      foreground_probabilities_from_targets(batch_cls_targets))
  foreground_sum = tf.reduce_sum(foreground_probabilities, axis=-1)

  k = desired_negative_sampling_ratio

  # compute beta
  denominators = (num_anchors - foreground_sum)
  beta = tf.where(
      tf.equal(denominators, 0), tf.zeros_like(foreground_sum),
      k * foreground_sum / denominators)

  # where the foreground sum is zero, use a minimum negative weight.
  min_negative_weight = 1.0 * minimum_negative_sampling / num_anchors
  beta = tf.where(
      tf.equal(foreground_sum, 0), min_negative_weight * tf.ones_like(beta),
      beta)
  beta = tf.reshape(beta, [-1, 1])

  cls_loss_weights = foreground_probabilities + (
      1 - foreground_probabilities) * beta

  weighted_losses = cls_loss_weights * cls_losses

  cls_losses = tf.reduce_sum(weighted_losses, axis=-1)

  return cls_losses
  def _extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: if image height or width are not 256 pixels.
    """
    image_shape = preprocessed_inputs.get_shape()
    image_shape.assert_has_rank(4)
    image_height = image_shape[1].value
    image_width = image_shape[2].value

    if image_height is None or image_width is None:
      shape_assert = tf.Assert(
          tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256),
                         tf.equal(tf.shape(preprocessed_inputs)[2], 256)),
          ['image size must be 256 in both height and width.'])
      with tf.control_dependencies([shape_assert]):
        preprocessed_inputs = tf.identity(preprocessed_inputs)
    elif image_height != 256 or image_width != 256:
      raise ValueError('image size must be = 256 in both height and width;'
                       ' image dim = %d,%d' % (image_height, image_width))

    feature_map_layout = {
        'from_layer': [
            'Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''
        ],
        'layer_depth': [-1, -1, 512, 256, 256],
        'conv_kernel_size': [-1, -1, 3, 3, 2],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams):
      with slim.arg_scope([slim.batch_norm], fused=False):
        with tf.variable_scope('MobilenetV1',
                               reuse=self._reuse_weights) as scope:
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              scope=scope)
          feature_maps = feature_map_generators.multi_resolution_feature_maps(
              feature_map_layout=feature_map_layout,
              depth_multiplier=self._depth_multiplier,
              min_depth=self._min_depth,
              insert_1x1_conv=True,
              image_features=image_features)

    return feature_maps.values()
def train_test_and_save_model():
    X_train, y_train, X_test, y_test = load_and_preprocess_imdb_data(N_GRAM)
    model = FastTextModel(
        vocab_size=VOCAB_SIZE + N_BUCKETS,
        embedding_size=EMBEDDING_SIZE,
        n_labels=2,
    )
    optimizer = tf.optimizers.Adam(learning_rate=LEARNING_RATE)

    if os.path.exists(MODEL_FILE_PATH):
        # loading pre-trained model if applicable
        model.load_weights(MODEL_FILE_PATH)
    else:
        # training
        model.train()

        for epoch in range(N_EPOCH):
            start_time = time.time()
            print('Epoch %d/%d' % (epoch + 1, N_EPOCH))
            train_accuracy = list()
            for X_batch, y_batch in tl.iterate.minibatches(X_train, y_train, batch_size=BATCH_SIZE, shuffle=True):

                # forward and define the loss function
                # TODO: use tf.function to speed up
                with tf.GradientTape() as tape:
                    y_pred = model(tl.prepro.pad_sequences(X_batch))
                    cost = tl.cost.cross_entropy(y_pred, y_batch, name='cost')

                # backward, calculate gradients and update the weights
                grad = tape.gradient(cost, model.weights)
                optimizer.apply_gradients(zip(grad, model.weights))

                # calculate the accuracy
                predictions = tf.argmax(y_pred, axis=1, output_type=tf.int32)
                are_predictions_correct = tf.equal(predictions, y_batch)
                accuracy = tf.reduce_mean(tf.cast(are_predictions_correct, tf.float32))

                train_accuracy.append(accuracy)
                if len(train_accuracy) % N_STEPS_TO_PRINT == 0:
                    print("\t[%d/%d][%d]accuracy " % (epoch + 1, N_EPOCH, len(train_accuracy)),
                          np.mean(train_accuracy[-N_STEPS_TO_PRINT:]))

            print("\tSummary: time %.5fs, overall accuracy" % (time.time() - start_time),
                  np.mean(train_accuracy))

    # evaluation and testing
    model.eval()

    # forward and calculate the accuracy
    y_pred = model(tl.prepro.pad_sequences(X_test))
    predictions = tf.argmax(y_pred, axis=1, output_type=tf.int32)
    are_predictions_correct = tf.equal(predictions, y_test)
    test_accuracy = tf.reduce_mean(tf.cast(are_predictions_correct, tf.float32))

    print('Test accuracy: %.5f' % test_accuracy)

    # saving the model
    model.save_weights(MODEL_FILE_PATH)
Esempio n. 27
0
  def _build_once(self, dataset, feature_transformer):
    with tf.device(self._local_device):
      tr_batch = dataset()
      te_batch = dataset()
      num_classes = tr_batch.label_onehot.shape.as_list()[1]
      all_batch = utils.structure_map_multi(lambda x: tf.concat(x, 0),
                                            [tr_batch, te_batch])
      features = feature_transformer(all_batch)
      trX, teX = utils.structure_map_split(lambda x: tf.split(x, 2, axis=0),
                                           features)
      trY = tf.to_int64(tr_batch.label)
      trY_onehot = tf.to_int32(tr_batch.label_onehot)
      teY = tf.to_int64(te_batch.label)
      teY_shape = teY.shape.as_list()

      def blackbox((trX, trY, teX, teY)):
        trY = tf.to_int32(tf.rint(trY))
        teY = tf.to_int32(tf.rint(teY))
        tf_fn = build_fit(
            self._local_device,
            self._get_model,
            num_classes=num_classes,
            probs=self.probs)
        if self.probs:
          trP, teP, teP_probs = tf_fn(trX, trY, teX)
        else:
          trP, teP = tf_fn(trX, trY, teX)

        teY.set_shape(teY_shape)
        if self.probs:
          onehot = tf.one_hot(teY, num_classes)
          crossent = -tf.reduce_sum(onehot * teP_probs, [1])
          return tf.reduce_mean(crossent)
        else:
          # use error rate as the loss if no surrogate is avalible.
          return 1 - tf.reduce_mean(
              tf.to_float(tf.equal(teY, tf.to_int32(teP))))

      test_loss = blackbox((trX, tf.to_float(trY), teX, tf.to_float(teY)))

      stats = {}

      tf_fn = build_fit(
          self._local_device,
          self._get_model,
          num_classes=num_classes,
          probs=self.probs)
      if self.probs:
        trP, teP, teP_probs = tf_fn(trX, trY, teX)
      else:
        trP, teP = tf_fn(trX, trY, teX)
      stats["%s/accuracy_train" % self.name] = tf.reduce_mean(
          tf.to_float(tf.equal(tf.to_int32(trY), tf.to_int32(trP))))
      stats["%s/accuracy_test" % self.name] = tf.reduce_mean(
          tf.to_float(tf.equal(tf.to_int32(teY), tf.to_int32(teP))))
      stats["%s/test_loss" % self.name] = test_loss
      return test_loss, stats
Esempio n. 28
0
 def _count_condition(name, labels_value, predicted_value):
   """Creates a counter for given values of predictions and labels."""
   count = _metric_variable(name, [], tf.float32)
   is_equal = tf.to_float(
       tf.logical_and(
           tf.equal(labels, labels_value),
           tf.equal(predicted_labels, predicted_value)))
   update_op = tf.assign_add(count, tf.reduce_sum(weights * is_equal))
   return count.read_value(), update_op
Esempio n. 29
0
def accuracy(log, w1, w2, w3):
  with tf.name_scope('accuracy') as scope:
    c1 = tf.equal(tf.argmax(log, 1), tf.argmax(w1, 1))
    c2 = tf.equal(tf.argmax(log, 1), tf.argmax(w2, 1))
    c3 = tf.equal(tf.argmax(log, 1), tf.argmax(w3, 1))
    correct_prediction = tf.logical_or(tf.logical_or(c1,c2),c3)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    tf.scalar_summary("accuracy", accuracy)
  return accuracy
Esempio n. 30
0
 def get_pos_and_neg_masks(labels):
     if config.train_with_ignored:
         pos_mask = labels >= 0
         neg_mask = tf.logical_not(pos_mask)
     else:
         pos_mask = tf.equal(labels, 1)
         neg_mask = tf.equal(labels, -1)
     
     return pos_mask, neg_mask
def equal(x, y):
    return tf.equal(x, y)
Esempio n. 32
0
def main():

    # [b, 32, 32, 3] => [b, 1, 1, 512]
    conv_net = Sequential(conv_layers)

    fc_net = Sequential([
        layers.Dense(256, activation=tf.nn.relu),
        layers.Dense(128, activation=tf.nn.relu),
        layers.Dense(100, activation=None),
    ])

    conv_net.build(input_shape=[None, 32, 32, 3])
    fc_net.build(input_shape=[None, 512])
    optimizer = optimizers.Adam(lr=1e-4)

    # [1, 2] + [3, 4] => [1, 2, 3, 4]
    variables = conv_net.trainable_variables + fc_net.trainable_variables

    for epoch in range(50):

        for step, (x, y) in enumerate(train_db):

            with tf.GradientTape() as tape:
                # [b, 32, 32, 3] => [b, 1, 1, 512]
                out = conv_net(x)
                # flatten, => [b, 512]
                out = tf.reshape(out, [-1, 512])
                # [b, 512] => [b, 100]
                logits = fc_net(out)
                # [b] => [b, 100]
                y_onehot = tf.one_hot(y, depth=100)
                # compute loss
                loss = tf.losses.categorical_crossentropy(y_onehot,
                                                          logits,
                                                          from_logits=True)
                loss = tf.reduce_mean(loss)

            grads = tape.gradient(loss, variables)
            optimizer.apply_gradients(zip(grads, variables))

            if step % 100 == 0:
                print(epoch, step, 'loss:', float(loss))

        total_num = 0
        total_correct = 0
        for x, y in test_db:

            out = conv_net(x)
            out = tf.reshape(out, [-1, 512])
            logits = fc_net(out)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)

            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)

            total_num += x.shape[0]
            total_correct += int(correct)

        acc = total_correct / total_num
        print(epoch, 'acc:', acc)
with tf.name_scope('Loss'):
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
    l2 = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
    loss = cost + l2
    tf.summary.scalar('loss', loss)

with tf.name_scope('Train_step'):
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_step = tf.train.MomentumOptimizer(learning_rate, momentum=momentum, use_nesterov=True).minimize(loss,
                                                                                                              global_step)

with tf.name_scope('Accuracy'):
    y_conv_softmax = tf.nn.softmax(y_conv)
    distribution = [tf.arg_max(y_, 1), tf.arg_max(y_conv_softmax, 1)]
    correct_prediction = tf.equal(distribution[0], distribution[1])
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

with tf.variable_scope('Saver'):
    var_list = tf.trainable_variables()
    g_list = tf.global_variables()
    bn_moving_vars = [g for g in g_list if 'moving_mean' in g.name]
    bn_moving_vars += [g for g in g_list if 'moving_variance' in g.name]
    var_list += bn_moving_vars
    saver = tf.train.Saver(var_list=var_list, max_to_keep=epoch)

with tf.variable_scope('Summary_writer'):
    merged = tf.summary.merge_all()
    writer_training = tf.summary.FileWriter(checkpoint_dir, sess.graph)

if Load_Data:
Esempio n. 34
0
#gradient descent 
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
with tf.control_dependencies([train_step]):
		train_op = tf.no_op(name = 'train')
		'''
learning_rate = tf.train.exponential_decay(LEARING_RATE_BASE, global_step, 100,
                                           LEARNING_RATE_DECAY)
gradients = tf.gradients(loss, var_list)
gradients = list(zip(gradients, var_list))

# Create optimizer and apply gradient descent to the trainable variables
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.apply_gradients(grads_and_vars=gradients,
                                     global_step=global_step)

correct_prediction = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

saver = tf.train.Saver()

with tf.Session() as sess:
    tf.initialize_all_variables().run()
    #load the trained model
    if os.path.isfile(MODEL_SAVE_PATH + 'checkpoint'):
        ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            global_step = int(
                ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
            print("Continue training!")
    else:
def train():
    avg_accuracy = 0
    mnist = input_data.read_data_sets(FLAGS.data_dir,
                                      fake_data=FLAGS.fake_data)

    sess = tf.InteractiveSession()

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        x_quantized = fake_quantize_tensor(x,
                                           input_quantization,
                                           0,
                                           1,
                                           name="quantized_input")
        y_ = tf.placeholder(tf.int64, [None], name='y-input')

    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.Variable(
            [-1, 28, 28, 1], collections=[tf.GraphKeys.GLOBAL_VARIABLES])
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10)

    # Functions to create fc and conv layers depending on quantization settings
    def create_fc_layer(input_tensor,
                        input_dim,
                        output_dim,
                        bits_w,
                        max_w,
                        bits_b,
                        max_b,
                        bits_a,
                        max_a,
                        noise_stddev,
                        layer_name,
                        act=tf.nn.relu):
        if (quantization_enabled == False):
            return fc_layer(input_tensor, input_dim, output_dim, layer_name,
                            act)
        elif (noise_enabled_fc == False):
            return fc_layer_quantized(input_tensor, input_dim, output_dim,
                                      bits_w, max_w, bits_b, max_b, bits_a,
                                      max_a, layer_name, act)
        else:
            return fc_layer_quantized_add_noise(input_tensor, input_dim,
                                                output_dim, bits_w, max_w,
                                                bits_b, max_b, bits_a, max_a,
                                                noise_stddev, layer_name, act)

    def create_conv_layer(input_data, num_input_channels, num_filters,
                          filter_shape, pool_shape, bits_w, max_w, bits_b,
                          max_b, bits_a, max_a, noise_stddev, layer_name):
        if (quantization_enabled == False):
            return conv_layer(input_data, num_input_channels, num_filters,
                              filter_shape, pool_shape, layer_name)
        elif (noise_enabled_conv == False):
            return conv_layer_quantized(input_data, num_input_channels,
                                        num_filters, filter_shape, pool_shape,
                                        bits_w, max_w, bits_b, max_b, bits_a,
                                        max_a, layer_name)
        else:
            return conv_layer_quantized_add_noise(input_data,
                                                  num_input_channels,
                                                  num_filters, filter_shape,
                                                  pool_shape, bits_w, max_w,
                                                  bits_b, max_b, bits_a, max_a,
                                                  noise_stddev, layer_name)

    if (conv_enabled):
        if (quantization_enabled):
            image_shaped_input_quantized = fake_quantize_tensor(
                image_shaped_input,
                input_quantization,
                0,
                1,
                name="quantized_input")
        else:
            image_shaped_input_quantized = image_shaped_input
        layer1 = create_conv_layer(image_shaped_input_quantized,
                                   1,
                                   32, [5, 5], [2, 2],
                                   conv1_w_bits,
                                   conv1_w_max,
                                   conv1_b_bits,
                                   conv1_b_max,
                                   conv1_a_bits,
                                   conv1_a_max,
                                   noise_stddev,
                                   layer_name='conv1')
        layer2 = create_conv_layer(layer1,
                                   32,
                                   64, [5, 5], [2, 2],
                                   conv2_w_bits,
                                   conv2_w_max,
                                   conv2_b_bits,
                                   conv2_b_max,
                                   conv2_a_bits,
                                   conv2_a_max,
                                   noise_stddev,
                                   layer_name='conv2')

        with tf.name_scope('flatten'):
            x_flattened = tf.reshape(layer2, [-1, 7 * 7 * 64])
            x_shape = 7 * 7 * 64

    else:
        if (quantization_enabled):
            x_flattened = fake_quantize_tensor(x,
                                               input_quantization,
                                               0,
                                               1,
                                               name="quantized_input")
        else:
            x_flattened = x
        x_shape = 28 * 28

    if (num_layers == 3):
        hidden1 = create_fc_layer(x_flattened, x_shape, fc1_depth, fc1_w_bits,
                                  fc1_w_max, fc1_b_bits, fc1_b_max, fc1_a_bits,
                                  fc1_a_max, noise_stddev, 'fully_connected1')

        with tf.name_scope('dropout'):
            keep_prob = tf.placeholder(tf.float32)
            tf.summary.scalar('dropout_keep_probability', keep_prob)
            dropped = tf.nn.dropout(hidden1, keep_prob)

        # Middle Layer (using settings 3)
        hidden2 = create_fc_layer(dropped, fc1_depth, fc3_depth, fc3_w_bits,
                                  fc3_w_max, fc3_b_bits, fc3_b_max, fc3_a_bits,
                                  fc3_a_max, noise_stddev,
                                  'fully_connected_middle')

        with tf.name_scope('dropout2'):
            keep_prob2 = tf.placeholder(tf.float32)
            tf.summary.scalar('dropout2_keep_probability', keep_prob2)
            dropped2 = tf.nn.dropout(hidden2, keep_prob2)

        # Do not apply softmax activation yet, see below.
        y = create_fc_layer(dropped2,
                            fc3_depth,
                            fc2_depth,
                            fc2_w_bits,
                            fc2_w_max,
                            fc2_b_bits,
                            fc2_b_max,
                            fc2_a_bits,
                            fc2_a_max,
                            noise_stddev,
                            'fully_connected2',
                            act=tf.identity)

    elif (num_layers == 1):
        keep_prob = tf.placeholder(tf.float32)  # Need to create placeholders
        keep_prob2 = tf.placeholder(
            tf.float32)  # Even though they wont be used
        y = create_fc_layer(x_flattened,
                            x_shape,
                            fc2_depth,
                            fc2_w_bits,
                            fc2_w_max,
                            fc2_b_bits,
                            fc2_b_max,
                            fc2_a_bits,
                            fc2_a_max,
                            noise_stddev,
                            layer_name='fully_connected',
                            act=tf.identity)

    else:  # Otherwise create 2 layers
        hidden1 = create_fc_layer(x_flattened, x_shape, fc1_depth, fc1_w_bits,
                                  fc1_w_max, fc1_b_bits, fc1_b_max, fc1_a_bits,
                                  fc1_a_max, noise_stddev, 'fully_connected1')

        with tf.name_scope('dropout'):
            keep_prob = tf.placeholder(tf.float32)
            tf.summary.scalar('dropout_keep_probability', keep_prob)
            dropped = tf.nn.dropout(hidden1, keep_prob)

        keep_prob2 = tf.placeholder(tf.float32)  # Need to create a placholder

        y = create_fc_layer(dropped,
                            fc1_depth,
                            fc2_depth,
                            fc2_w_bits,
                            fc2_w_max,
                            fc2_b_bits,
                            fc2_b_max,
                            fc2_a_bits,
                            fc2_a_max,
                            noise_stddev,
                            'fully_connected2',
                            act=tf.identity)

    with tf.name_scope('cross_entropy'):
        # The raw formulation of cross-entropy can be numerically unstable.
        #
        # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
        #                               reduction_indices=[1]))
        #
        # So here we use tf.losses.sparse_softmax_cross_entropy on the
        # raw logit outputs of the nn_layer above, and then average across the batch.
        with tf.name_scope('total'):
            cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_,
                                                                   logits=y)
    tf.summary.scalar('cross_entropy', cross_entropy)

    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy)

    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), y_)
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
    tf.global_variables_initializer().run()

    # Train the model, and also write summaries.
    # Every 10th step, measure test-set accuracy, and write test summaries
    # All other steps, run train_step on training data, & add training summaries

    def feed_dict(train, batch_size=100):  # 128
        """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
        if train or FLAGS.fake_data:
            xs, ys = mnist.train.next_batch(batch_size,
                                            fake_data=FLAGS.fake_data)
            k = FLAGS.dropout
        else:
            xs, ys = mnist.test.images, mnist.test.labels
            k = 1.0
        return {x: xs, y_: ys, keep_prob: k, keep_prob2: k}

    for i in range(FLAGS.max_steps + 5):
        if (i >= FLAGS.max_steps):
            sess.run([merged, train_step], feed_dict=feed_dict(True))
            summary, acc = sess.run([merged, accuracy],
                                    feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print('Accuracy test %s: %s' % (i - FLAGS.max_steps, acc))
            avg_accuracy += acc

        elif (i % 100 == 99 and record_summaries == True
              and i <= 1000):  # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy],
                                    feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print(datetime.datetime.now().strftime("%H:%M:%S"),
                  'Accuracy at step %s: %s' % (i, acc))
        elif (i % 1000 == 999):  # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy],
                                    feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print(datetime.datetime.now().strftime("%H:%M:%S"),
                  'Accuracy at step %s: %s' % (i, acc))
        elif (i % 100 == 0):
            # print(datetime.datetime.now().strftime("%H:%M:%S"), "Adding run metadata for Step: ", i)
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
            summary, _ = sess.run([merged, train_step],
                                  feed_dict=feed_dict(True),
                                  options=run_options,
                                  run_metadata=run_metadata)
            train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
            train_writer.add_summary(summary, i)
        else:  # Train and record summary
            summary, _ = sess.run([merged, train_step],
                                  feed_dict=feed_dict(True))
            train_writer.add_summary(summary, i)

    print("Training Completed: ", datetime.datetime.now().strftime("%H:%M:%S"))
    print('Final accuracy: ', avg_accuracy / 5)

    x_in, x_flat, y_out = sess.run([x, x_flattened, y],
                                   feed_dict=feed_dict(True, batch_size=1))
    np.savetxt("input.csv", x_in[0], delimiter=",", fmt='%f')
    np.savetxt("input_reshaped_quantized.csv",
               x_flat[0],
               delimiter=",",
               fmt='%f')
    np.savetxt("output.csv", y_out[0], delimiter=",", fmt='%f')

    for var in tf.global_variables():
        if num_layers == 1:
            if '/weights/Variable:0' in var.name:
                print(var)
                v = sess.run(var)  #get_weights(sess.run(var))
                np.savetxt("Parameters/weights.csv",
                           v,
                           delimiter=",",
                           fmt='%f')
                np.savetxt("Parameters/Q.csv",
                           calculate_Q(0.066667, v).astype(int),
                           delimiter=",",
                           fmt='%i')
            elif '/biases/Variable:0' in var.name:
                print(var)
                v = sess.run(var)  # get_biases(sess.run(var))
                np.savetxt("Parameters/floating_biases.csv",
                           v,
                           delimiter=",",
                           fmt='%f')  # Store the floating point biases
                np.savetxt("Parameters/biases.csv",
                           get_biases(v),
                           delimiter=",",
                           fmt='%f')  # Store the fixed point biases
        else:
            print(
                "Fixed point inference not implemented yet for networks with more than one layer"
            )
            if 'fully_connected1/weights/Variable:0' in var.name:
                print(var)
            elif 'fully_connected1/biases/Variable:0' in var.name:
                print(var)
            elif 'fully_connected2/weights/Variable:0' in var.name:
                print(var)
            elif 'fully_connected2/biases/Variable:0' in var.name:
                print(var)
            elif 'fully_connected3/weights/Variable:0' in var.name:
                print(var)
            elif 'fully_connected3/biases/Variable:0' in var.name:
                print(var)

    train_writer.close()
    model = tf.matmul(L2, W3) + b3
    tf.summary.histogram('W3', W3)

with tf.name_scope('optimizer'):
    base_cost = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
    lossL2 =  tf.reduce_mean(tf.nn.l2_loss(W1) + 
            tf.nn.l2_loss(W2) + tf.nn.l2_loss(W3)) * L2beta
    cost = base_cost + lossL2 
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    tf.summary.scalar('cost', cost)

with tf.name_scope("accuracy"):
    is_correct = tf.equal(tf.argmax(model, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
    tf.summary.scalar("accuracy", accuracy)

summ = tf.summary.merge_all()
saver = tf.train.Saver()
sess = tf.Session()

total_model_test = 10 


for model in range(total_model_test):
    random_learning_rate = HP_np[model][1]
    random_L2beta = HP_np[model][2]
    
    sess.run(tf.global_variables_initializer())
Esempio n. 37
0
out_flat = tf.nn.relu(out_flat)

out_final = dense_layer(out_flat,
                        shape_w=[1024, n_class],
                        shape_b=[n_class],
                        name='last')
print("out final: ", out_final.get_shape())

pred = tf.nn.softmax(out_final)
err1 = tf.nn.softmax_cross_entropy_with_logits_v2(labels=target,
                                                  logits=out_final)
err = tf.reduce_mean(err1) + tf.losses.get_regularization_loss()
err_val = tf.reduce_mean(err1)
print("error: ", err1.get_shape(), err.get_shape())

correct_pred = tf.cast(tf.equal(tf.argmax(pred, 1), tf.argmax(target, 1)),
                       tf.float32)
accuracy = tf.reduce_mean(correct_pred)
global_step = tf.train.get_or_create_global_step()
train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(
    err, global_step=global_step)

saver = tf.train.Saver(max_to_keep=10)
init = tf.global_variables_initializer()

with tf.Session() as sess:
    ckpt = tf.train.get_checkpoint_state(MDPATH)
    if ckpt and ckpt.model_checkpoint_path:
        print(ckpt, ckpt.model_checkpoint_path)
        sess.run(init)
        optimistic_restore(sess, MDPATH)
Esempio n. 38
0
x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]]
y_data = [[0], [0], [0], [1], [1], [1]]

X = tf.placeholder(tf.float32, shape=[None, 2])
Y = tf.placeholder(tf.float32, shape=[None, 1])

W = tf.Variable(tf.random_normal([2, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')

hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
cost = -1 * tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))

train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)

predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))

with tf.Session() as sess:
	sess.run(tf.global_variables_initializer())

	for step in range(10001):
		cost_val, _ = sess.run([cost, train],
						feed_dict={X: x_data, Y: y_data})
		if step % 200 == 0:
			print(step, cost_val)

	h, c, a = sess.run([hypothesis, cost, accuracy],
						feed_dict={X: x_data, Y: y_data})
	print("\nhypothesis : ", h,
			"\ncost : ", c,
			"\naccuracy : ", a)
Esempio n. 39
0
    num_outputs=fc_layer_size,
    use_relu=True)
layer_fc2 = create_fc_layer(input=layer_fc1,
                            num_inputs=fc_layer_size,
                            num_outputs=num_classes,
                            use_relu=False)

y_pred = tf.nn.softmax(layer_fc2, name='y_pred')

y_pred_cls = tf.argmax(y_pred, dimension=1)
session.run(tf.global_variables_initializer())
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,
                                                        labels=y_true)
cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)  #学习率
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

session.run(tf.global_variables_initializer())


def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss):
    acc = session.run(accuracy, feed_dict=feed_dict_train)
    val_acc = session.run(accuracy, feed_dict=feed_dict_validate)
    msg = "Training Epoch {0} --- Training Accuracy: {1:>6.1%}, Validation Accuracy: {2:>6.1%},  Validation Loss: {3:.3f}"
    print(msg.format(epoch + 1, acc, val_acc, val_loss))


total_iterations = 0

saver = tf.train.Saver()
Esempio n. 40
0
b1=tf.Variable(tf.zeros([n_hidden]))

hidden=tf.sigmoid(tf.matmul(input, W1)+b1)

W2=tf.Variable(tf.zeros([n_hidden, 10]))
b2=tf.Variable(tf.zeros([10]))

output=tf.nn.softmax(tf.matmul(hidden,W2)+b2)

loss=-tf.reduce_sum(label*tf.log(output))

train_step=tf.train.AdamOptimizer().minimize(loss)



correct_prediction=tf.equal(tf.argmax(output,1), tf.argmax(label,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
plt.title('Hidden layer size %d'%n_hidden)
plt.xlabel('Train step')
plt.ylabel('Accuracy')
for k in range(5):
    tf.global_variables_initializer().run()
    log=np.zeros([2,101])

    for i in range(10000):
        if i%100==0:
            accuracy_eval=accuracy.eval({input:mnist.test.images, label:mnist.test.labels})
            print('step %d, accuracy %s'%(i,accuracy_eval))
            log[0][i/100]=i
            log[1][i/100]=accuracy_eval
        x, y=mnist.train.next_batch(100)
Esempio n. 41
0
def contrastive_loss(hidden,
                     num_replicas,
                     normalize_hidden,
                     temperature,
                     model,
                     weight_decay):
  """Computes contrastive loss.

  Args:
    hidden: embedding of video clips after projection head.
    num_replicas: number of distributed replicas.
    normalize_hidden: whether or not to l2 normalize the hidden vector.
    temperature: temperature in the InfoNCE contrastive loss.
    model: keras model for calculating weight decay.
    weight_decay: weight decay parameter.

  Returns:
    A loss scalar.
    The logits for contrastive prediction task.
    The labels for contrastive prediction task.
  """
  large_num = 1e9

  hidden1, hidden2 = tf.split(hidden, num_or_size_splits=2, axis=0)
  if normalize_hidden:
    hidden1 = tf.math.l2_normalize(hidden1, -1)
    hidden2 = tf.math.l2_normalize(hidden2, -1)
  batch_size = tf.shape(hidden1)[0]

  if num_replicas == 1:
    # This is the local version
    hidden1_large = hidden1
    hidden2_large = hidden2
    labels = tf.one_hot(tf.range(batch_size), batch_size * 2)
    masks = tf.one_hot(tf.range(batch_size), batch_size)

  else:
    # This is the cross-tpu version.
    hidden1_large = tpu_cross_replica_concat(hidden1, num_replicas)
    hidden2_large = tpu_cross_replica_concat(hidden2, num_replicas)
    enlarged_batch_size = tf.shape(hidden1_large)[0]
    replica_id = tf.cast(tf.cast(xla.replica_id(), tf.uint32), tf.int32)
    labels_idx = tf.range(batch_size) + replica_id * batch_size
    labels = tf.one_hot(labels_idx, enlarged_batch_size * 2)
    masks = tf.one_hot(labels_idx, enlarged_batch_size)

  logits_aa = tf.matmul(hidden1, hidden1_large, transpose_b=True) / temperature
  logits_aa = logits_aa - tf.cast(masks, logits_aa.dtype) * large_num
  logits_bb = tf.matmul(hidden2, hidden2_large, transpose_b=True) / temperature
  logits_bb = logits_bb - tf.cast(masks, logits_bb.dtype) * large_num
  logits_ab = tf.matmul(hidden1, hidden2_large, transpose_b=True) / temperature
  logits_ba = tf.matmul(hidden2, hidden1_large, transpose_b=True) / temperature

  loss_a = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
      labels, tf.concat([logits_ab, logits_aa], 1)))
  loss_b = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
      labels, tf.concat([logits_ba, logits_bb], 1)))
  loss = loss_a + loss_b

  l2_loss = weight_decay * tf.add_n([
      tf.nn.l2_loss(v)
      for v in model.trainable_variables
      if 'kernel' in v.name
    ])

  total_loss = loss +  tf.cast(l2_loss, loss.dtype)

  contrast_prob = tf.nn.softmax(logits_ab)
  contrast_entropy = - tf.reduce_mean(
      tf.reduce_sum(contrast_prob * tf.math.log(contrast_prob + 1e-8), -1))

  contrast_acc = tf.equal(tf.argmax(labels, 1), tf.argmax(logits_ab, axis=1))
  contrast_acc = tf.reduce_mean(tf.cast(contrast_acc, tf.float32))

  return {
      'total_loss': total_loss,
      'contrastive_loss': loss,
      'reg_loss': l2_loss,
      'contrast_acc': contrast_acc,
      'contrast_entropy': contrast_entropy,
  }
Esempio n. 42
0
sess.run(tf.global_variables_initializer())

# parameters
training_epochs = 15
batch_size = 100
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

nb_classes = 10

# train my model
print('Learning stared. It takes sometime.')
for epoch in range(training_epochs):
   avg_cost = 0
   total_batch = int(mnist.train.num_examples / batch_size)
   for i in range(total_batch):
       batch_xs, batch_ys = mnist.train.next_batch(batch_size)
       feed_dict = {X: batch_xs, Y: batch_ys}
       c, _, = sess.run([cost, optimizer], feed_dict=feed_dict)
       avg_cost += c / total_batch
   print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))

print('Learning Finished!')

# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}))

Esempio n. 43
0
def bboxes_matching(label, scores, bboxes,
                    glabels, gbboxes, gdifficults,
                    matching_threshold=0.5, scope=None):
    """Matching a collection of detected boxes with groundtruth values.
    Does not accept batched-inputs.
    The algorithm goes as follows: for every detected box, check
    if one grountruth box is matching. If none, then considered as False Positive.
    If the grountruth box is already matched with another one, it also counts
    as a False Positive. We refer the Pascal VOC documentation for the details.

    Args:
      rclasses, rscores, rbboxes: N(x4) Tensors. Detected objects, sorted by score;
      glabels, gbboxes: Groundtruth bounding boxes. May be zero padded, hence
        zero-class objects are ignored.
      matching_threshold: Threshold for a positive match.
    Return: Tuple of:
       n_gbboxes: Scalar Tensor with number of groundtruth boxes (may difer from
         size because of zero padding).
       tp_match: (N,)-shaped boolean Tensor containing with True Positives.
       fp_match: (N,)-shaped boolean Tensor containing with False Positives.
    """
    with tf.name_scope(scope, 'bboxes_matching_single',
                       [scores, bboxes, glabels, gbboxes]):
        rsize = tf.size(scores)
        rshape = tf.shape(scores)
        rlabel = tf.cast(label, glabels.dtype)
        # Number of groundtruth boxes.
        gdifficults = tf.cast(gdifficults, tf.bool)
        n_gbboxes = tf.count_nonzero(tf.logical_and(tf.equal(glabels, label),
                                                    tf.logical_not(gdifficults)))
        # Grountruth matching arrays.
        gmatch = tf.zeros(tf.shape(glabels), dtype=tf.bool)
        grange = tf.range(tf.size(glabels), dtype=tf.int32)
        # True/False positive matching TensorArrays.
        sdtype = tf.bool
        ta_tp_bool = tf.TensorArray(sdtype, size=rsize, dynamic_size=False, infer_shape=True)
        ta_fp_bool = tf.TensorArray(sdtype, size=rsize, dynamic_size=False, infer_shape=True)

        # Loop over returned objects.
        def m_condition(i, ta_tp, ta_fp, gmatch):
            r = tf.less(i, rsize)
            return r

        def m_body(i, ta_tp, ta_fp, gmatch):
            # Jaccard score with groundtruth bboxes.
            rbbox = bboxes[i]
            jaccard = bboxes_jaccard(rbbox, gbboxes)
            jaccard = jaccard * tf.cast(tf.equal(glabels, rlabel), dtype=jaccard.dtype)

            # Best fit, checking it's above threshold.
            idxmax = tf.cast(tf.argmax(jaccard, axis=0), tf.int32)
            jcdmax = jaccard[idxmax]
            match = jcdmax > matching_threshold
            existing_match = gmatch[idxmax]
            not_difficult = tf.logical_not(gdifficults[idxmax])

            # TP: match & no previous match and FP: previous match | no match.
            # If difficult: no record, i.e FP=False and TP=False.
            tp = tf.logical_and(not_difficult,
                                tf.logical_and(match, tf.logical_not(existing_match)))
            ta_tp = ta_tp.write(i, tp)
            fp = tf.logical_and(not_difficult,
                                tf.logical_or(existing_match, tf.logical_not(match)))
            ta_fp = ta_fp.write(i, fp)
            # Update grountruth match.
            mask = tf.logical_and(tf.equal(grange, idxmax),
                                  tf.logical_and(not_difficult, match))
            gmatch = tf.logical_or(gmatch, mask)

            return [i+1, ta_tp, ta_fp, gmatch]
        # Main loop definition.
        i = 0
        [i, ta_tp_bool, ta_fp_bool, gmatch] = \
            tf.while_loop(m_condition, m_body,
                          [i, ta_tp_bool, ta_fp_bool, gmatch],
                          parallel_iterations=1,
                          back_prop=False)
        # TensorArrays to Tensors and reshape.
        tp_match = tf.reshape(ta_tp_bool.stack(), rshape)
        fp_match = tf.reshape(ta_fp_bool.stack(), rshape)

        # Some debugging information...
        # tp_match = tf.Print(tp_match,
        #                     [n_gbboxes,
        #                      tf.reduce_sum(tf.cast(tp_match, tf.int64)),
        #                      tf.reduce_sum(tf.cast(fp_match, tf.int64)),
        #                      tf.reduce_sum(tf.cast(gmatch, tf.int64))],
        #                     'Matching (NG, TP, FP, GM): ')
        return n_gbboxes, tp_match, fp_match
Esempio n. 44
0
                    # third dense layer,full connected
                    w_fc1 = weight_variable([1 * tmp_shape * L2, L3])
                    b_fc1 = bias_variable([L3])
                    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

                    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

                    # fourth layer, output
                    w_fc2 = weight_variable([L3, classes])
                    b_fc2 = bias_variable([classes])
                    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)

                    cost = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(y_conv), reduction_indices=[1]))
                    optimizer = tf.train.AdamOptimizer(learning_date).minimize(cost)

                    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(ys, 1))
                    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

                    init = tf.global_variables_initializer()
                    sess.run(init)

                    ### cnn start train##################################
                    for epoch in range(epochs):
                        avg_cost = 0.
                        avg_acc = 0.
                        for batch in range(len(train_data) // batch_size):
                            offset = (batch * batch_size) % len(train_data)
                            batch_data = train_data[offset:(offset + batch_size)]
                            batch_labels = train_labels[offset:(offset + batch_size)]
                            _, c, acc = sess.run([optimizer, cost, accuracy],
                                                 feed_dict={xs: batch_data, ys: batch_labels, keep_prob: 0.5})
Esempio n. 45
0
def construct_batched_adjacency_and_feature_matrices(
    size,
    adj_row,
    adj_column,
    adj_values,
    adj_elem_len,
    adj_degrees,
    feature_row,
    feature_column,
    feature_values,
    feature_elem_len,
    input_dim,
    max_degree=5,
    normalize=True,
    split_adj=False,
):
    """
    Constructs a batched, sparse adjacency matrix.
    For example to make a batch of two adjacency matrices of 2 and 3 nodes:
    ```
    Example:
        >>> # first adjacency matrix: [[1, 1], [1, 1]]
        >>> # second adjacency matrix: [[1, 1, 0], [1, 1, 1], [0, 1, 1]]
        >>> import tensorflow as tf
        >>> tf.enable_eager_execution()
        >>> size = tf.contant([2, 3], tf.int64)
        >>> adj_row = tf.constant([0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 2], tf.int64)
        >>> adj_column = tf.constant([0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2], tf.int64)
        >>> adj_values = tf.constant([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], tf.float32)
        >>> adj_elem_len = tf.constant([2, 3], tf.int64)
        >>> feature_row = tf.constant([0, 1, 0, 1, 2], tf.int64)
        >>> feature_column = tf.constant([2, 3, 1, 2, 3], tf.int64)
        >>> feature_values = tf.constant([4, 5, 1, 2, 3], tf.int64)
        >>> feature_elem_len = tf.constant([2, 3], tf.int64)
        >>> diagonalized_adj, feature_mat = construct_batched_adjacency_matrix(size, adj_row, adj_column, adj_values, adj_elem_len, adj_degrees, feature_row, feature_column, feature_values, feature_elem_len, 10, normalize=False, split_adj=False)
        >>> tf.sparse.to_dense(diagonalized_adj[0]).numpy()
        array([[1., 1., 0., 0., 0].,
               [1., 1., 0., 0., 0].,
               [0., 0., 1., 1., 0].,
               [0., 0., 1., 1., 1].,
               [0., 0., 0., 1., 1]]
        >>> feature_mat.numpy()
        array([[0, 0, 4, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 5, 0, 0, 0, 0, 0, 0],
               [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 2, 0, 0, 0, 0, 0, 0, 0],
               [0, 0, 0, 3, 0, 0, 0, 0, 0, 0], dtype=int32)

    Parameters:
        size: sizes of adjacency matrices.
        adj_row: concatenated row indices of all matrices in a batch.
        adj_column: concatenated column indices of all matrices in a batch.
        adj_values: concatenated values of elements of all matrices in a batch
        adj_elem_len: number of non-zero elements in all matrices.
        adj_degrees: degree of each node
        feature_row: concatenated row indices of all feature matrices.
        feature_column: concatenated column indices of all feature matrices.
        feature_values: concatenated values in all feature matrices.
        feature_elem_len: number of non-zero elements n all feature matrices.
        input_dim: dimension of each node in feature matrices.
        normalize: normalizes the adjacency matrix if True.
        split_adj: splits the adjacency matrix based on degrees of nodes if True.
    Returns:
        Batched adjacency matrix.

    """
    with tf.device("/cpu:0"):
        cumsum = tf.cumsum(size)

        adj_row = adj_row
        adj_col = adj_column
        adj_elem_len = adj_elem_len
        start = tf.cumsum(adj_elem_len, exclusive=True)
        offset = tf.cumsum(size, exclusive=True)
        start_size_offset = tf.stack([start, adj_elem_len, offset], 1)

    def offset_index(row_or_column):
        def split_sum(a, x):
            padded_index = tf.concat(
                [
                    tf.zeros(x[0], tf.int64),
                    row_or_column[x[0]:x[0] + x[1]] + x[2],
                    tf.zeros(
                        tf.shape(row_or_column, out_type=tf.int64)[0] - x[0] -
                        x[1],
                        tf.int64,
                    ),
                ],
                0,
            )
            return padded_index

        return split_sum

    with tf.device("/cpu:0"):
        padded_rows = tf.scan(offset_index(adj_row),
                              start_size_offset,
                              initializer=adj_row)
        padded_columns = tf.scan(offset_index(adj_col),
                                 start_size_offset,
                                 initializer=adj_col)
    diagonal_row = tf.reduce_sum(padded_rows, axis=0)
    diagonal_col = tf.reduce_sum(padded_columns, axis=0)
    adj_shape = [tf.reduce_sum(size), tf.reduce_sum(size)]
    if normalize:
        diagonalized_adj = tf.SparseTensor(
            indices=tf.transpose(tf.stack([diagonal_row, diagonal_col])),
            values=adj_values,
            dense_shape=adj_shape,
        )
        degree_hat = tf.sparse.reduce_sum(diagonalized_adj, axis=0)
        diagonalized_adj = (diagonalized_adj / tf.sqrt(degree_hat) /
                            tf.expand_dims(tf.sqrt(degree_hat), 1))
        diagonalized_adj = [diagonalized_adj]  # number of channel is 1.
    elif split_adj:
        adj_degrees = adj_degrees

        adj_degrees = tf.clip_by_value(
            adj_degrees, 0, max_degree
        )  # degree is the number of edges on each node, including the one to itself. A node with degree 1 is not connected with any other node.
        diagonalized_adj = []
        for degree in range(1, max_degree + 1):
            row_deg = tf.boolean_mask(diagonal_row,
                                      tf.equal(adj_degrees, degree))
            row_col = tf.boolean_mask(diagonal_col,
                                      tf.equal(adj_degrees, degree))
            diagonalized_adj.append(
                tf.SparseTensor(
                    indices=tf.transpose(tf.stack([row_deg, row_col])),
                    values=tf.boolean_mask(adj_values,
                                           tf.equal(adj_degrees, degree)),
                    dense_shape=adj_shape,
                ))
        diagonalized_adj.append(tf.sparse.eye(
            adj_shape[0]))  # connection to self
    else:
        diagonalized_adj = tf.SparseTensor(
            indices=tf.transpose(tf.stack([diagonal_row, diagonal_col])),
            values=adj_values,
            dense_shape=adj_shape,
        )
        diagonalized_adj = [diagonalized_adj]

    start_feature = tf.cumsum(feature_elem_len, exclusive=True)
    start_size_offset_feature = tf.stack(
        [start_feature, feature_elem_len, offset], 1)
    with tf.device("/cpu:0"):
        padded_rows_feature = tf.scan(
            offset_index(feature_row),
            start_size_offset_feature,
            initializer=feature_row,
        )
    stacked_row = tf.reduce_sum(padded_rows_feature, axis=0)
    net = tf.SparseTensor(
        indices=tf.transpose(tf.stack([stacked_row, feature_column])),
        values=feature_values,
        dense_shape=[tf.reduce_sum(size), input_dim],
    )
    net = tf.sparse_reorder(net)
    net = tf.sparse_tensor_to_dense(net)
    return diagonalized_adj, net
Esempio n. 46
0
def model_eval(sess,
               x,
               y,
               predictions,
               X_test=None,
               Y_test=None,
               feed=None,
               args=None):
    """
  Compute the accuracy of a TF model on some data
  :param sess: TF session to use
  :param x: input placeholder
  :param y: output placeholder (for labels)
  :param predictions: model output predictions
  :param X_test: numpy array with training inputs
  :param Y_test: numpy array with training outputs
  :param feed: An optional dictionary that is appended to the feeding
           dictionary before the session runs. Can be used to feed
           the learning phase of a Keras model for instance.
  :param args: dict or argparse `Namespace` object.
               Should contain `batch_size`
  :return: a float with the accuracy value
  """
    global _model_eval_cache
    args = _ArgsWrapper(args or {})

    assert args.batch_size, "Batch size was not given in args dict"
    if X_test is None or Y_test is None:
        raise ValueError("X_test argument and Y_test argument "
                         "must be supplied.")

    # Define accuracy symbolically
    key = (y, predictions)
    if key in _model_eval_cache:
        correct_preds = _model_eval_cache[key]
    else:
        correct_preds = tf.equal(tf.argmax(y, axis=-1),
                                 tf.argmax(predictions, axis=-1))
        _model_eval_cache[key] = correct_preds

    # Init result var
    accuracy = 0.0

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test)) / args.batch_size))
        assert nb_batches * args.batch_size >= len(X_test)

        X_cur = np.zeros((args.batch_size, ) + X_test.shape[1:],
                         dtype=X_test.dtype)
        Y_cur = np.zeros((args.batch_size, ) + Y_test.shape[1:],
                         dtype=Y_test.dtype)
        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                _logger.debug("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * args.batch_size
            end = min(len(X_test), start + args.batch_size)

            # The last batch may be smaller than all others. This should not
            # affect the accuarcy disproportionately.
            cur_batch_size = end - start
            X_cur[:cur_batch_size] = X_test[start:end]
            Y_cur[:cur_batch_size] = Y_test[start:end]
            feed_dict = {x: X_cur, y: Y_cur}
            if feed is not None:
                feed_dict.update(feed)
            cur_corr_preds = correct_preds.eval(feed_dict=feed_dict)

            accuracy += cur_corr_preds[:cur_batch_size].sum()

        assert end >= len(X_test)

        # Divide by number of examples to get final value
        accuracy /= len(X_test)

    return accuracy
    def train(self):
        train_graph = tf.Graph()
        with train_graph.as_default():
            output, x, is_training = self.lstm_model()
            # 训练集的标签
            y = tf.placeholder(shape=(None, ), name='label', dtype=tf.float64)
            print(y.name)
            # 参数L2正则化减少过拟合
            reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(self.numda), tf.trainable_variables())
            # 损失函数计算(交叉熵加L2正则化)
            cse = tf.convert_to_tensor(value=0, dtype=tf.float64)
            for i in range(self.batch_size):
                cse = cse - 0.61022*tf.multiply(y[i], tf.log(output[i][0])) - 2.76825*tf.multiply(1 - y[i], tf.log(output[i][1]))
            cse = cse/self.batch_size
            cse = cse + reg

            # 准确率计算
            acc_num = tf.convert_to_tensor(0)
            n = tf.convert_to_tensor(0)
            for i in range(self.batch_size):
                acc1 = tf.convert_to_tensor(0)
                acc2 = tf.convert_to_tensor(0)
                #acc3 = tf.convert_to_tensor(0)
                n = tf.cond(pred=tf.equal(y[i], 0),
                               true_fn=lambda: tf.add(n, 1), false_fn=lambda: tf.add(n, 0))
                acc1 = tf.cond(pred=tf.logical_and(tf.equal(y[i], 1),
                                                   tf.greater(output[i][0], output[i][1])
                                                                ),
                               true_fn=lambda: tf.add(acc1, 1), false_fn=lambda: tf.add(acc1, 0))
                acc2 = tf.cond(pred=tf.logical_and(tf.equal(y[i], 0),
                                                   tf.greater(output[i][1], output[i][0])
                                                                  ),
                               true_fn=lambda: tf.add(acc2, 1), false_fn=lambda: tf.add(acc2, 0))
                acc_num = acc_num + acc1 + acc2
                #acc_num = acc_num + acc2
            acc = acc_num / self.batch_size
            #acc = acc_num / n
                #acc3 = tf.cond(pred=tf.logical_and(tf.equal(y[i][2], 1),
                  #                                 tf.logical_and(tf.greater(output[i][2], output[i][0]),
                 #                                                 tf.greater(output[i][2], output[i][1]))),
                 #              true_fn=lambda: tf.add(acc3, 1), false_fn=lambda: tf.add(acc3, 0))
                #acc_num = acc_num + acc1 + acc2 + acc3


            # 批量梯度下降(Adam?)优化损失函数,好像Adam更好一些
            optimizer_1 = tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate)
            optimizer_2 = tf.train.AdamOptimizer(learning_rate=self.learning_rate)

            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                train_op_1 = optimizer_1.minimize(loss=cse)
                train_op_2 = optimizer_2.minimize(loss=cse)

            '''
            var_list = []
            list_2 = []
            for v in tf.global_variables():
                if v in tf.trainable_variables():
                    var_list.append(v)
                else:
                    list_2.append(v)
            saver = tf.train.Saver(var_list=var_list)
            '''

            saver = tf.train.Saver()
            # 开启session,载入最后报存的模型\初始化模型
            sess = tf.Session()

            # 以下两行可用作开启第一次训练与延续上一次训练之间切换
            #sess.run(tf.global_variables_initializer())
            saver.restore(sess=sess, save_path="C:\\Users\\Jason\\Desktop\\hengqin quant finance\\saved_model1_0\\lstm_model-00.3")
            #sess.run(tf.variables_initializer(list_2))


            for i in range(self.epoch):
                # 获取minibatch
                batch_x, batch_y = self.get_mini_batch(self.batch_size)

                # 训练,返回损失函数值
                if i == 0:
                    print(sess.run((cse, sess.graph.get_tensor_by_name('fully_connection/relu:0'), output), {x: batch_x, y: batch_y, is_training: True}))
                    sess.run(fetches=train_op_2, feed_dict={x: batch_x, y: batch_y, is_training: True})
                else:
                    print(sess.run((cse, acc), {x: batch_x, y: batch_y, is_training: True}))
                    sess.run(fetches=train_op_2, feed_dict={x: batch_x, y: batch_y, is_training: True})
            saver.save(sess=sess,
                         save_path='C:\\Users\\Jason\\Desktop\\hengqin quant finance\\saved_model1_0\\lstm_model-00.3')
            #saver.save(sess=sess,
             #          save_path='./lstm_model-00.1')



            '''
            builder = tf.saved_model.builder.SavedModelBuilder('./lstm_saved_model')
            builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.TRAINING])
            builder.save()
            '''
            varlist = [v.name[:-2] for v in tf.global_variables()]
            varlist.append('fully_connection/output')
            varlist.append('lstm_model/input')
            varlist.append('label')
            varlist.append('lstm_model/is_training')

            print(varlist)

            constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, varlist)
            with tf.gfile.FastGFile('./lstm_model_5.pb', mode='wb') as f:

                f.write(constant_graph.SerializeToString())

            sess.close()
Esempio n. 48
0
def evaluate_pictures(n_epochs=200,batch_size=10,dataset='E:/bishe/cifar-100-python'):


    datasets = load_data(dataset)
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # 计算各数据集的batch个数
    n_train_batches = train_set_x.shape[0]
    n_train_batches = int(n_train_batches / batch_size)
    print("... building the model")

    x = tf.placeholder(tf.float32, shape=[None, 3072])
    y = tf.placeholder(tf.float32, shape=[None, 100])
    keep_prob = tf.placeholder(tf.float32)

    x_image = tf.transpose(tf.reshape(x, [-1, 3, 32, 32]),perm=[0,2,3,1])##
    W_conv1 = weight_variable([5, 5, 3, 64])
    b_conv1 = bias_variable([64])
    h_pool1 = max_pool_2x2(tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1))

    input1=tf.nn.local_response_normalization(h_pool1)
    W_conv2 = weight_variable([5, 5, 64, 128])
    b_conv2 = bias_variable([128])
    h_pool2 = mean_pool_2x2(tf.nn.relu(conv2d(input1, W_conv2) + b_conv2))

    input2 = tf.nn.local_response_normalization(h_pool2)
    W_conv3 = weight_variable([5, 5, 128, 500])
    b_conv3 = bias_variable([500])
    h_pool3 = mean_pool_2x2(tf.nn.relu(conv2d(input2, W_conv3) + b_conv3))

    input3 = tf.nn.local_response_normalization(h_pool3)
    h_fc1_drop = tf.nn.dropout(input3, keep_prob)
    W_fc1 = weight_variable([4 * 4 * 500, 100])
    b_fc1 = bias_variable([100])
    y_conv = tf.matmul(tf.reshape(h_fc1_drop, [-1, 4 * 4 * 500]), W_fc1) + b_fc1

    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_conv))
    train_step = tf.train.AdadeltaOptimizer(0.1).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    tf.summary.scalar('accuracy', accuracy)
    tf.summary.histogram('h_pool1', y_conv)
    sess=tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())

    best_validation_acc = np.inf
    epoch = 0
    done_looping = False

    print("... training")
    summary_op=tf.summary.merge_all()
    summary_writer=tf.summary.FileWriter(FLAGS.summaries_dir,graph_def=sess.graph_def)
    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(n_train_batches):
            iter = (epoch - 1) * n_train_batches + minibatch_index
            _,acc=sess.run([train_step, accuracy],feed_dict={x: train_set_x[minibatch_index * batch_size: (minibatch_index + 1) * batch_size],
                y: train_set_y[minibatch_index * batch_size: (minibatch_index + 1) * batch_size], keep_prob: 0.2})
            print('epoch %i, step %d,minibatch %i/%i, train acc %g' %
                  (epoch, iter, minibatch_index + 1, n_train_batches,acc))
            if (iter + 1) % 1000 == 0:
                # compute zero-one loss on validation set
                validation_acc = accuracy.eval(feed_dict={x: valid_set_x, y: valid_set_y, keep_prob: 0.2})
                print('                         validation acc %g' %(validation_acc ))
                # test it on the test set
                summary_str, acc = sess.run([summary_op, accuracy],
                                            feed_dict={x: test_set_x, y: test_set_y, keep_prob: 0.2})
                summary_writer.add_summary(summary_str, iter)
                print('                         test acc %g' % (acc))
                # if we got the best validation score until now
                if validation_acc > best_validation_acc:
                    # save best validation score and iteration number
                    best_validation_acc = validation_acc
                    save_params(W_conv1, b_conv1, W_conv2, b_conv2,W_fc1,b_fc1)  # 保存参数


    print('Optimization complete.')
    print("test accuracy %g" % accuracy.eval(feed_dict={
        x: test_set_x, y: test_set_y, keep_prob: 1.0}))
def dice_score(predicted_labels, labels, dim_output, type_unet):

    ####### Dice score for binary classification #######

    ### predicted_labels -- shape (num_batch, height, width)
    ### labels -- shape (num_batch, height, width)
    print('shape of predicted labels')
    print(predicted_labels)
    print('shape of actual labels')
    print(labels)

    shape_of_data = labels.get_shape().as_list()
    indices_predictions = tf.round(
        tf.reshape(predicted_labels, [-1, dim_output]))
    if type_unet == '3D':

        indices_predictions = tf.reshape(
            indices_predictions,
            [-1, shape_of_data[1] * shape_of_data[2] * shape_of_data[3] * 1])
    else:
        indices_predictions = tf.reshape(
            indices_predictions, [-1, shape_of_data[1] * shape_of_data[2] * 1])

    indices_labels = tf.round(tf.reshape(labels, [-1, dim_output]))

    if type_unet == '3D':

        indices_labels = tf.reshape(
            indices_labels,
            [-1, shape_of_data[1] * shape_of_data[2] * shape_of_data[3] * 1])
    else:
        indices_labels = tf.reshape(
            indices_labels, [-1, shape_of_data[1] * shape_of_data[2] * 1])

    print('after transofrmation')
    print(indices_predictions)
    print(indices_labels)

    dice_score = defaultdict()
    for _ in range(2):
        shared_bool = tf.logical_and(
            tf.equal(
                tf.cast(indices_predictions, tf.float32),
                tf.ones_like(indices_predictions, dtype=tf.float32) *
                tf.cast(_, tf.float32)),
            tf.equal(
                tf.cast(indices_labels, tf.float32),
                tf.ones_like(indices_predictions, dtype=tf.float32) *
                tf.cast(_, tf.float32)))
        area_shared = tf.reduce_sum(tf.cast(shared_bool, tf.float32), 1)

        predictions_bool = tf.equal(
            tf.cast(indices_predictions, tf.float32),
            tf.ones_like(indices_predictions, dtype=tf.float32) *
            tf.cast(_, tf.float32))
        area_predictions = tf.reduce_sum(tf.cast(predictions_bool, tf.float32),
                                         1)

        labels_bool = tf.equal(
            tf.cast(indices_labels, tf.float32),
            tf.ones_like(indices_predictions, dtype=tf.float32) *
            tf.cast(_, tf.float32))
        area_labels = tf.reduce_sum(tf.cast(labels_bool, tf.float32), 1)

        dice_score[_] = tf.reduce_mean((2.0 * area_shared + 1e-6) /
                                       (area_predictions + area_labels + 1e-6))

    return dice_score
Esempio n. 50
0
Ylogits = tf.matmul(Y4, W5) + B5

Y = tf.nn.softmax(Ylogits)


# 3. Define the loss function  

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y_)
cross_entropy = tf.reduce_mean(cross_entropy)*100

# 4. Define the accuracy 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()

correct_prediction = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(accuracy, feed_dict={X: fashion_mnist.test.images, Y_: fashion_mnist.test.labels}))

# 5. Define an optimizer
#train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

train_step = tf.train.AdamOptimizer(0.003).minimize(cross_entropy)

    
# initialize
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
Esempio n. 51
0
    outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)

    # 最后,output_layer和result的值
    # 方式一输出结果
    result = tf.matmul(final_state[1], weights['out'] + biases['out'])
    # 方式二输出结果
    # outputs = tf.unstack(tf.transpose(outputs, [1, 0, 2]))
    # result = tf.matmul(outputs[-1], weights['out'] + biases['out'])
    return result


pre = rnn(x, weight, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pre, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)

correct_pre = tf.equal(tf.argmax(pre, 1), tf.argmax(y, 1))
accuary = tf.reduce_mean(tf.cast(correct_pre, tf.float32))
with tf.Session() as sess:
    init = tf.global_variables_initializer()

    sess.run(init)

    step = 0

    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size, row_inputs, col_inputs])
        sess.run([train_op], feed_dict={x: batch_xs, y: batch_ys, })

        if step % 20 == 0:
            print(sess.run(accuary, feed_dict={x: batch_xs, y: batch_ys, }))
Esempio n. 52
0
def tf_hog_descriptor(images, cell_size = 8, block_size = 2, block_stride = 1, n_bins = 9,
                      grayscale = False, oriented = False):

    batch_size, height, width, depth = images.shape
    half_pi = tf.constant(np.pi/2, name="pi_half")
    eps = tf.constant(1e-6, name="eps")
    scale_factor = tf.constant(np.pi * n_bins * 0.99999, name="scale_factor")
    
    img = tf.constant(images, name="ImgBatch", dtype=tf.float32)

    # gradients
    if grayscale:
        gray = tf.image.rgb_to_grayscale(img, name="ImgGray")
        grad = tf_deriv(gray)
    else:
        grad = tf_deriv(img)
    g_x = grad[:,:,:,0::2]
    g_y = grad[:,:,:,1::2]
    
    # maximum norm gradient selection
    g_norm = tf.sqrt(tf.square(g_x) + tf.square(g_y), "GradNorm")
    idx    = tf.argmax(g_norm, 3)
    
    g_norm = tf.expand_dims(tf_select_by_idx(g_norm, idx), -1)
    g_x    = tf.expand_dims(tf_select_by_idx(g_x,    idx), -1)
    g_y    = tf.expand_dims(tf_select_by_idx(g_y,    idx), -1)

    # orientation and binning
    if oriented:
        # atan2 implementation needed 
        # lots of conditional indexing required
        raise NotImplementedError("`oriented` gradient not supported yet")
    else:
        g_dir = tf.atan(g_y / (g_x + eps)) + half_pi
        g_bin = tf.to_int32(g_dir / scale_factor, name="Bins")  

    # cells partitioning
    cell_norm = tf.space_to_depth(g_norm, cell_size, name="GradCells")
    cell_bins = tf.space_to_depth(g_bin,  cell_size, name="BinsCells")

    # cells histograms
    hist = list()
    zero = tf.zeros(cell_bins.get_shape()) 
    for i in range(n_bins):
        mask = tf.equal(cell_bins, tf.constant(i, name="%i"%i))
        hist.append(tf.reduce_sum(tf.select(mask, cell_norm, zero), 3))
    hist = tf.transpose(tf.pack(hist), [1,2,3,0], name="Hist")

    # blocks partitioning
    block_hist = tf.extract_image_patches(hist, 
                                          ksizes  = [1, block_size, block_size, 1], 
                                          strides = [1, block_stride, block_stride, 1], 
                                          rates   = [1, 1, 1, 1], 
                                          padding = 'VALID',
                                          name    = "BlockHist")

    # block normalization
    block_hist = tf.nn.l2_normalize(block_hist, 3, epsilon=1.0)
    
    # HOG descriptor
    hog_descriptor = tf.reshape(block_hist, 
                                [int(block_hist.get_shape()[0]), 
                                     int(block_hist.get_shape()[1]) * \
                                     int(block_hist.get_shape()[2]) * \
                                     int(block_hist.get_shape()[3])], 
                                 name='HOGDescriptor')

    return hog_descriptor
Esempio n. 53
0
def multihead_attention(queries, 
                        keys, 
                        num_units=None, 
                        num_heads=8, 
                        dropout_rate=0,
                        is_training=True,
                        causality=False,
                        scope="multihead_attention", 
                        reuse=None):
    '''Applies multihead attention. Forked from https://github.com/Kyubyong/transformer
    
    Args:
      queries: A 3d tensor with shape of [N, T_q, C_q].
      keys: A 3d tensor with shape of [N, T_k, C_k].
      num_units: A scalar. Attention size.
      dropout_rate: A floating point number.
      is_training: Boolean. Controller of mechanism for dropout.
      causality: Boolean. If true, units that reference the future are masked. 
      num_heads: An int. Number of heads.
      scope: Optional scope for `variable_scope`.
      reuse: Boolean, whether to reuse the weights of a previous layer
        by the same name.
        
    Returns
      A 3d tensor with shape of (N, T_q, C)  
    '''
    with tf.variable_scope(scope, reuse=reuse):
        # Set the fall back option for num_units
        if num_units is None:
            num_units = queries.get_shape().as_list()[-1]
        
        # Linear projections
        Q = tf.layers.dense(queries, num_units, activation=tf.nn.relu) # (N, T_q, C)
        K = tf.layers.dense(keys, num_units, activation=tf.nn.relu) # (N, T_k, C)
        V = tf.layers.dense(keys, num_units, activation=tf.nn.relu) # (N, T_k, C)
        
        # Split and concat
        Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, C/h) 
        K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, C/h) 
        V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, C/h) 

        # Multiplication
        outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1])) # (h*N, T_q, T_k)
        
        # Scale
        outputs = outputs / (K_.get_shape().as_list()[-1] ** 0.5)
        
        # Key Masking
        key_masks = tf.sign(tf.reduce_sum(tf.abs(keys), axis=-1)) # (N, T_k)
        key_masks = tf.tile(key_masks, [num_heads, 1]) # (h*N, T_k)
        key_masks = tf.tile(tf.expand_dims(key_masks, 1), [1, tf.shape(queries)[1], 1]) # (h*N, T_q, T_k)
        
        paddings = tf.ones_like(outputs)*(-2**32+1)
        outputs = tf.where(tf.equal(key_masks, 0), paddings, outputs) # (h*N, T_q, T_k)
  
        # Causality = Future blinding
        if causality:
            diag_vals = tf.ones_like(outputs[0, :, :]) # (T_q, T_k)
            tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k)
            masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(outputs)[0], 1, 1]) # (h*N, T_q, T_k)
   
            paddings = tf.ones_like(masks)*(-2**32+1)
            outputs = tf.where(tf.equal(masks, 0), paddings, outputs) # (h*N, T_q, T_k)
  
        # Activation
        outputs = tf.nn.softmax(outputs) # (h*N, T_q, T_k)
         
        # Query Masking
        query_masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1)) # (N, T_q)
        query_masks = tf.tile(query_masks, [num_heads, 1]) # (h*N, T_q)
        query_masks = tf.tile(tf.expand_dims(query_masks, -1), [1, 1, tf.shape(keys)[1]]) # (h*N, T_q, T_k)
        outputs *= query_masks # broadcasting. (N, T_q, C)
          
        # Dropouts
        outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))
               
        # Weighted sum
        outputs = tf.matmul(outputs, V_) # ( h*N, T_q, C/h)
        
        # Restore shape
        outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2 ) # (N, T_q, C)
              
        # Residual connection
        outputs += queries
              
        # Normalize
        outputs = normalize(outputs) # (N, T_q, C)
 
    return outputs
def dice_score_multiclass(predicted_labels, labels, num_classes, type_unet):

    #### Dice Score for at least 3 classes #####

    ### predicted_labels -- shape (num_batch, height, width, depth, num_classes)
    ### labels -- shape (num_batch, height, width, depth, num_classes)

    print('shape of predicted labels')
    print(predicted_labels)
    print('shape of actual labels')
    print(labels)

    shape_of_data = labels.get_shape().as_list()
    if type_unet == '3D':

        indices_predictions = tf.argmax(tf.reshape(predicted_labels,
                                                   [-1, shape_of_data[4]]),
                                        axis=-1)
        indices_predictions = tf.reshape(
            indices_predictions,
            [-1, shape_of_data[1] * shape_of_data[2] * shape_of_data[3] * 1])

        indices_labels = tf.argmax(tf.reshape(labels, [-1, shape_of_data[4]]),
                                   axis=-1)
        indices_labels = tf.reshape(
            indices_labels,
            [-1, shape_of_data[1] * shape_of_data[2] * shape_of_data[3] * 1])
    else:

        indices_predictions = tf.argmax(tf.reshape(predicted_labels,
                                                   [-1, shape_of_data[3]]),
                                        axis=-1)
        indices_predictions = tf.reshape(
            indices_predictions, [-1, shape_of_data[1] * shape_of_data[2] * 1])

        indices_labels = tf.argmax(tf.reshape(labels, [-1, shape_of_data[3]]),
                                   axis=-1)
        indices_labels = tf.reshape(
            indices_labels, [-1, shape_of_data[1] * shape_of_data[2] * 1])

    print('after transformation')
    print(indices_predictions)
    print(indices_labels)

    dice_score = defaultdict()
    for _ in range(num_classes):

        shared_bool = tf.logical_and(
            tf.equal(
                tf.cast(indices_predictions, tf.float32),
                tf.ones_like(indices_predictions, dtype=tf.float32) *
                tf.cast(_, tf.float32)),
            tf.equal(
                tf.cast(indices_labels, tf.float32),
                tf.ones_like(indices_predictions, dtype=tf.float32) *
                tf.cast(_, tf.float32)))
        area_shared = tf.reduce_sum(tf.cast(shared_bool, tf.float32), 1)

        predictions_bool = tf.equal(
            tf.cast(indices_predictions, tf.float32),
            tf.ones_like(indices_predictions, dtype=tf.float32) *
            tf.cast(_, tf.float32))
        area_predictions = tf.reduce_sum(tf.cast(predictions_bool, tf.float32),
                                         1)

        labels_bool = tf.equal(
            tf.cast(indices_labels, tf.float32),
            tf.ones_like(indices_predictions, dtype=tf.float32) *
            tf.cast(_, tf.float32))
        area_labels = tf.reduce_sum(tf.cast(labels_bool, tf.float32), 1)

        dice_score[_] = tf.reduce_mean((2.0 * area_shared + 1e-6) /
                                       (area_predictions + area_labels + 1e-6))

    return dice_score
Esempio n. 55
0
def tf_select_by_idx(a, idx):
    return tf.select(tf.equal(idx, 2), 
                     a[:,:,:,2], 
                     tf.select(tf.equal(idx, 1), 
                               a[:,:,:,1], 
                               a[:,:,:,0]))
Esempio n. 56
0
def evaluate(sess, X, Y):
    # 对训练得到的模型进行评估
    predicted = tf.cast(inference(X) > 0.5, tf.float32)
    print(sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted, Y),
                                          tf.float32))))
Esempio n. 57
0
        def model(X_train, Y_train, X_test, Y_test, learning_rate=0.009,
                  num_epochs=100, minibatch_size=64, print_cost=True):
            """
            Implements a three-layer ConvNet in Tensorflow:
            CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

            Arguments:
            X_train -- training set, of shape (None, 240, 240, 3)
            Y_train -- test set, of shape (None, n_y = 4)
            X_test -- training set, of shape (None, 240, 240, 3)
            Y_test -- test set, of shape (None, n_y = 4)
            learning_rate -- learning rate of the optimization
            num_epochs -- number of epochs of the optimization loop
            minibatch_size -- size of a minibatch
            print_cost -- True to print the cost every 100 epochs

            Returns:
            train_accuracy -- real number, accuracy on the train set (X_train)
            test_accuracy -- real number, testing accuracy on the test set (X_test)
            parameters -- parameters learnt by the model. They can then be used to predict.
            """

            ops.reset_default_graph()  # to be able to rerun the model without overwriting tf variables
            tf.set_random_seed(1)  # to keep results consistent (tensorflow seed)
            seed = 3  # to keep results consistent (numpy seed)
            (m, n_H0, n_W0, n_C0) = X_train.shape
            n_y = Y_train.shape[1]
            costs = []  # To keep track of the cost

            # Create Placeholders of the correct shape
            ### START CODE HERE ### (1 line)
            X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
            ### END CODE HERE ###

            # Initialize parameters
            ### START CODE HERE ### (1 line)
            parameters = initialize_parameters()

            # W1 = tf.get_variable("W1", [m, n_H0, n_W0, n_C0], initializer =  tf.contrib.layers.xavier_initializer(seed = 0))
            # W2 = tf.get_variable("W2", [m, n_H0, n_W0, n_C0], initializer =  tf.contrib.layers.xavier_initializer(seed = 0))
            # parameters = {"W1": W1,
            #              "W2": W2}
            ### END CODE HERE ###

            # Forward propagation: Build the forward propagation in the tensorflow graph
            ### START CODE HERE ### (1 line)
            Z3 = forward_propagation(X, parameters)
            ### END CODE HERE ###

            # Cost function: Add cost function to tensorflow graph
            ### START CODE HERE ### (1 line)
            cost = compute_cost(Z3, Y)
            ### END CODE HERE ###

            # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
            ### START CODE HERE ### (1 line)
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
            ### END CODE HERE ###

            # Initialize all the variables globally
            init = tf.global_variables_initializer()

            # Start the session to compute the tensorflow graph
            with tf.Session() as sess:

                # Run the initialization
                sess.run(init)

                # Do the training loop
                for epoch in range(num_epochs):

                    minibatch_cost = 0.
                    num_minibatches = int(
                        m / minibatch_size)  # number of minibatches of size minibatch_size in the train set
                    seed = seed + 1
                    minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)

                    for minibatch in minibatches:
                        # Select a minibatch
                        (minibatch_X, minibatch_Y) = minibatch
                        """
                        # IMPORTANT: The line that runs the graph on a minibatch.
                        # Run the session to execute the optimizer and the cost.
                        # The feedict should contain a minibatch for (X,Y).
                        """
                        ### START CODE HERE ### (1 line)
                        _, temp_cost = sess.run(fetches=[optimizer, cost],
                                                feed_dict={X: minibatch_X, Y: minibatch_Y}
                                                )
                        ### END CODE HERE ###

                        minibatch_cost += temp_cost / num_minibatches

                    # Print the cost every epoch
                    if print_cost == True and epoch % 5 == 0:
                        print("Cost after epoch %i: %f" % (epoch, minibatch_cost))
                    if print_cost == True and epoch % 1 == 0:
                        costs.append(minibatch_cost)

                # plot the cost
                plt.plot(np.squeeze(costs))
                plt.ylabel('cost')
                plt.xlabel('iterations (per tens)')
                plt.title("Learning rate =" + str(learning_rate))
                plt.show()

                # Calculate the correct predictions
                predict_op = tf.argmax(Z3, 1)
                correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))

                # Calculate accuracy on the test set
                accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
                print(accuracy)
                train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
                test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
                print("Train Accuracy:", train_accuracy)
                print("Test Accuracy:", test_accuracy)

                return train_accuracy, test_accuracy, parameters
Esempio n. 58
0
    def call(self, x1, x2, mask=None):
        r"""
        Args:
          x1:  low-level feature map with larger  size [b, h, w, c].
          x2: high-level feature map with smaller size [b, h/2, w/2, c].
          mask: Input mask, 1 for missing regions 0 for known regions.
        Returns:
          tf.Tensor: reconstructed feature map
        """
        # downsample input feature maps if needed due to limited GPU memory
        if self.rescale:
            x1 = _resize(x1,
                         scale=1. / 2,
                         func=tf.compat.v1.image.resize_nearest_neighbor)
            x2 = _resize(x2,
                         scale=1. / 2,
                         func=tf.compat.v1.image.resize_nearest_neighbor)
        # get shapes
        raw_x1s = tf.shape(x1)
        int_x1s = x1.get_shape().as_list()
        int_x2s = x2.get_shape().as_list()
        # extract patches from low-level feature maps for reconstruction
        kernel = 2 * self.rate
        raw_w = tf.compat.v1.extract_image_patches(
            x1, [1, kernel, kernel, 1],
            [1, self.rate * self.stride, self.rate * self.stride, 1],
            [1, 1, 1, 1],
            padding='SAME')
        raw_w = tf.reshape(raw_w, [int_x1s[0], -1, kernel, kernel, int_x1s[3]])
        # transpose to [b, kernel, kernel, c, hw]
        raw_w = tf.transpose(raw_w, [0, 2, 3, 4, 1])
        raw_w_groups = tf.split(raw_w, int_x1s[0], axis=0)
        # extract patches from high-level feature maps for matching and attending
        x2_groups = tf.split(x2, int_x2s[0], axis=0)
        w = tf.compat.v1.extract_image_patches(
            x2, [1, self.ksize, self.ksize, 1],
            [1, self.stride, self.stride, 1], [1, 1, 1, 1],
            padding='SAME')
        w = tf.reshape(w, [int_x2s[0], -1, self.ksize, self.ksize, int_x2s[3]])
        # transpose to [b, ksize, ksize, c, hw/4]
        w = tf.transpose(w, [0, 2, 3, 4, 1])
        w_groups = tf.split(w, int_x2s[0], axis=0)
        # resize and extract patches from masks
        mask = _resize(mask,
                       to_shape=int_x2s[1:3],
                       func=tf.compat.v1.image.resize_nearest_neighbor)
        m = tf.compat.v1.extract_image_patches(
            mask, [1, self.ksize, self.ksize, 1],
            [1, self.stride, self.stride, 1], [1, 1, 1, 1],
            padding='SAME')
        m = tf.reshape(m, [1, -1, self.ksize, self.ksize, 1])
        # transpose to [1, ksize, ksize, 1, hw/4]
        m = tf.transpose(m, [0, 2, 3, 4, 1])
        m = m[0]
        mm = tf.cast(
            tf.equal(tf.reduce_mean(m, axis=[0, 1, 2], keepdims=True), 0.),
            tf.float32)

        # matching and attending hole and non-hole patches
        y = []
        scale = self.softmax_scale
        for xi, wi, raw_wi in zip(x2_groups, w_groups, raw_w_groups):
            # matching on high-level feature maps
            wi = wi[0]
            wi_normed = wi / \
                tf.maximum(tf.sqrt(tf.reduce_sum(
                    tf.square(wi), axis=[0, 1, 2])), 1e-4)
            yi = tf.nn.conv2d(xi,
                              wi_normed,
                              strides=[1, 1, 1, 1],
                              padding="SAME")
            yi = tf.reshape(yi, [
                1, int_x2s[1], int_x2s[2],
                (int_x2s[1] // self.stride) * (int_x2s[2] // self.stride)
            ])
            # apply softmax to obtain attention score
            yi *= mm  # mask
            yi = tf.nn.softmax(yi * scale, 3)
            yi *= mm  # mask
            # transfer non-hole features into holes according to the atttention score
            wi_center = raw_wi[0]
            yi = tf.nn.conv2d_transpose(yi,
                                        wi_center,
                                        tf.concat([[1], raw_x1s[1:]], axis=0),
                                        strides=[
                                            1, self.rate * self.stride,
                                            self.rate * self.stride, 1
                                        ]) / 4.
            y.append(yi)
        y = tf.concat(y, axis=0)
        y.set_shape(int_x1s)
        # refine filled feature map after matching and attending
        y1 = self.conv1(y)
        y2 = self.conv2(y)
        y3 = self.conv3(y)
        y4 = self.conv4(y)
        y = tf.concat([y1, y2, y3, y4], axis=3)
        if self.rescale:
            y = _resize(y,
                        scale=2.,
                        func=tf.compat.v1.image.resize_nearest_neighbor)
        return y
Esempio n. 59
0
    def construct_network(self, frame_feat_input, batch_labels, weights, reuse, is_training):
        """
        :param frame_feat_input:[self.train_batch_size, SHOT_NUM, SHOT_FEAT_LENGTH]
        :param batch_labels:
        :param weights:
        :param reuse:
        :param is_training:
        :return:
        """
        with tf.variable_scope('video_level', reuse=reuse) as sc:
            nets = tf.layers.conv1d(frame_feat_input, 1024, kernel_size=3, name='conv_1')
            nets = slim.batch_norm(nets,
                                         decay=0.9997,
                                         epsilon=0.001,
                                         is_training=is_training)

            nets = tf.nn.relu(nets)
            nets = tf.layers.max_pooling1d(nets, pool_size=2, strides=2, name='pool1d_1')
            nets = tf.layers.conv1d(nets, filters=256, kernel_size=3, name='conv1d_2')
            nets = slim.batch_norm(nets,
                                         decay=0.9997,
                                         epsilon=0.001,
                                         is_training=is_training)
            nets = tf.nn.relu(nets)
            # layer 3
            nets = tf.layers.conv1d(nets, filters=256, kernel_size=3, name='conv1d_3')
            nets = slim.batch_norm(nets,
                                         decay=0.9997,
                                         epsilon=0.001,
                                         is_training=is_training)
            nets = tf.nn.relu(nets)
            # test flat
            nets = tf.layers.flatten(nets)
            fc_frame = tf.layers.dense(nets, 512, name='fc1')
            video_vector = tf.layers.dropout(fc_frame, FLAGS.dropout_rate, training=is_training)
            video_vector = tf.nn.relu(video_vector)
            video_vector = tf.layers.dense(video_vector, 512, name='dense_layer_1')
            video_vector = tf.layers.dropout(video_vector, FLAGS.dropout_rate, training=is_training)
            video_vector = tf.nn.relu(video_vector)
            video_vector = tf.layers.dense(video_vector, 1024, name='dense_layer_2')
            video_vector = tf.nn.relu(video_vector)
            logits = tf.layers.dense(video_vector, 2, name='dense_layer_3')
            predict_confidence = tf.nn.softmax(logits, name='confidence')  # [batch_size, 2]

        with tf.name_scope('loss'):
            cost = tf.reduce_mean(
                tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=batch_labels,
                                                       weights=weights))

        L2_frame = 0
        for w in tl.layers.get_variables_with_name('video_level', True, True):
            L2_frame += tf.contrib.layers.l2_regularizer(1.0)(w)

        loss = cost + 0.001 * L2_frame
        with tf.name_scope('accuracy'):
            predict_index = tf.argmax(logits, 1)
            predicts = tf.equal(predict_index, batch_labels)
            accuracy = tf.reduce_mean(tf.cast(predicts, np.float32))
            tf.summary.scalar('accuracy', accuracy)

        end_point = {'L2_frame': L2_frame, 'loss': loss, 'cost': cost, 'accuracy': accuracy,
                     'logits': predict_confidence, 'predict': predict_index}
        return end_point
Esempio n. 60
0
# Loss function 
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_true, logits = y_pred))

# Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001)
train = optimizer.minimize(cross_entropy)

init = tf.global_variables_initializer()

steps = 5000

with tf.Session() as sess:
	sess.run(init)

	for i in range(steps):
		batch_x, batch_y = mnist.train.next_batch(50)
		sess.run(train, feed_dict = {x:batch_x, y_true: batch_y, hold_prob:0.5})

		if i%100 == 0:
			print("ON Step: {}".format(i))
			print "Accuracy: "
			matches = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))

			acc = tf.reduce_mean(tf.cast(matches, tf.float32))
			print(sess.run(acc, feed_dict = {x:mnist.test.images, y_true:mnist.test.labels, hold_prob: 1.0}))
			print '\n'